RU2455724C1 - Структура и способ изготовления интегральных автоэмиссионных элементов с эмиттерами на основе наноалмазных покрытий - Google Patents

Структура и способ изготовления интегральных автоэмиссионных элементов с эмиттерами на основе наноалмазных покрытий Download PDF

Info

Publication number
RU2455724C1
RU2455724C1 RU2010146348/28A RU2010146348A RU2455724C1 RU 2455724 C1 RU2455724 C1 RU 2455724C1 RU 2010146348/28 A RU2010146348/28 A RU 2010146348/28A RU 2010146348 A RU2010146348 A RU 2010146348A RU 2455724 C1 RU2455724 C1 RU 2455724C1
Authority
RU
Russia
Prior art keywords
formation
holes
grooves
nanodiamond
cathode
Prior art date
Application number
RU2010146348/28A
Other languages
English (en)
Other versions
RU2010146348A (ru
Inventor
Геннадий Яковлевич Красников (RU)
Геннадий Яковлевич Красников
Николай Алексеевич Зайцев (RU)
Николай Алексеевич Зайцев
Сергей Николаевич Орлов (RU)
Сергей Николаевич Орлов
Илья Алексеевич Хомяков (RU)
Илья Алексеевич Хомяков
Равиль Кяшшафович Яфаров (RU)
Равиль Кяшшафович Яфаров
Original Assignee
Открытое акционерное общество "НИИ молекулярной электроники и завод "Микрон"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "НИИ молекулярной электроники и завод "Микрон" filed Critical Открытое акционерное общество "НИИ молекулярной электроники и завод "Микрон"
Priority to RU2010146348/28A priority Critical patent/RU2455724C1/ru
Publication of RU2010146348A publication Critical patent/RU2010146348A/ru
Application granted granted Critical
Publication of RU2455724C1 publication Critical patent/RU2455724C1/ru

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

Изобретение относится к электронной технике и может быть использовано при изготовлении приборов вакуумной микроэлектроники. Техническим результатом изобретения является использование в качестве материала эмиттера наноалмазных покрытий, представляющих собой углеродные пленки, которые содержат наноструктурированные алмазные компоненты, что приводит к повышению деградационной стойкости, плотности тока и уменьшению рабочих напряжений в интегральных приборах вакуумной нано- и микроэлектроники. Сущность изобретения: интегральный автоэмиссионный элемент включает подложку, покрытую диэлектрическим слоем, катодную структуру, состоящую из одного или нескольких слоев электропроводящего материала и расположенную на внешней поверхности упомянутой подложки, опорную структуру, расположенную на верхней поверхности упомянутой катодной структуры и содержащую сквозные отверстия, внутри которых формируются катоды на основе наноалмазных покрытий, расположенные на внешней поверхности катодной структуры, анодный слой из электропроводящего материала, расположенный на внешней поверхности упомянутой опорной структуры и содержащий технологические отверстия, совмещенные с упомянутыми отверстиями в опорной структуре. Создание эмиттера на основе наноалмазного покрытия проводится в едином технологическом цикле с формированием структуры анодов без дополнительной операции совмещения анодов с катодной структурой. 4 н. и 2 з.п. ф-лы, 8 ил.

Description

Область техники
Изобретение относится к приборам вакуумной микроэлектроники, в частности к интегральным автоэмиссионным элементам с эмиттерами на основе углеродных покрытий: к триодам и диодам, и к устройствам на их основе: автоэмиссионным дисплеям, вакуумным микроэлектронным переключателям токов, силовым приборам и др.
Уровень техники
Интегральный автоэмиссионный элемент может формироваться в виде триода, состоящего из катода на основе наноалмазных покрытий, сетки с управляющим напряжением и анода, или в виде диода, состоящего из катода на основе наноалмазных покрытий и анода. Эффективность работы интегрального автоэмиссионного элемента определяется током эмиссии, который в свою очередь зависит от материала электрода, рабочего напряжения и расстояния между анодом и катодом.
Высокими эмиссионными свойствами обладают углеродные материалы и, в частности, наноалмазные покрытия. Для получения больших плотностей автоэмиссионных токов полевой катод должен быть изготовлен из материала с достаточно высокой электронной проводимостью, которая в поликристаллических алмазных пленках обуславливается различными структурными дефектами, формирующими системы дополнительных уровней в запрещенной зоне алмаза. Эмиссионные свойства алмазных пленок значительно улучшаются с увеличением их дефектности вплоть до формирования аморфного материала, существенным признаком которого остается алмазный тип гибридизации связей валентных электронов атома углерода. Известен способ получения холодно-эмиссионных пленочных катодов (пат. Ru № 2194328) в виде подложки с нанесенной на нее углеродной пленкой, позволяющей получать высокую плотность эмиссионных токов 0,15-0,5 А/см2. Осаждение углеродной пленки проводится при температуре 700 1100°C. Углеродная пленка представляет собой структуру, состоящую из углеродных микро- и наноребер или микро- и нанонитей, ориентированных перпендикулярно поверхности подложки, с характерным масштабом от 0,05 до 1 мкм. Особенности технологии формирования эмиссионных катодов на основе углеродных материалов (такие как высокая температура осаждения, недопустимость осаждения других слоев на сформированную эмиссионную поверхность) затрудняет создание интегрированных эмиссионных элементов (диодов и триодов), что требует разработки новых структур полевых эмиссионных элементов и технологии их получения.
Другим способом предлагаемого технического решения является устройство, показаное в патенте №2161840, в котором описаны конструкция, способ изготовления и характеристики автоэмиссионного триода, содержащего анод, автоэмиссионный катод и расположенную между ними управляющую сетку, катод выполнен в виде нанокристаллического алмазного эмиттера, имеющего порог эмиссии порядка 2-6 В/мкм, а зазор между катодом и анодом и напряжение выбираются так, чтобы была возможна реализация функций запирающей сетки. Но автоэмиссионный триод, представленный в патенте №2161840, не относится к интегральным микроэлектронным устройствам, так как анод механически совмещается с катодом, при этом расстояние между анодом и катодом составляет 1000 мкм.
Наиболее близкое к предлагаемому техническому решению устройство показано в патенте №2391738. Полевой эмиссионный элемент, предложенный в патенте №2391738, включает подложку, катодную структуру (7, 8, 9), состоящую из одного или нескольких слоев электропроводящего материала и расположенную на внешней поверхности упомянутой подложки, опорную структуру, состоящую из одного диэлектрического слоя или нескольких диэлектрических и электропроводящих слоев, расположенную на верхней поверхности упомянутой катодной структуры и содержащую сквозные отверстия, внутри которых формируются эмиссионные катоды в виде углеродных нанотрубок, расположенных на внешней поверхности катодной структуры перпендикулярно данной поверхности, анодный слой из электропроводящего материала, расположенный на внешней поверхности упомянутой опорной структуры и содержащий технологические отверстия, совмещенные с упомянутыми отверстиями в опорной структуре. Однако эмиссионные характеристики таких структур нестабильны - при постоянном приложенном напряжении плотность тока эмиссии постепенно снижается. Это, по-видимому, связано с разрушением торцов эмитирующих нанотрубок под действием быстрых электронов и тепла.
Целью изобретения является создание матрицы интегральных автоэмиссионных элементов, которая при упрощенной технологии изготовления, совместимой с низкотемпературной технологией производства интегральных схем, обладала бы высокими эффективностью (высокой плотностью тока при низком напряжении эмиссии) и стабильностью автоэлектронной эмиссии при продолжительном ресурсе службы.
Поставленная цель достигается тем, что при создании интегрального автоэмиссионного элемента, в отличие от устройства, показанного в патенте №2391738, используются эмиттеры на основе наноалмазных покрытий, что позволяет получить большие плотности тока, чем на эмиттерах на основе углеродных нанотрубок. На изготовленных интегральных элементах с наноалмазными покрытиями получена максимальная плотность на эмиттерах 2,0 А/см2, что по оценкам авторов в несколько раз превышает плотность тока на аналогичных элементах с эмиттерами, изготовленными на основе углеродных нанотрубок.
В предлагаемой технологии создание эмиттера на основе наноалмазного покрытия проводится в едином технологическом цикле с формированием структуры анодов без дополнительной операции совмещения анодов с катодной структурой при формировании рабочих областей элементов в виде канавок, осаждении наноалмазного покрытия на поверхность структур и на дно канавок, нанесении и плазмохимическом травлении фоторезиста с закрытием дна канавок, плазмохимическом травлении наноалмазного покрытия с поверхности, не закрытой фоторезистом, жидкостном химическом травлении фоторезиста на дне канавок. При таком технологическом маршруте уменьшается разброс расстояний между катодами и анодами, уменьшается температурное влияние технологических обработок на поверхность эмиттеров, которые формируются на конечном этапе цикла изготовления интегральных элементов, что повышает стабильность работы приборов и обеспечивает уменьшение разброса токовых характеристик интегральных автоэмиссионных элементов с эмиттерами на основе наноалмазных покрытий.
Литература
1. Л.Н.Добрецов, М.В.Гомоюнова. "Эмиссионная электроника", М.: Наука, 1966, стр.117.
2. I.Brodie, P.R.Schwoebel, Proceeding of the IEEE, 1994, v.82, n.7, p.1006.
3. S.Sattel, J.Robertson, Z.Tass et. al., "Formation of nanocrystalline diamond by hydrocarbon plasma beam deposition". Proceedings of 7 European Conf. Diamond'96, Diamond and Related Materials, v.6, 1997, p.255.
4. A.T.Rakhimnov, B.V.Seleznev, N.V.Suetin et al. Applications of Diamond Films and Related Material: 3-rd International Conf., Gaithersburg, MD, USA, 1995, NISTIR 5692, Supplement to NIST Special Publication 885, p.11 s.
Раскрытие изобретения
Задачей, на решение которой направленно данное изобретение, является достижение технического результата, заключающегося в повышении плотности и равномерности автоэмиссионного тока и в уменьшении рабочих напряжений в интегральных автоэмиссионных элементах за счет использования в качестве материала эмиттера наноалмазных покрытий, представляющих собой пленки, содержащие наноструктурированные алмазные компоненты, а также за счет уменьшения расстояния между катодом и анодом при создании эмиттеров на поверхности катодной структуры на основе наноалмазных покрытий в едином технологическом цикле с формированием структуры анода без дополнительной операции совмещения анодов с катодной структурой.
Поставленная задача решается в конструкции интегрального автоэмиссионного элемента, содержащего подложку, катодную структуру, состоящую из одного или нескольких слоев электропроводящего материала и расположенную на внешней поверхности упомянутой диэлектрической подложки, опорную структуру, состоящую из одного диэлектрического слоя или нескольких диэлектрических и электропроводящих слоев, расположенную на внешней поверхности упомянутой катодной структуры и содержащую сквозные отверстия для формирования эмиттеров на основе наноалмазных покрытий, расположенных в упомянутых отверстиях опорной структуры на внешней поверхности катодной структуры, анодный слой из электропроводящего материала, расположенный на внешней поверхности опорной структуры и содержащей технологические отверстия, совмещенные с упомянутыми отверстиями в опорной структуре, отличающейся тем, что создание эмиттера на основе наноалмазного покрытия проводится в едином технологическом цикле с формированием структуры анодов без дополнительной операции совмещения анодов с катодной структурой при формировании рабочих областей элементов в виде канавок, осаждении наноалмазного покрытия на поверхность структур и на дно канавок, нанесении и плазмохимическом травлении фоторезиста с закрытием дна канавок, плазмохимическом травлении наноалмазного покрытия с поверхности, не закрытой фоторезистом, жидкостном химическом травлении фоторезиста на дне канавок.
Таким образом, отличительньм признаком изобретения является то, что на поверхности катодной структуры располагается опорная структура, содержащая сквозные отверстия, на поверхности катодной структуры имеются эмиттеры на основе наноалмазных покрытий, расположенные в отверстиях опорной структуры на внешней поверхности катодной структуры, на поверхности опорной структуры расположен анодный слой из электропроводящего материала, содержащий технологические отверстия, совмещенные с упомянутыми отверстиями в опорной структуре, и формирование катода при осаждении наноалмазных покрытий происходит в едином технологическом цикле без дополнительной операции совмещения анодов с катодной структурой. Указанная совокупность отличительных признаков позволяет достичь технического результата, заключающегося в повышении плотности и равномерности автоэмиссионного тока и в уменьшении рабочих напряжений в интегральных автоэмиссионных элементах, за счет использования в качестве материала эмиттера наноалмазных покрытий, представляющих собой пленки, содержащие наноструктурированные алмазные компоненты, а также за счет уменьшения расстояния между катодом и анодом при создании эмиттеров на поверхности катодной структуры на основе наноалмазных покрытий в едином технологическом цикле с формированием структуры анодов без дополнительной операции совмещения анодов с катодной структурой при формировании рабочих областей элементов в виде канавок, осаждении наноалмазного покрытия на поверхность структур и на дно канавок, нанесении и плазмохимическом травлении фоторезиста с закрытием дна канавок, плазмохимическом травлении наноалмазного покрытия с поверхности, не закрытой фоторезистом, жидкостном химическом травлении фоторезиста на дне канавок.
Краткое описание чертежей
Изобретение иллюстрируется следующими чертежами:
(на чертеже а изображен диод, на чертеже b - триод)
Фиг.1 Формирование многослойной структуры.
Фиг.2 Плазмохимическое травление слоев Si*, SiO2, Si* через фотомаску.
Фиг.3 Удаление фоторезиста и жидкостное травление SiO2.
Фиг.4 Осаждение наноалмазных покрытий.
Фиг.5 Нанесение фоторезиста.
Фиг.6 Плазмохимическое травление фоторезиста.
Фиг.7 Плазмохимическое травление наноалмазного покрытия.
Фиг.8 Жидкостное травление фоторезиста.
Обозначение слоев: 1 - подложка (Si); 2 - диэлектрический слой (SiO2); 3 - токоведущий слой из легированного поликристаллического кремния (Si*), катодная структура; 4 -эмиттер на основе наноалмазного покрытия; 5 - первый изолирующий слой (SiO2); 6 - легированный поликристаллический кремний (Si*), сетка; 7 - второй изолирующий слой (SiO2); 8 - легированный поликристаллический кремний (Si*), анод; 9 - фоторезист
Пример осуществления изобретения
Разработана технология изготовления автоэмиссионного триода на поверхности кремниевых пластин диаметром 100 мм, включая следующие операции: формирование на поверхности кремниевой подложки (1) методом окисления кремния пленки SiO2 (2) толщиной 0,45 мкм; пиролитическое осаждение поликремния (3) толщиной 0,5 мкм и легирование его фосфором; формирование структуры проводников «катод» при проведении проекционной фотолитографии и плазмохимическом травлении поликремния толщиной 0,5 мкм; плазмохимическое осаждение первого диэлектрического слоя SiO2 (5) толщиной 1 мкм; пиролитическое осаждение поликремния (6) толщиной 0,5 мкм и легировании его фосфором; формирование структуры проводников «сетка» при проведении проекционной фотолитографии и плазмохимическом травлении слоя поликремния (0,5 мкм); плазмохимическое осаждении второго диэлектрического слоя SiO2 (7) толщиной 1 мкм; пиролитическое осаждение поликремния (8) толщиной 0,5 мкм и легирование его фосфором; формирование структуры отверстий для элементов при проведении проекционной фотолитографии и плазмохимическом травлении слоев поликремния (0,5 мкм), SiO2 (1 мкм), поликремния (0,5 мкм); создание рабочих областей элементов в виде канавок при жидкостном химическом травлении первого и второго диэлектрических слоев SiO2 толщиной 1 мкм, с боковым подтравом 2,0 мкм; формирование структуры проводников «анод» при проведении проекционной фотолитографии и плазмохимическом травлении поликремния (0,5 мкм); формирование контактных окон при проведении проекционной фотолитографии и плазмохимическом травлении слоев SiO2 до поверхности поликремния; локальное формирование эмиттеров на основе наноалмазных покрытий (4) толщиной 0,1-0,2 мкм при микроволновом с электронно-циклотронным резонансом плазмохимическом осаждении наноалмазного покрытия в виде наноструктурированного алмазо-графитового слоя при рабочем давлении паров этанола 0,1 Па и температуре 300-350°C, нанесении и плазмохимическом травлении фоторезиста (9) с закрытием дна канавок, плазмохимическом травлении наноалмазного покрытия с поверхности, не закрытой фоторезистом, жидкостном химическом травлении фоторезиста на дне канавок.
Полученные по описанной технологии интегральные автоэмиссионные элементы при испытаниях показали хорошие характеристики, а именно высокую стабильность эмиссии при амплитуде флуктуации тока менее 3,5% на начальном этапе, что позволяет прогнозировать срок службы катода на уровне не менее 10000 часов, а также высокую эффективность эмиссии: при расстоянии между катодом и анодом в полученных элементах 0,1-5,0 мкм порог эмиссии составляет 1,0-5,0 В/мкм, максимальная плотность автоэмиссионного тока на эмиттерах составляет 2,0 А/см2.

Claims (4)

1. Интегральный автоэмиссионный элемент, содержащий подложку, катодную структуру, состоящую из одного или нескольких слоев электропроводящего материала и расположенной на внешней стороне упомянутой диэлектрической подложки, опорную структуру, состоящую из одного диэлектрического слоя или нескольких диэлектрических или электропроводящих слоев, расположенную на внешней поверхности упомянутой катодной структуры и содержащую сквозные отверстия для формирования эмиссионных катодов на основе наноалмазных покрытий, расположенных в упомянутых отверстиях опорной структуры на внешней поверхности катодной структуры, анодный слой из электропроводящего материала, расположенный на внешней поверхности упомянутой опорной структуры и содержащий технологические отверстия, совмещенные с упомянутыми отверстиями в опорной структуре, отличающийся тем, что создание эмиттера на основе наноалмазного покрытия проводится в едином технологическом цикле с формированием структуры анодов без дополнительной операции совмещения анодов с катодной структурой при формировании рабочих областей элементов в виде канавок, осаждении наноалмазного покрытия на поверхность структур и на дно канавок, нанесении и плазмохимическом травлении фоторезиста с закрытием дна канавок, плазмохимическом травлении наноалмазного покрытия с поверхности, не закрытой фоторезистом, жидкостном химическом травление фоторезиста на дне канавок.
2. Интегральный автоэмиссионный элемент по п.1, отличающийся тем, что эмиссионный катод включает эмиттер, изготовленный на основе наноалмазных покрытий, обладающих высокими эмиссионными свойствами и позволяющих увеличить плотности эмиссионных токов.
3. Способ изготовления интегрального автоэмиссионного элемента по п.1, позволяющий получить структуру автоэмиссионного триода и содержащий следующие технологические этапы: формирование на поверхности подложки, покрытой диэлектрическим слоем, катодной структуры, состоящей из одного или нескольких слоев электропроводящего материала; формирование на поверхности катодной структуры опорной структуры, состоящей из первого изолирующего слоя, расположенного на поверхности катодной структуры, затворного электропроводящего слоя, расположенного на поверхности первого изолирующего слоя, второго изолирующего слоя, расположенного на поверхности затворного электропроводящего слоя; формирование анодного слоя, расположенного на поверхности опорной структуры: формирование технологических отверстий и структуры проводников в анодном слое; формирование сквозных отверстий в слоях опорной структуры, совмещенных с технологическими отверстиями в анодном слое; травление первого и второго изолирующих слоев жидкостным химическим методом при поступлении раствора через технологические отверстия в анодном слое; формирование эмиттера на основе наноалмазного покрытия на поверхности токопроводящего слоя внутри упомянутых отверстий в опорной структуре, отличающийся тем, что создание эмиттера на основе наноалмазного покрытия проводится в едином технологическом цикле с формированием структуры анодов без дополнительной операции совмещения анодов с катодной структурой при формировании рабочих областей элементов в виде канавок, осаждении наноалмазного покрытия на поверхность структур и на дно канавок, нанесении и плазмохимическом травлении фоторезиста с закрытием дна канавок, плазмохимическом травлении наноалмазного покрытия с поверхности, не закрытой фоторезистом, жидкостном химическом травлении фоторезиста на дне канавок.
4. Способ изготовления интегрального автоэмиссионного элемента по п.1, позволяющий получить структуру автоэмиссионного диода и содержащий следующие технологические этапы: формирование на поверхности подложки, покрытой диэлектрическим слоем, катодной структуры, состоящей из одного или нескольких слоев электропроводящего материала; формирование на поверхности катодной структуры опорной структуры, состоящей из одного или нескольких изолирующих слоев; формирование анодного слоя, расположенного на поверхности опорной структуры; формирование технологических отверстий и структуры проводников в анодном слое; формирование сквозных отверстий в слоях опорной структуры, совмещенных с технологическими отверстиями в анодном слое; травление изолирующих слоев жидкостным химическим методом при поступлении раствора через технологические отверстия в анодном слое; формирование эмиттера на основе наноалмазного покрытия на поверхности токопроводящего слоя внутри упомянутых отверстий в опорной структуре, отличающийся тем, что создание эмиттера на основе наноалмазного покрытия проводится в едином технологическом цикле с формированием структуры анодов без дополнительной операции совмещения анодов с катодной структурой при формировании рабочих областей элементов в виде канавок, осаждении наноалмазного покрытия на поверхность структур и на дно канавок, нанесении и плазмохимическом травлении фоторезиста с закрытием дна канавок, плазмохимическом травлении наноалмазного покрытия с поверхности, не закрытой фоторезистом, жидкостном химическом травлении фоторезиста на дне канавок.
RU2010146348/28A 2010-11-13 2010-11-13 Структура и способ изготовления интегральных автоэмиссионных элементов с эмиттерами на основе наноалмазных покрытий RU2455724C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010146348/28A RU2455724C1 (ru) 2010-11-13 2010-11-13 Структура и способ изготовления интегральных автоэмиссионных элементов с эмиттерами на основе наноалмазных покрытий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010146348/28A RU2455724C1 (ru) 2010-11-13 2010-11-13 Структура и способ изготовления интегральных автоэмиссионных элементов с эмиттерами на основе наноалмазных покрытий

Publications (2)

Publication Number Publication Date
RU2010146348A RU2010146348A (ru) 2012-05-20
RU2455724C1 true RU2455724C1 (ru) 2012-07-10

Family

ID=46230339

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010146348/28A RU2455724C1 (ru) 2010-11-13 2010-11-13 Структура и способ изготовления интегральных автоэмиссионных элементов с эмиттерами на основе наноалмазных покрытий

Country Status (1)

Country Link
RU (1) RU2455724C1 (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2575137C2 (ru) * 2012-10-02 2016-02-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт физических проблем им. Ф.В. Лукина" Гетероструктура для автоэмиттера
RU2579777C1 (ru) * 2014-12-10 2016-04-10 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ) Прибор на основе углеродосодержащих холодных катодов, расположенных на полупроводниковой подложке, и способ его изготовления
RU2590897C1 (ru) * 2015-04-07 2016-07-10 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ) Автоэмиссионный элемент с катодами на основе углеродных нанотрубок и способ его изготовления
RU2640355C2 (ru) * 2016-04-18 2017-12-28 Общество с ограниченной ответственностью "Штерн" (ООО "Штерн") Способ изготовления катода на основе массива автоэмиссионных эмиттеров
RU2666784C1 (ru) * 2017-12-20 2018-09-12 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Матричный автоэмиссионный катод и способ его изготовления
RU2761426C2 (ru) * 2019-12-27 2021-12-08 федеральное государственное бюджетное образовательное учреждение высшего образования Московский педагогический государственный университет Способ размещения наноалмазов с nv-центрами на нитриде кремния
RU2763046C1 (ru) * 2021-02-15 2021-12-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Автоэмиссионный эмиттер с нанокристаллической алмазной пленкой
RU2765635C1 (ru) * 2021-04-20 2022-02-01 Акционерное общество "Научно-производственное предприятие "Алмаз" (АО "НПП "Алмаз") Повышение крутизны вах сильноточных полевых источников электронов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132304B2 (en) * 2003-12-22 2006-11-07 Samsung Sdi Co., Ltd. Field emission device, display adopting the same and method of manufacturing the same
RU2309480C2 (ru) * 2005-08-04 2007-10-27 Федеральное государственное унитарное предприятие "НПП "Контакт" Материал и способ изготовления многоострийного автоэмиссионного катода
RU80994U1 (ru) * 2008-10-14 2009-02-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт материалов" (ФГУП "ЦНИИМ") Автоэмиссионное устройство
RU2391738C2 (ru) * 2008-02-11 2010-06-10 Открытое акционерное общество "НИИ молекулярной электроники и завод "Микрон" Структура и способ изготовления полевых эмиссионных элементов с углеродными нанотрубками, используемыми в качестве катодов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132304B2 (en) * 2003-12-22 2006-11-07 Samsung Sdi Co., Ltd. Field emission device, display adopting the same and method of manufacturing the same
RU2309480C2 (ru) * 2005-08-04 2007-10-27 Федеральное государственное унитарное предприятие "НПП "Контакт" Материал и способ изготовления многоострийного автоэмиссионного катода
RU2391738C2 (ru) * 2008-02-11 2010-06-10 Открытое акционерное общество "НИИ молекулярной электроники и завод "Микрон" Структура и способ изготовления полевых эмиссионных элементов с углеродными нанотрубками, используемыми в качестве катодов
RU80994U1 (ru) * 2008-10-14 2009-02-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт материалов" (ФГУП "ЦНИИМ") Автоэмиссионное устройство

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2575137C2 (ru) * 2012-10-02 2016-02-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт физических проблем им. Ф.В. Лукина" Гетероструктура для автоэмиттера
RU2579777C1 (ru) * 2014-12-10 2016-04-10 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ) Прибор на основе углеродосодержащих холодных катодов, расположенных на полупроводниковой подложке, и способ его изготовления
RU2590897C1 (ru) * 2015-04-07 2016-07-10 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" (МИЭТ) Автоэмиссионный элемент с катодами на основе углеродных нанотрубок и способ его изготовления
RU2640355C2 (ru) * 2016-04-18 2017-12-28 Общество с ограниченной ответственностью "Штерн" (ООО "Штерн") Способ изготовления катода на основе массива автоэмиссионных эмиттеров
RU2666784C1 (ru) * 2017-12-20 2018-09-12 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Матричный автоэмиссионный катод и способ его изготовления
RU2761426C2 (ru) * 2019-12-27 2021-12-08 федеральное государственное бюджетное образовательное учреждение высшего образования Московский педагогический государственный университет Способ размещения наноалмазов с nv-центрами на нитриде кремния
RU2763046C1 (ru) * 2021-02-15 2021-12-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Автоэмиссионный эмиттер с нанокристаллической алмазной пленкой
RU2765635C1 (ru) * 2021-04-20 2022-02-01 Акционерное общество "Научно-производственное предприятие "Алмаз" (АО "НПП "Алмаз") Повышение крутизны вах сильноточных полевых источников электронов
RU2808770C1 (ru) * 2023-06-27 2023-12-05 Акционерное общество "Научно-исследовательский институт молекулярной электроники" Способ повышения плотности полевых токов и крутизны автоэмиссионных вах

Also Published As

Publication number Publication date
RU2010146348A (ru) 2012-05-20

Similar Documents

Publication Publication Date Title
RU2455724C1 (ru) Структура и способ изготовления интегральных автоэмиссионных элементов с эмиттерами на основе наноалмазных покрытий
KR101042962B1 (ko) 열음극 전자방출 진공 채널 트랜지스터, 다이오드 및 그 진공 채널 트랜지스터의 제조방법
US6979947B2 (en) Nanotriode utilizing carbon nanotubes and fibers
US10483073B2 (en) Fabrication of vacuum electronic components with self-aligned double patterning lithography
RU2391738C2 (ru) Структура и способ изготовления полевых эмиссионных элементов с углеродными нанотрубками, используемыми в качестве катодов
US7147534B2 (en) Patterned carbon nanotube process
US8159119B2 (en) Vacuum channel transistor and manufacturing method thereof
JP5116961B2 (ja) カーボンナノウォールを用いたダイオード
JP2001068012A (ja) 電界放射型電子源およびその製造方法
CN102709133B (zh) 具有嵌入式电极的冷阴极电子源阵列及其制作方法和应用
US20050255613A1 (en) Manufacturing of field emission display device using carbon nanotubes
RU2590897C1 (ru) Автоэмиссионный элемент с катодами на основе углеродных нанотрубок и способ его изготовления
Van Quy et al. The use of anodic aluminium oxide templates for triode-type carbon nanotube field emission structures toward mass-production technology
CN111725040B (zh) 一种场发射晶体管的制备方法、场发射晶体管及设备
JP4312352B2 (ja) 電子放出装置
RU2524353C2 (ru) Трехмерно-структурированная полупроводниковая подложка для автоэмиссионного катода, способ ее получения и автоэмиссионный катод
KR100762590B1 (ko) 탄소나노튜브를 이용한 전계방출형 표시소자 및 그 제조방법
RU2794423C1 (ru) Способ изготовления катодного узла микротриода с трубчатым катодом из нанокристаллической алмазной пленки (варианты)
RU2794423C9 (ru) Способ изготовления катодного узла микротриода с трубчатым катодом из нанокристаллической алмазной пленки (варианты)
RU2654522C1 (ru) Способ повышения плотности тока и деградационной стойкости автоэмиссионных катодов на кремниевых пластинах
CN113675057B (zh) 一种自对准石墨烯场发射栅极结构及其制备方法
KR100767417B1 (ko) 탄소 나노튜브 전계 방출 소자 및 그 제조 방법
RU2579777C1 (ru) Прибор на основе углеродосодержащих холодных катодов, расположенных на полупроводниковой подложке, и способ его изготовления
RU2813858C1 (ru) Способ повышения эффективности многоострийных автоэмиссионных катодов
Zhu et al. Anomalous improved electron field emission from hybridised graphene on Mo tip arrays

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20130801