RU2454459C2 - Способ сорбционно-контактного обезвоживания высокодисперсных биологически активных материалов - Google Patents

Способ сорбционно-контактного обезвоживания высокодисперсных биологически активных материалов Download PDF

Info

Publication number
RU2454459C2
RU2454459C2 RU2009101092/10A RU2009101092A RU2454459C2 RU 2454459 C2 RU2454459 C2 RU 2454459C2 RU 2009101092/10 A RU2009101092/10 A RU 2009101092/10A RU 2009101092 A RU2009101092 A RU 2009101092A RU 2454459 C2 RU2454459 C2 RU 2454459C2
Authority
RU
Russia
Prior art keywords
sorbent
dry
dehydration
liquid phase
cfu
Prior art date
Application number
RU2009101092/10A
Other languages
English (en)
Other versions
RU2009101092A (ru
Inventor
Валерий Юрьевич Давыдкин (RU)
Валерий Юрьевич Давыдкин
Игорь Юрьевич Давыдкин (RU)
Игорь Юрьевич Давыдкин
Владимир Андрианович Алёшкин (RU)
Владимир Андрианович Алёшкин
Александра Вадимовна Мелихова (RU)
Александра Вадимовна Мелихова
Любовь Ивановна Трофимова (RU)
Любовь Ивановна Трофимова
Original Assignee
Федеральное бюджетное учреждение науки "Московский научно-исследовательский институт эпидемиологии и микробиологии имени Г.Н. Габричевского" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН МНИИЭМ им. Г.Н. Габричевского Роспотребнадзора)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное бюджетное учреждение науки "Московский научно-исследовательский институт эпидемиологии и микробиологии имени Г.Н. Габричевского" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН МНИИЭМ им. Г.Н. Габричевского Роспотребнадзора) filed Critical Федеральное бюджетное учреждение науки "Московский научно-исследовательский институт эпидемиологии и микробиологии имени Г.Н. Габричевского" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН МНИИЭМ им. Г.Н. Габричевского Роспотребнадзора)
Priority to RU2009101092/10A priority Critical patent/RU2454459C2/ru
Publication of RU2009101092A publication Critical patent/RU2009101092A/ru
Application granted granted Critical
Publication of RU2454459C2 publication Critical patent/RU2454459C2/ru

Links

Images

Abstract

Изобретение относится к медицине и фармацевтической промышленности и касается способа получения сухих биологически активных материалов сорбционно-контактным обезвоживанием. Материалы, содержащие биологически активные вещества, в жидкой фазе, переводят в микрокапельное состояние, стабилизированное сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, с последующим обезвоживанием, при массовом соотношении жидкой фазы к сорбенту от 1:4 до 1:8. Изобретение позволяет повысить сохраняемость действующих веществ в процессе хранения обезвоженных лабильных биологически активных материалов. 1 ил., 5 табл., 12 пр.

Description

Изобретение относится к медицине и фармацевтической промышленности и касается способа получения сухих биологически активных материалов сорбционно-контактным обезвоживанием.
Известен способ контактно-сорбционного обезвоживания термолабильных материалов, предусматривающий сушку и стерилизацию наполнителя-сорбента и поступление его в бункер-накопитель, проверку его стерильности и влагосодержания, последующее смешение компонентов в камере при температуре окружающей среды путем одновременного диспергирования высушиваемого материала с наполнителем-сорбентом (RU, патент 1363918 A1, F26B 5/16, 3/12, 10.06.1996).
Основным недостатком известного аналога является невозможность получения сухих высокодисперсных порошков по причине сильной адгезии лабильных биологически активных материалов на носителе-сорбенте и соответствующей потери дисперсности.
Известна пробиотическая добавка и способ ее получения, предусматривающий смешивание биомассы спорообразующих бактерий Bucillus subtilis, носителя-сорбента - аэросилов гидрофильного марки А и гидрофобного марки AM, вспомогательных веществ - смолы-катиониты ионообменные марок КБ-4П-2 и КУ-2-8 и обезвоживание полученной смеси методом капилярно-сорбционного высушивания до содержания влаги в готовом продукте (8-25)% (RU, заявка 2002129938 A, C12N 1/20, А23K 1/165, А61K 35/66, F26B 5/16, 10.08.2004).
Известен сухой пробиотический препарат и способ его получения, предусматривающий получение жидкой биомассы путем смешения нативной культуры лактобактерий с белково-углеводным комплексом, контактное обезвоживание полученной жидкой биомассы влагоемкой ионообменной смолой КБ-4П-2 с размерами частиц от 1 до 800 мкм, предварительно обработанной смесью лактозы безводной и аэросила гидрофобного (RU, патент 2268926 С2, C12N 1/20, А23С 9/12, F26B 5/16, 10.03.2005).
Известен способ получения сухого пробиотического препарата, в соответствии с которым культуру бифидобактерий или стрептококка, выращенную в условиях глубинного культивирования, смешивают с защитной средой, проводят контактно-сорбционное обезвоживание целевого продукта охлажденным до минус 8-10°С сорбентом, например окисью алюминия с остаточной влажностью менее 1% при массовом соотношении 1:10-1:12, соответственно и осуществляют досушивание в течение 18-20 часов при температуре 0-5°С в замкнутом объеме (RU, патент 2067114 С1, C12N 1/20, А61К 35/74, C12N 1/04, 27.09.1996) (прототип).
Основным недостатком известных аналогов и прототипа в том числе является значительная инактивация действующих веществ в процессе хранения обезвоженных лабильных биологически активных материалов.
В основу заявляемого изобретения положена задача повышения сохраняемости действующих веществ в процессе хранения обезвоженных лабильных биологически активных материалов.
Задача решена тем, что жидкую фазу обезвоживают из микрокапельного состояния, стабилизированного сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, при массовом соотношении жидкой фазы к сорбенту от 1:4 до 1:8.
В результате проведенных исследований нами впервые показано, что преимущество сорбционно-контактного обезвоживания жидкостей, содержащих биологически активные вещества, из микрокапельного состояния, стабилизированного сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, заключается в том, что такое состояние формирует развернутую поверхность жидкости в порошке, составляющую по нашим данным 0,04-0,09 м2 в 1 см3 порошка, что обеспечивает большую площадь контакта с сорбентом и, соответственно, малую продолжительность переноса основной массы свободной влаги к сорбенту (до 2 минут).
Это в свою очередь позволяет быстро проходить отрезок относительной влажности микрокапельного порошка в смеси в диапазоне «критической влажности» 7-8%, соответствующей 22-28% относительной влажности биологически активных веществ (например, микроорганизмов) и обусловливающей их массовую инактивацию [Monk G.W., McCaffrey P.A., Davies M.S. Studies on the mechanism of sorbed water killing of bacteria // J. Bacteriol. - 1957. - V.73. - P.661-672], что приводит к повышению активности действующих веществ в процессе обезвоживания лабильных биологически активных материалов.
С изменением количества сорбента, используемого для обезвоживания жидкой фазы, содержащей биологически активные вещества, изменяется и соотношение компонентов препарата в единице его массы. Так, в соответствии с расчетами материального баланса, материал при соотношении жидкой фазы к сорбенту как 2:1 будет содержать сорбента 27,8%, влаги 46,9%, гидрофобного разобщителя - аэросила 16,6% и 8,7% биологически активных действующих веществ (см. чертеж). Увеличение количества сорбента до соотношения 1:8 приводит к резкому снижению количества всех остальных компонентов, особенно действующих веществ (до 1,7%). Поэтому использование больших количеств сорбента, чем при соотношении 1:8, экономически не оправдано и приводит лишь к физическому разбавлению препарата сорбентом. В то же время использование меньших количеств сорбента (соотношений жидкой фазы к сорбенту менее чем 1:4) не обеспечивает удовлетворительной сохраняемости действующих веществ в процессе длительного хранения высушенных материалов.
Согласно изобретению повышение сохраняемости действующих веществ в процессе хранения обезвоженных лабильных биологически активных материалов обеспечивается тем, что жидкую фазу обезвоживают из микрокапельного состояния, стабилизированного сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, при массовом соотношении жидкой фазы к сорбенту от 1:4 до 1:8.
Заявляемый способ сорбционно-контактного обезвоживания высокодисперсных биологически активных материалов является новым и в литературе не описан.
Техническим результатом заявляемого изобретения является повышение сохраняемости действующих веществ в процессе хранения обезвоженных лабильных биологически активных материалов.
Сущность изобретения поясняется на следующих примерах, показывающих повышение сохраняемости действующих веществ в процессе хранения обезвоженных лабильных биологически активных материалов при реализации способа.
Содержание в препаратах жизнеспособных аэробных микроорганизмов Francisella tularensis определяли методом Пастера-Коха на твердых питательных средах. Содержание жизнеспособных анаэробных микроорганизмов Bifidobacterium bifidum определяли в жидких питательных средах методом предельных разведений. Концентрацию вируса вакцинного штамма La-Sota болезни Ньюкасла определяли культивированием в аллантоисной жидкости куриных эмбрионов [Сюрин В.Н., Белоусов Р.В., Фомина Н.В. Ветеринарная вирусология. - М.: Колос, 1986]. Стерилизацию сорбентов с одновременным обезвоживанием проводили в сухожаровом шкафу SUP-4 при температуре 120°С с выдержкой в установившемся тепловом режиме не менее 2 часов.
В качестве высокодисперсного гидрофобного разобщителя с наоразмерами частиц использовали высокодисперсный гидрофобный диоксид кремния - аэросил [Кинетика измельчения биопрепаратов в аппарате на базе плоского двухстороннего индуктора / Давыдкин И.Ю., Давыдкин В.Ю., Давыдкин Ю.П., Синицын Л.Е., Гаврин А.Г. // Медицинская промышленность и биотехнология. Наука-производство-маркетинг. - 1992. - Вып.5 - 6. - С.51 - 58; Разновидности наночастиц и их применение в биологии и медицине. - http://prostonauka.com/nano/nanotehnologii-v-biologii-i-medicine/nanomaterialy/nanochasticy].
Пример 1. Объект обезвоживания готовили смешением суспензии микроорганизмов Francisella tularensis штамма №33 НИИЭГ с лактозной защитной средой в соотношении 2:1. Микрокапельный порошок туляремийной вакцины получали, диспергируя суспензию Francisella tularensis штамма №33 НИИЭГ с рН=7,0 и содержанием жизнеспособных микроорганизмов 600×109 КОЕ/мл в присутствии гидрофобного аэросила AM-1-3 00 при их соотношении 10:3, в электромагнитном диспергаторе в течение 20 с.
Затем порошок туляремийной вакцины с жидкой фазой в микрокапельном состоянии, стабилизированном сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, с концентрацией жизнеспособных микроорганизмов 581×109 КОЕ/г смешивали в шнековом смесителе с сорбентом КБ-4П-2 с остаточной влажностью менее 1% и температурой минус 10-15°С в течение 5 мин при соотношении жидкой фазы и сорбента 1:4. Смесь перегружали в металлические пеналы и помещали для равномерного распределения влаги по всему объему сорбента при температуре 2-8°С в течение 6-12 часов.
Биологическая активность готового сухого туляремийного вакцинного препарата, состоящего из сухих частиц (бактериальных клеток с компонентами защитной среды), стабилизированных сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, и сорбента, составила 52,7×109 КОЕ/г, а его влагосодержание 15%.
Сохраняемость действующих веществ сухого туляремийного вакцинного препарата в процессе его хранения в течение года при температуре 2-8°С представлена в таблице.
Пример 2. Реализацию способа получения микрокапельного порошка Francisella tularensis и его обезвоживания осуществляли, как описано в примере 1, но при соотношении жидкой фазы к сорбенту 1:8.
Биологическая активность готового сухого туляремийного вакцинного препарата, состоящего из сухих частиц (бактериальных клеток с компонентами защитной среды), стабилизированных сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, и сорбента, составила 43,0×109 КОЕ/г, а его влагосодержание 10,2%.
Сохраняемость действующих веществ сухого туляремийного вакцинного препарата в процессе его хранения в течение года при температуре 2-8°С представлена в таблице.
Пример 3. Реализацию способа получения микрокапельного порошка Francisella tularensis и его обезвоживания осуществляли, как описано в примере 1, но при соотношении жидкой фазы к сорбенту 1:6.
Биологическая активность готового сухого туляремийного вакцинного препарата, состоящего из сухих частиц (бактериальных клеток с компонентами защитной среды), стабилизированных сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, и сорбента, составила 46,6×109 КОЕ/г, а его влагосодержание 11,7%.
Сохраняемость действующих веществ сухого туляремийного вакцинного препарата в процессе его хранения в течение года при температуре 2-8°С представлена в таблице.
Пример 4. Объект обезвоживания готовили смешением суспензии микроорганизмов Bifidobacterium bifidum шт.1C с сахарозо-молочной защитной средой в соотношении 2:1. Микрокапельный порошок пробиотического препарата получали, диспергируя суспензию Bifidobacterium bifidum шт.1C с рН=7,0 и содержанием жизнеспособных микроорганизмов 3,2×109 КОЕ/мл в присутствии гидрофобного аэросила AM-1-300 при их соотношении 10:3, в дисковом диспергаторе в течение 15 с.
Затем порошок пробиотического препарата с жидкой фазой в микрокапельном состоянии, стабилизированном сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, с концентрацией жизнеспособных микроорганизмов 3,2×109 КОЕ/г смешивали в шнековом смесителе с сорбентом - дисперсной окисью алюминия с остаточной влажностью менее 1% и температурой минус 10-15°С в течение 5 мин при соотношении жидкой фазы к сорбенту 1:4. Смесь перегружали в металлические пеналы и помещали для равномерного распределения влаги по всему объему сорбента при температуре 2-8°С в течение 6-12 часов.
Биологическая активность готового сухого пробиотического препарата, состоящего из сухих частиц (бактериальных клеток с компонентами защитной среды), стабилизированных сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, и сорбента, составила 4,6×108 КОЕ/г, а его влагосодержание 14,6%. Сохраняемость действующих веществ сухого пробиотического препарата в процессе его хранения в течение года при температуре 2-8°С представлена в таблице.
Пример 5. Реализацию способа получения микрокапельного порошка Bifidobacterium bifidum и его обезвоживания осуществляли, как описано в примере 4, но при соотношении жидкой фазы к сорбенту 1:8.
Биологическая активность готового сухого пробиотического препарата, состоящего из сухих частиц (бактериальных клеток с компонентами защитной среды), стабилизированных сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, и сорбента, составила 2,5×108 КОЕ/г, а его влагосодержание 10%. Сохраняемость действующих веществ сухого пробиотического препарата в процессе его хранения в течение года при температуре 2-8°С представлена в таблице.
Пример 6. Реализацию способа получения микрокапельного порошка Bifidobacterium bifidum и его обезвоживания осуществляли, как описано в примере 4, но при соотношении жидкой фазы к сорбенту 1:6.
Биологическая активность готового сухого пробиотического препарата, состоящего из сухих частиц (бактериальных клеток с компонентами защитной среды), стабилизированных сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, и сорбента, составила 4,0×108 КОЕ/г, а его влагосодержание 11,5%.
Сохраняемость действующих веществ сухого пробиотического препарата в процессе его хранения в течение года при температуре 2-8°С представлена в таблице.
Пример 7. Объект обезвоживания готовили смешением раствора иммуноглобулинов IgG, IgA, IgM с глицином (2%) в качестве защитной среды. Микрокапельный порошок иммунобиологического препарата получали, диспергируя раствор иммуноглобулинов IgG, IgA, IgM с рН=7,0 и противосальмонеллезной активностью 1:640 в титрах РПГА в присутствии гидрофобного аэросила R 972 при их соотношении 10:2, в дисковом диспергаторе в течение 20 с.
Затем порошок иммунобиологического препарата с жидкой фазой в микрокапельном состоянии, стабилизированном сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, с противосальмонеллезной активностью 1:640 в титрах РПГА смешивали в шнековом смесителе с сорбентом КБ-4П-2 с остаточной влажностью менее 1% и температурой минус 10-15°С в течение 5 мин при соотношении жидкой фазы к сорбенту 1:4. Смесь перегружали в металлические пеналы и помещали для равномерного распределения влаги по всему объему сорбента при температуре 2-8°С в течение 6-12 часов.
Биологическая активность готового сухого иммунобиологического препарата, состоящего из сухих частиц (смеси иммуноглобулинов с компонентами защитной среды), стабилизированных сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, и сорбента, составила 1:320 в тирах РПГА, а его влагосодержание 15,2%.
Сохраняемость действующих веществ сухого иммунобиологического препарата в процессе его хранения в течение года при температуре 2-8°С представлена в таблице.
Пример 8. Реализацию способа получения микрокапельного порошка иммуноглобулинов IgG, IgA, IgM и его обезвоживания осуществляли, как описано в примере 7, но при соотношении жидкой фазы к сорбенту 1:8.
Биологическая активность готового сухого иммунобиологического препарата, состоящего из сухих частиц (смеси иммуноглобулинов с компонентами защитной среды), стабилизированных сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, и сорбента, составила 1:160 в тирах РПГА, а его влагосодержание 10,6%.
Сохраняемость действующих веществ сухого иммунобиологического препарата в процессе его хранения в течение года при температуре 2-8°С представлена в таблице.
Пример 9. Реализацию способа получения микрокапельного порошка иммуноглобулинов IgG, IgA, IgM и его обезвоживания осуществляли, как описано в примере 7, но при соотношении жидкой фазы к сорбенту 1:6.
Биологическая активность готового сухого иммунобиологического препарата, состоящего из сухих частиц (смеси иммуноглобулинов с компонентами защитной среды), стабилизированных сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, и сорбента, составила 1:160 в тирах РПГА, а его влагосодержание 12,4%.
Сохраняемость действующих веществ сухого иммунобиологического препарата в процессе его хранения в течение года при температуре 2-8°С представлена в таблице.
Пример 10. Объект обезвоживания готовили смешением суспензии вируса болезни Ньюкасла вакцинного штамма La-Sota с защитной средой из обезжиренного молока в соотношении 2:1. Микрокапельный порошок вирусной вакцины получали, диспергируя суспензию вакцинного штамма La-Sota вируса болезни Ньюкасла с рН=7,0 и содержанием жизнеспособных вирусов 10,5 lg ЭИД50/мл, в присутствии гидрофобного аэросила AM-1-3 00 при их соотношении 10:3, в электромагнитном диспергаторе в течение 20 с.
Затем порошок вирусной вакцины с жидкой фазой в микрокапельном состоянии, стабилизированном сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, с содержанием жизнеспособных вирусов 10,5 lg ЭИД50/г смешивали в шнековом смесителе с сорбентом КБ-4П-2 с остаточной влажностью менее 1% и температурой минус 10-15°С в течение 5 мин при соотношении жидкой фазы к сорбенту 1:4. Смесь перегружали в металлические пеналы и помещали для равномерного распределения влаги по всему объему сорбента при температуре 2-8°С в течение 6-12 часов.
Биологическая активность готового сухого вирусного вакцинного препарата, состоящего из сухих частиц (вирусных частиц с компонентами защитной среды), стабилизированных сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, и сорбента, составила 10,3 lg ЭИД50/г, а его влагосодержание 16,0%.
Сохраняемость действующих веществ сухого вирусного вакцинного препарата в процессе его хранения в течение года при температуре 2-8°С представлена в таблице.
Пример 11. Реализацию способа получения микрокапельного порошка вируса болезни Ньюкасла и его обезвоживания осуществляли, как описано в примере 10, но при соотношении жидкой фазы к сорбенту 1:8.
Биологическая активность готового сухого вирусного вакцинного препарата, состоящего из сухих частиц (вирусных частиц с компонентами защитной среды), стабилизированных сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, и сорбента, составила 10,0 lg ЭИД50/г, а его влагосодержание 11%.
Сохраняемость действующих веществ сухого вирусного вакцинного препарата в процессе его хранения в течение года при температуре 2-8°С представлена в таблице.
Пример 12. Реализацию способа получения микрокапельного порошка вируса болезни Ньюкасла и его обезвоживания осуществляли, как описано в примере 10, но при соотношении жидкой фазы к сорбенту 1:6.
Биологическая активность готового сухого вирусного вакцинного препарата, состоящего из сухих частиц (вирусных частиц с компонентами защитной среды), стабилизированных сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, и сорбента, составила 10,2 lg ЭИД50/г, а его влагосодержание 12,2%.
Сохраняемость действующих веществ сухого вирусного вакцинного препарата в процессе его хранения в течение года при температуре 2-8°С представлена в таблице.
Сухой препарат на основе Соотношение жидкой фазы к сорбенту Биологическая активность препарата Сохраняемость, %
до хранения после хранения
Francisella tularensis по прототипу 1:12 9,3×109 6,9×109 75
заявляемый 1:2 57,2×109 19,8×109 24
1:4 52,7×109 43,2×109 82
1:6 46,6×109 44,2×109 95
1:8 43,0×109 43,1×109 100
1:10 28,7×109 20,4×109 71
Bifidobacterium bifidum по прототипу 1:12 1,7×109 1,4×109 81
заявляемый 1:4 4,6×109 4,0×109 87
1:6 4,0×109 3,8×109 96
1:8 2,5×109 2,4×109 99
иммуноглобу-линов IgG, IgA, IgM по прототипу 1:10 1:80 1:40 50
заявляемый 1:4 1:320 1:320 100
1:6 1:160 1:160 100
1:8 1:160 1:160 100
вируса болезни Ньюкасла по прототипу 1:12 9,5 lg ЭИД50 9,2 lg ЭИД50 55
заявляемый 1:4 10,3 lg ЭИД50 10,2 lg ЭИД50 80
1:6 10,2 lg ЭИД50 10,21g ЭИД50 100
1:8 10,0 lg ЭИД50 10,0 lg ЭИД50 100
Как следует из анализа данных, представленных в таблице, материалы полученные при реализации заявленного способа сорбционно-контактного обезвоживания, обладают большей сохраняемостью действующих веществ в процессе хранения по сравнению с препаратами, приготовленными в соответствии с прототипом, что обеспечивается обезвоживаем сорбентами жидкой фазы из микрокапельного состояния, стабилизированного сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, при массовом соотношении жидкой фазы к сорбенту от 1:4 до 1:8.
В представленных выше примерах приведены одинаковые условия проведения процесса сорбционно-контактного обезвоживания микрокапельных порошков биологической природы. Нашими исследованиями было показано, что изменение этих условий в определенных интервалах не оказывает существенного влияния на технический результат изобретения. О чем свидетельствуют данные, представленные в таблицах, характеризующие выживаемость микроорганизмов (на примере Serratia marcescens шт.ВКМ-851) при сорбционно-контактном обезвоживании микрокапельных порошков при различной температуре смешения порошка с сорбентом, разном соотношении жидкой фазы и сорбента, при изменении температуры выдерживания после смешения и продолжительности выдерживания после смешения.
Температура смешения порошка с сорбентом, °С Биологическая активность препарата Выживаемость, %
до обезвоживания после обезвоживания
-20 72×109 КОЕ/мл 10,5×109 КОЕ/г 72,9
0 72×109 КОЕ/мл 9,9×109 КОЕ/г 69,2
+10 72×109 КОЕ/мл 10,7×109 КОЕ/г 74,7
+20 72×109 КОЕ/мл 10,9×109 КОЕ/г 76,1
Соотношение жидкой фазы и сорбента Биологическая активность препарата Выживаемость, %
до обезвоживания после обезвоживания
1:8 87×109 КОЕ/мл 5,7×109 КОЕ/г 59,0
1:4 87×109KOE/мл 10×109 KOE/r 62,0
4:1 87×109 КОЕ/мл 42,1×109 КОЕ/г 60,5
8:1 87×109 КОЕ/мл 47,2×109 КОЕ/г 61,0
Температура выдерживания после смешения, °С Биологическая активность препарата Выживаемость, %
до обезвоживания после обезвоживания
-20 103×109 КОЕ/мл 9,1×109 КОЕ/г 53,2
0 103×109 KOE/мл 9,4×109 КОЕ/г 55,0
+15 103×109 КОЕ/мл 9,0×109 КОЕ/г 52,6
+30 103×109 КОЕ/мл 8,4×109 КОЕ/г 48,7
Продолжительность выдерживания после смешения, час Биологическая активность препарата Выживаемость, %
до обезвоживания после обезвоживания
1 87×109 КОЕ/мл 11,1×109 KОЕ/г 63,8
12 87×109 КОЕ/мл 10,8×109 КОЕ/г 62,0
24 87×109 КОЕ/мл 10,0×109 КОЕ/г 58,5
48 87×109 КОЕ/мл 10,6×109 КОЕ/г 60,9
Подобным образом могут быть высушены микрокапельные порошки с биологически активными действующими веществами не только биологической природы, но и любой другой. Причем достижение технического результата обеспечивается именно обезвоживанием из микрокапельного состояния, стабилизированного гидрофобным разобщителем.

Claims (1)

  1. Способ сорбционно-контактного обезвоживания влагоемкими сорбентами материалов, содержащих биологически активные действующие вещества, в жидкой фазе, отличающийся тем, что предварительно материалы, содержащие биологически активные вещества, в жидкой фазе переводят в микрокапельное состояние, стабилизированное сухим высокодисперсным гидрофобным разобщителем с наноразмерами частиц, при массовом соотношении жидкой фазы к сорбенту от 1:4 до 1:8.
RU2009101092/10A 2009-01-15 2009-01-15 Способ сорбционно-контактного обезвоживания высокодисперсных биологически активных материалов RU2454459C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009101092/10A RU2454459C2 (ru) 2009-01-15 2009-01-15 Способ сорбционно-контактного обезвоживания высокодисперсных биологически активных материалов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009101092/10A RU2454459C2 (ru) 2009-01-15 2009-01-15 Способ сорбционно-контактного обезвоживания высокодисперсных биологически активных материалов

Publications (2)

Publication Number Publication Date
RU2009101092A RU2009101092A (ru) 2010-07-20
RU2454459C2 true RU2454459C2 (ru) 2012-06-27

Family

ID=42685692

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009101092/10A RU2454459C2 (ru) 2009-01-15 2009-01-15 Способ сорбционно-контактного обезвоживания высокодисперсных биологически активных материалов

Country Status (1)

Country Link
RU (1) RU2454459C2 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2067114C1 (ru) * 1991-12-05 1996-09-27 Государственный научно-исследовательский институт прикладной микробиологии Способ получения сухого пробиотического препарата
RU2268926C2 (ru) * 2003-07-10 2006-01-27 Вирусологический центр НИИ Микробиологии Министерства обороны Российской Федерации Сухой пробиотический препарат и способ его получения

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2067114C1 (ru) * 1991-12-05 1996-09-27 Государственный научно-исследовательский институт прикладной микробиологии Способ получения сухого пробиотического препарата
RU2268926C2 (ru) * 2003-07-10 2006-01-27 Вирусологический центр НИИ Микробиологии Министерства обороны Российской Федерации Сухой пробиотический препарат и способ его получения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ВОРОБЬЕВ А.А. и др. Культивирование микроорганизмов в микрообъемах питательной среды. Журнал микробиологии, эпидемиологии и иммунологии, 2003, №3, с.11-15. ДАВЫДКИН И.Ю. и др., Кинетика измельчения биопрепаратов в аппарате на базе плоского двухсторонненого индуктора, Медицинская промышленность и биотехнология, Наука, производство, маркетинг, 1992, вып.5-6, с.51-58. *

Also Published As

Publication number Publication date
RU2009101092A (ru) 2010-07-20

Similar Documents

Publication Publication Date Title
Khem et al. The behaviour of whey protein isolate in protecting Lactobacillus plantarum
JP6166744B2 (ja) 乾燥粉末細胞および細胞培養試薬およびその生産の方法
JP5985463B2 (ja) 乾燥粉末細胞および細胞培養試薬ならびにこれらの生成方法
KR102058491B1 (ko) 응집 미생물 배지의 제조 방법 및 이의 조성물
JP2002515758A5 (ru)
KR102103232B1 (ko) 응집된 미생물성 배지
RU2454459C2 (ru) Способ сорбционно-контактного обезвоживания высокодисперсных биологически активных материалов
RU2455349C2 (ru) Способ сорбционно-контактного обезвоживания высокодисперсных биологически активных материалов
RU2440105C2 (ru) Способ получения высокодисперсных биологически активных материалов
RU2583136C1 (ru) Способ комбинированного обезвоживания высокодисперсных биологически активных материалов
RU2440099C2 (ru) Способ комбинированного обезвоживания высокодисперсных биологически активных материалов
RU2449775C2 (ru) Способ введения защитной среды в биологически активный материал
RU2440098C2 (ru) Препарат, содержащий биологически активные действующие вещества
RU2067114C1 (ru) Способ получения сухого пробиотического препарата
RU2142504C1 (ru) Способ получения биологически активной добавки в сухой форме, содержащей бактерии-эубиотики, и начинка для хлебных или кондитерских изделий на ее основе
RU2448730C2 (ru) Препарат, содержащий биологически активные действующие вещества
Díaz et al. Characterization of the formulated cream and powder during the spray drying process of hebernem-s product
RU2659685C1 (ru) Способ сорбционно-вакуумного высушивания жидких термолабильных биологически активных материалов
RU2440106C2 (ru) Способ сублимационного обезвоживания высокодисперсных биологически активных материалов
RU1831498C (ru) Способ контактной сушки микроорганизмов
EP0647709A1 (en) Process for preparing dry compositions of heat-sensitive materials
CA2117847A1 (en) Preparing dry compositions of heat-sensitive materials

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180116