RU2441788C2 - Система мониторинга напряжений для железных дорог - Google Patents

Система мониторинга напряжений для железных дорог Download PDF

Info

Publication number
RU2441788C2
RU2441788C2 RU2007139507/11A RU2007139507A RU2441788C2 RU 2441788 C2 RU2441788 C2 RU 2441788C2 RU 2007139507/11 A RU2007139507/11 A RU 2007139507/11A RU 2007139507 A RU2007139507 A RU 2007139507A RU 2441788 C2 RU2441788 C2 RU 2441788C2
Authority
RU
Russia
Prior art keywords
rail
module
sensor
data
data acquisition
Prior art date
Application number
RU2007139507/11A
Other languages
English (en)
Other versions
RU2007139507A (ru
Inventor
Харолд ХАРРИСОН (US)
Харолд ХАРРИСОН
Original Assignee
Сейлиент Системз, Инк
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сейлиент Системз, Инк filed Critical Сейлиент Системз, Инк
Publication of RU2007139507A publication Critical patent/RU2007139507A/ru
Application granted granted Critical
Publication of RU2441788C2 publication Critical patent/RU2441788C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • B61L23/044Broken rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • B61L23/047Track or rail movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • B61L23/048Road bed changes, e.g. road bed erosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/50Trackside diagnosis or maintenance, e.g. software upgrades
    • B61L27/53Trackside diagnosis or maintenance, e.g. software upgrades for trackside elements or systems, e.g. trackside supervision of trackside control system conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

Изобретение относится к системе мониторинга напряжений рельсов. Эта система включает в себя модуль чувствительных элементов, который дополнительно включает в себя датчик, который выполнен с возможностью установления прямо на рельсовом звене. Датчик дополнительно включает в себя, по существу, плоскую металлическую прокладку и, по меньшей мере, один, а обычно два или больше чувствительных элементов, установленных на одной стороне прокладки. Чувствительные элементы обычно представляют собой датчики деформаций, которые установлены на прокладке в конкретной, предварительно определенной конфигурации. По меньшей мере, один модуль сбора данных находится в электрической связи с этим датчиком, а модуль обработки данных принимает и обрабатывает информацию, собираемую модулем сбора данных. В результате обеспечивается высокая точность определения рабочих характеристик рельсов. 3 н. и 26 з.п. ф-лы, 10 ил.

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА СВЯЗАННЫЕ ЗАЯВКИ
Данная заявка испрашивает приоритет патентной заявки США № 11/552386, поданной 24 октября 2006 г. и озаглавленной "Система мониторинга напряжений для железных дорог", которая является частичной продолженной заявкой патентной заявки США № 10/899265, поданной 26 июля 2004 г. и озаглавленной "Система и способ для определения ограничений по условиям безопасности на железнодорожном транспорте".
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Описанные системы и способы, в общем, относятся к инфраструктурам обработки информации для мониторинга продольных напряжений в бесстыковых железнодорожных стальных путях ("CWR"). Более конкретно - описанные системы и способы относятся к обработке подвергающихся мониторингу уровней напряжения с целью определения пределов безопасности рельсов.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
В течение последних сорока лет на стадии реализации делались усилия, чтобы устранить механические соединения в железнодорожных путях. Эти усилия в значительной степени затрагивают конструирование рельсовых путей, имеющих бесстыковые пути благодаря свариванию или иному соединению концов разнесенных на небольшие расстояния секций рельсов, формируя конструкцию, иногда упоминаемую как бесстыковой рельсовый путь. Технология, связанная с конструированием рельсового пути CWR, в предшествующем уровне техники известна.
Поскольку все секции рельсов бесстыкового железнодорожного пути соединены, бесстыковой железнодорожный путь может быть особенно чувствителен к изменениям в температуре окружающей среды у рельсового пути и в окружающей среде, таким как сезонные колебания в температуре окружающей среды, приводящие к колебаниям в температуре рельсов. В областях с тропическим климатом диапазоны между экстремальными значениями температуры, в общем, являются умеренными, что не создает существенную проблему для рельсовых систем. Однако в областях с умеренным климатом, таких как Соединенные Штаты Америки, Азия, Австралия и Европа, диапазоны экстремальных значений температуры являются достаточными, чтобы вызвать катастрофические, обусловленные температурой, разрушения в рельсовых системах, включая такие разрушения, как разрыв рельсов и коробление рельсовых путей, как будет описано в дальнейшем.
Например, незакрепленное рельсовое звено бесстыковых рельсов 100-мильной длины в некоторых областях умеренного климата может претерпевать изменение в длине более чем на 600 футов от одного сезонного температурного экстремального значения до другого. Посредством прикрепления рельса к железнодорожным шпалам изменения в полной длине рельсов могут быть в значительной степени предотвращены, но вместо этого внутри рельса создаются результирующие, ограниченные продольные напряжения.
Когда сегменты рельсов рельсового пути CWR первоначально устанавливают и прикрепляют к дорожному полотну, каждый из рельсов имеет нулевое продольное напряжение. Температура, при которой установлен бесстыковой железнодорожный путь, иногда упоминается как нейтральная температура рельсов ("RNT").
Когда температура окружающей среды у рельсов падает ниже RNT, внутри в каждом сегменте рельсов бесстыкового железнодорожного пути создаются растягивающие продольные напряжения из-за большего теплового коэффициента расширения металлических рельсов относительно коэффициента нижележащего дорожного полотна. Если разница между пониженной окружающей температурой у рельсов и RNT является экстремальной, растягивающие напряжения в рельсах потенциально могут достигать достаточной величины для того, чтобы фактически вызвать разрыв сегментов рельсов в одном или обоих бесстыковых рельсах. К счастью, разрушение разрыва может быть легко обнаружено посредством установления электрической рельсовой цепи, используя рельсы в качестве части токопроводящего пути, который становится "разомкнутым", если один из рельсов бесстыкового железнодорожного пути разрывается.
Аналогично этому, когда окружающая температура у рельсов поднимается выше RNT, внутри каждого из рельсов бесстыкового железнодорожного пути создаются сжимающие усилия. Если разница между повышенной температурой окружающей среды у рельсов и RNT является экстремальной, сжимающие усилия в рельсах потенциально могут достигать достаточной величины, чтобы фактически вызывать коробление рельсового звена. Сжимающее усилие, требуемое для того, чтобы приводить какой-либо конкретный рельс к короблению, зависит от ряда факторов, включающих в себя абсолютную температуру, разность между температурой окружающей среды у рельсов и RNT и, например, состояние балласта.
Такое коробление, прежде рассматриваемое как случайное и непредсказуемое, является основным источником крушений. Способность поезда преодолевать боковое смещение рельсового звена, которое бывает типичным для коробления рельсовых путей, является минимальной. В результате коробление рельсовых путей представляет собой, по существу, больший риск крушения, чем разрыв рельса, поскольку первое не может быть обнаружено с помощью обычной рельсовой цепи.
Хотя были разработаны различные способы, системы и устройства, чтобы измерять и/или определять продольные напряжения в рельсе бесстыкового железнодорожного пути, ни один из них не используется для точного определения, находится ли секция бесстыкового железнодорожного пути в пределах конкретных ограничений по условиям безопасности. Следовательно, имеется потребность в системах и способах, которые направлены на преодоление недостатков распознавания напряжений в рельсах предшествующего уровня техники, и обеспечивают более точное определение рабочих характеристик рельсов в заданных диапазонах безопасности на железнодорожном транспорте.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Следующее описание обеспечивает сущность примерных вариантов осуществления настоящего изобретения. Эта сущность не является всесторонним обзором и не предназначена для идентифицирования ключевых или критических аспектов или элементов настоящего изобретения или выражения его объема.
В соответствии с одним аспектом настоящей заявки раскрыт примерный способ определения ограничений по условиям безопасности на железнодорожном транспорте. Примерный способ включает в себя определение целевой нейтральной температуры рельсов для участка бесстыкового пути. Способ также включает в себя мониторинг продольного напряжения для участка бесстыкового пути и мониторинг температуры окружающей среды у рельсов для участка бесстыкового пути. Способ дополнительно включает в себя определение настоящей нейтральной температуры рельсов на основании продольного напряжения и температуры окружающей среды у рельсов. В соответствии с примерным способом настоящая нейтральная температура рельсов сравнивается с целевой нейтральной температурой рельсов, чтобы определить, произошло ли разрушение участка бесстыкового пути, и сообщается предупреждение об опасности, если разница между настоящей нейтральной температурой рельсов и целевой нейтральной температурой рельсов находится в пределах предварительно определенного диапазона. Также раскрыто примерное устройство для осуществления этого способа.
В соответствии со вторым аспектом настоящей заявки раскрыт примерный способ для определения ограничений по условиям безопасности на железнодорожном транспорте. Примерный способ включает в себя мониторинг температуры окружающей среды у рельсов для участка бесстыкового пути и мониторинг продольного напряжения для участка бесстыкового пути. Способ также включает в себя определение нейтральной температуры рельсов для участка бесстыкового пути и определение предела текучести балласта, поддерживающего участок рельсов. Способ дополнительно включает в себя определение порогового значения высокотемпературного коробления, связанного с участком рельсов. Пороговое значение высокотемпературного коробления зависит от предела текучести, нейтральной температуры рельсов и продольного напряжения для участка рельсов. В соответствии с примерным способом температура окружающей среды у рельсов сравнивается с пороговым значением высокотемпературного коробления, чтобы определить разность температур, и сообщается предупреждение об опасности, если разность температур находится в пределах предварительно определенного диапазона. Также раскрыто примерное устройство для осуществления этого способа.
В соответствии с третьим аспектом настоящей заявки раскрыта примерная система для мониторинга участков рельсов. Система включает в себя множество устройств мониторинга напряжений участков рельсов и, по меньшей мере, один приемник, находящийся на связи с множеством устройств мониторинга напряжений рельсов. Приемники действуют для приема данных о напряжениях рельсов от устройств мониторинга напряжений рельсов. Приемники дополнительно действуют для передачи данных о напряжениях рельсов в устройство обработки напряжений рельсов. Устройство обработки напряжений рельсов находится на связи с приемниками и действует для оценивания данных о напряжениях рельсов. Устройство мониторинга напряжений рельсов дополнительно действует для сообщения предупреждений об опасности, основываясь на данных о напряжениях рельсов.
В соответствии с четвертым аспектом настоящей заявки раскрыта примерная система мониторинга напряжений рельсов. Эта система включает в себя модуль чувствительных элементов, который дополнительно включает в себя датчик, который выполнен с возможностью установления прямо на рельсовом звене. Датчик дополнительно включает в себя, в общем, плоскую металлическую прокладку и, по меньшей мере, один и обычно два чувствительных элемента, установленных на одной стороне прокладки. Чувствительными элементами обычно являются датчики деформаций, которые установлены на прокладке в конкретной, предварительно определенной конфигурации так называемой "елочкой". По меньшей мере, один модуль сбора данных находится в электрической связи с датчиком, и модуль обработки данных принимает и обрабатывает информацию, собираемую модулем сбора данных.
Дополнительные признаки и аспекты настоящего изобретения станут очевидны специалистам в данной области техники из прочтения и осмысления последующего подробного описания примерных вариантов осуществления. Как можно будет оценить, возможны дополнительные варианты осуществления изобретения, не выходя при этом за рамки объема и сущности изобретения. Соответственно чертежи и относящиеся к ним части описания должны быть расценены по характеру как иллюстративные, а не как ограничительные.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Прилагаемые чертежи, которые встроены в материалы заявки и формируют их часть, схематично иллюстрируют один или более примерных вариантов осуществления изобретения и вместе с общим описанием, приведенным выше, и подробным описанием, приведенным ниже, служат для объяснения принципов изобретения, и на которых:
фиг.1 - схематичное представление, иллюстрирующее примерную сеть бесстыкового железнодорожного пути в соответствии с системами и способами, описываемыми в настоящей заявке;
фиг.2 - схематичное представление, иллюстрирующее примерную связь между некоторыми компонентами фиг.1;
фиг.3 - диаграмма, иллюстрирующая зависимость продольного напряжения рельсов от разности температур между нейтральной температурой рельсов и температурой окружающей среды у рельсов;
фиг.4 - диаграмма продольного напряжения и RNT для рельсового звена CWR;
фиг.5 - блок-схема процесса, иллюстрирующая первую примерную методологию для определения ограничений по условиям безопасности на железнодорожном транспорте;
фиг.6 - блок-схема процесса, иллюстрирующая вторую примерную методологию для определения ограничений по условиям безопасности на железнодорожном транспорте;
фиг.7 - обобщенное схематичное изображение примерного варианта осуществления системы для мониторинга напряжения рельсов в соответствии с настоящим изобретением и обобщенный вид сверху внутренних компонентов датчика по настоящему изобретению;
фиг.8 - вид в перспективе примерного варианта осуществления собранной версии датчика по настоящему изобретению;
фиг.9 - вид в перспективе рельсового звена, на котором был установлен примерный вариант осуществления модуля чувствительных элементов по настоящему изобретению; и
фиг.10 - стилизованная иллюстрация снятия показаний специалистом с примерного варианта осуществления модуля чувствительных элементов по настоящему изобретению.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Теперь будут описаны примерные варианты осуществления настоящего изобретения со ссылкой на чертежи. Ссылочные позиции используются на протяжении всего подробного описания, чтобы ссылаться на различные элементы и конструкции. Для целей пояснения в подробном описании сформулированы многочисленные конкретные подробности, чтобы способствовать полному пониманию этого изобретения. Однако должно быть понято, что настоящее изобретение может быть осуществлено на практике без этих конкретных подробностей. В других случаях известные конструкции и устройства показаны в форме блок-схемы для целей упрощения описания.
Рассмотрим фиг.1, на которой иллюстрируется схематичное представление примерной сети 100 бесстыкового железнодорожного пути. Иллюстрируемая сеть 100 бесстыкового железнодорожного пути включает в себя множество участков рельсовых путей CWR, например, таких как участки 105, 110 и 115 рельсов. Участки рельсовых путей CWR создают трассы между некоторыми узлами, такие как трассы между узлами 120 и 125. Некоторые из участков рельсовых путей CWR, например, такие как участок 115 рельсов, включают в себя устройство мониторинга напряжений рельсов, такое как устройство 140 мониторинга напряжений рельсов. Каждое устройство мониторинга напряжений рельсов предназначено для измерения или определения иным способом величины внутреннего напряжения в пределах участка рельсов и сообщения о таком внутреннем напряжении в процессор 130 для обработки напряжений рельсов.
Обратимся теперь к фиг.2, на которой более подробно иллюстрируется вид некоторых компонентов сети 100 бесстыкового железнодорожного пути. Как показано, монитор 140 напряжений рельсов, соответствующий участку 115 рельсов, определяет внутреннее напряжение участка 115 рельсов и передает данные о напряжении рельсов в процессор 130 для обработки напряжений рельсов через башню 210 передачи сигналов.
Конечно, иллюстрируемое средство связи представляет собой просто один пример многообразия способов для осуществления связи мониторов напряжений рельсов, таких как монитор 140, с процессором 130 для обработки напряжений рельсов. Примеры других средств связи включают в себя, например, прямую проводную связь, спутниковую, высокочастотную, сотовую, любую другую форму беспроводной связи, и связь через Интернет. Примеры еще одних средств для осуществления передачи подвергающихся мониторингу данных от монитора 140 в процессор 130 для обработки напряжений рельсов включают в себя передачу через автодрезину и сбор данных вручную с монитора 140 железнодорожным персоналом вместе с последующим ручным вводом таких данных в процессор 130 для обработки напряжений рельсов.
Данные, собираемые и сообщаемые монитором 140, включают в себя измеренное продольное напряжение участка рельсовых путей CWR или рельсового звена CWR. Другие данные, которые могут собираться и сообщаться монитором 140, включают в себя, например, температуру окружающей среды у рельсов, температуру рельсов, дату, время, вибрацию и RNT.
Обращаясь теперь к фиг.3, отметим, что на ней представлена примерная диаграмма, иллюстрирующая зависимость продольного напряжения рельсов от разности температур между RNT и температурой окружающей среды у рельсов. Как иллюстрируется - на чертеже представлена диаграмма температуры рельсов в градусах Цельсия по горизонтальной оси и соответствующее представление напряжений рельсов в градусах Цельсия по вертикальной оси. Хотя напряжение рельсов обычно представляют в таких единицах, например, как фунты на квадратный дюйм, настоящая заявка признает, что представление напряжений рельсов в единицах градусов сильно упрощает понимание взаимных зависимостей между напряжением рельсов, температурой окружающей среды у рельсов и RNT. Согласно диаграмме на фиг.3 напряжение рельсов в градусах Цельсия может быть определено в соответствии со следующей формулой.
Допустим:
НР - напряжение рельсов (в градусах Цельсия),
RNT - нейтральная температура рельсов (в градусах Цельсия),
ТОС - температура окружающей среды у рельсов (в градусах Цельсия),
НР=RNT-ТОС.
Другими словами, напряжение рельсов, показанное диаграммой на фиг.3, представляет, что напряжение рельсов (НР) составляет количество градусов, на которое температура окружающей среды у рельсов (НР) отличается от нейтральной температуры рельсов (RNT). Эта линейная зависимость изображена ссылочной позицией 350. Горизонтальная зависимость, изображенная ссылочной позицией 360, представляет напряжение несвязанного участка рельса. Благодаря несвязанному состоянию участка рельса, независимо от температуры окружающей среды у рельса, напряжение рельса является нулевым. Другими словами, RNT несвязанного рельса всегда равна температуре окружающей среды у рельса.
В области 305 иллюстрируемого примера, где температура рельса ниже его RNT, рельс находится под растягивающим напряжением, которое имеет тенденцию приводить к разрушениям разрыва рельса. Напряжение рельса в области 310, которое выше его RNT, представляет сжимающее напряжение рельса, которое имеет тенденцию приводить к разрушениям коробления пути. По определению - RNT 315 может быть определена с использованием диаграммы, идентифицируя точку, в которой находится нулевое напряжение рельса. На иллюстрируемой диаграмме RNT 315 для примерного рельсового пути CWR равна 30 градусам Цельсия.
Обратимся теперь к фиг.4, на которой иллюстрируется диаграмма, показывающая RNT и продольное напряжение, в градусах Фаренгейта, рельсового звена CWR за некоторый период времени. Первый участок диаграммы, как обозначено ссылочными позициями 405 и 410, представляет показания, снимаемые до прикрепления рельсов CWR к остальной части рельсового пути. Как иллюстрируется - RNT колеблется с температурой окружающей среды у рельсов на протяжении всего дня. Иллюстрируемое подобным образом, подвергаемое мониторингу, напряжение в градусах Фаренгейта, также выраженное в виде разности между температурой окружающей среды у рельсов и RNT, является нулевым. Эти показания указывают, что на рельсовом звене CWR нет никакого продольного напряжения, что соответствует несвязанному состоянию рельсов CWR до установки.
В ссылочной позиции 415, то есть точке, в которой рельс CWR связывают, иллюстрируются более постоянные показания RNT приблизительно на 100 градусах. Точно так же в ссылочной позиции 420 диаграмма изображает крутое увеличение в величине пикового ночного продольного напряжения рельса, которое остается постоянным в течение некоторого времени приблизительно на 30-40 градусах. Это внезапное увеличение и положительное (растягивающее) значение напряжения рельса соответствует сварке двух концов рельсов вместе и повторному закреплению рельса на поперечных шпалах. Результирующие нагрузки переносятся на балласт, оставляя рельс в полностью связанном состоянии.
В ссылочной позиции 430 изображено крутое увеличение в продольном напряжении рельсов и соответствующее уменьшение RNT в ссылочной позиции 425. Теоретически, как только рельсовое звено CWR становится связанным, RNT должна оставаться постоянной на протяжении всего срока службы рельсового звена CWR. Практически, однако, на RNT может воздействовать множество факторов. Некоторые изменения в RNT могут быть временными, в то время как другие могут быть постоянными. Например, балласт, поддерживающий рельсовое звено CWR, может подстраиваться через какое-то время, заставляя рельсовое звено CWR сдвинуться или иначе изменить его положение. Такое подстраивание, обычно благодаря энтропии и/или другим естественным силам, может снимать напряжение рельсового звена CWR. Пониженный уровень напряжения воздействует на RNT до тех пор, пока рельсовое звено CWR остается в перемещенном положении.
В ссылочной позиции 425 диаграмма иллюстрирует понижение в RNT приблизительно до 80 градусов Фаренгейта, и она не в состоянии вернуться назад к 100 градусам Фаренгейта в течение остальной части времени мониторинга. Такие изменения в RNT на протяжении какого-то времени могут представлять пластические или упругие изменения в участке рельсов. В общем, смещение рельса и шпал в балласте является первичным источником потери RNT. Для восстановления надлежащей RNT необходимо локальное выравнивание рельсового звена или удаление сегментов рельса.
В ссылочной позиции 435 кажется, как-будто бы некоторый фактор воздействовал на подвергаемую мониторингу RNT рельсового звена CWR. Из обеспечиваемых данных неясно, было ли изменение RNT в ссылочной позиции 435 пластическим или упругим изменением. Из обеспечиваемых данных (кривая с однопроцентным наклоном) изменение RNT в позиции 435 сокращается в радиусе кривой с помощью сдвигания шпал в балласте. Результирующее увеличение RNT в ссылочной позиции 440 выглядит как от перемещения спуска по склону рельсов и некоторых сжимающих нагрузок при увеличении температуры окружающей среды. Конечно, изменения в позициях 435 и 440 могли быть несвязанными упругими изменениями, которые просто случаются в противоположных ориентациях.
Мониторинг уровней одного продольного напряжения не обеспечивает такой же широты информации относительно состояния любого конкретного рельсового звена CWR. Прогнозирующие и/или профилактические преимущества настоящего изобретения получаются через сбор и/или анализ продольного напряжения, температуры окружающей среды у рельсов, RNT и в некоторых случаях состояния балласта. Анализ этих данных обеспечивает возможность прогнозирования состояний обслуживания или так называемых "смягченных" разрушений и условий безопасности, или так называемых "катастрофических" разрушений.
Фиг.5 представляет блок-схему процесса, иллюстрирующую первую примерную методологию 500 для устройства обработки напряжений рельсов, с целью определения ограничений по условиям безопасности на железнодорожном транспорте для каждого участка рельсов бесстыкового железнодорожного пути, такого как рельсовый путь 105 CWR рельсовой системы 100. В соответствии с примерной методологией в блоке 505 идентифицируется целевая RNT для конкретного участка бесстыковых рельсов. Продольное напряжение участка рельсов подвергается мониторингу в блоке 510, а температура окружающей среды у рельсов этого участка рельсов подвергается мониторингу в блоке 515. В примерной железнодорожной сети 100, иллюстрируемой на фиг.1, такие продольное напряжение и температура окружающей среды у рельсов подвергаются мониторингу устройством 140 мониторинга напряжений рельсов и передаются в процессор 130 для обработки напряжений рельсов. Используя температуру окружающей среды у рельсов и продольное напряжение участка рельсов, в блоке 520 определяется настоящая RNT, давая зависимость, иллюстрируемую на фиг.3.
Методология в блоке 525 обеспечивает сравнение настоящей RNT с целевой RNT для получения разности температур, которая может быть показательна для коробления рельсовых путей или другого разрушения. Если разность температур находится в пределах предварительно определенного диапазона (блок 530), сообщается предупреждение об опасности (блок 535), указывающее на потенциальную проблему безопасности, связанную с предварительно определенным диапазоном. Конечно, предварительно определенный диапазон может быть определен как диапазон, не имеющий определенных границ, например, когда разность температур превышает или, иначе, пересекает предварительно определенное пороговое значение, тогда разность температур, как считают, находится в пределах предварительно определенного диапазона. Такая величина предварительно определенного порогового значения дополнительно может пересекаться либо в положительном, либо в отрицательном направлении.
Фиг.6 представляет блок-схему процесса, иллюстрирующую вторую примерную методологию 600 для устройства обработки напряжений рельсов, с целью определения ограничений по условиям безопасности на железнодорожном транспорте для каждого участка рельсов бесстыкового железнодорожного пути, такого как рельсовое звено 105 CWR в рельсовой системе 100. В соответствии с примерной методологией в блоке 605 подвергается мониторингу или, иначе, определяется продольное напряжение и температура окружающей среды у рельсов для конкретного участка бесстыковых рельсов. В примерной железнодорожной сети 100, иллюстрируемой на фиг.1, такое продольное напряжение подвергается мониторингу устройством 140 мониторинга рельсов и передается в процессор 130 для обработки напряжений рельсов. Нейтральная температура рельсов для участка рельсов определяется в блоке 610 с использованием температуры окружающей среды у рельсов и продольного напряжения участка рельсов, даваемых зависимостью, иллюстрируемой на фиг.3.
В блоке 615 определяется предел текучести для балласта, поддерживающего участок бесстыковых рельсов, а в блоке 620 определяется пороговое значение высокотемпературного коробления на основании данных, собранных в блоках 605, 610 и 615. Пороговое значение высокотемпературного коробления может быть определено в соответствии с математической функцией таких данных или на основании поисковой таблицы, используя данные, собранные в блоках 605, 610 и 615, как индекс в таблице. Поисковые таблицы могут заполняться на основании исторических данных разрушения рельсов, собранных при конкретных условиях, связанных с этими индексами. Методология обеспечивает в блоке 625 сравнение RNT с пороговым значением температурного коробления, чтобы получить разность температур. Если разность температур находится в пределах предварительно определенного диапазона (блок 630), сообщается предупреждение об опасности (блок 635), указывающее на потенциальную проблему безопасности, связанную с предварительно определенным диапазоном.
Соответственно, настоящая заявка описывает способы, устройства и системы для определения безопасного предела рельсовых путей CWR, основываясь на температуре и напряжении рельсов. Наблюдая текущую нейтральную температуру рельсов, температуру окружающей среды у рельсов и продольное напряжение в рельсе, можно определять предел текучести балласта, поддерживающего рельсовое звено, особенно на изгибах. Наблюдая этот предел текучести при различных условиях и при помощи аналитических моделей, к RNT могут быть добавлены предел текучести или его отрегулированное соотношение, чтобы установить пороговое значение высокотемпературного коробления для целей технического обслуживания, связанного с передачей сигналов или изменений в движении поездов до тех пор, пока упомянутые условия не будут ослаблены. Примеры аналитических моделей, которые можно использовать, включают в себя модели, обеспечиваемые в соответствии с руководством по эксплуатации рельсовых путей, модели, созданные на основании фактических измерений рельсовых путей за период какого-то времени, и математические модели, такие как модели, созданные Министерством транспорта США.
Факторы, потенциально оказывающие влияние на предел текучести рельсового звена, находящегося в пределах балласта, включают в себя кривизну, возвышение наружного рельса, тип и состояние балласта, ширину откоса балластной призмы, эксцентриситет выравнивания рельсов, размер шпал, вес и интервал. С помощью этого способа почти все эти факторы приспосабливаются так, чтобы они находились в пределах наблюдаемого поведения системы способом, который экономно не дублирован другими средствами. Как описано, поисковая таблица с кривизной рельсовых путей и другими доступными факторами может использоваться для настраивания запаса надежности на приемлемый уровень для установившейся практики на железных дорогах.
Обратимся теперь к фиг.7-10, на которых иллюстрируются различные компоненты и подкомпоненты системы мониторинга напряжений рельсов по настоящему изобретению. Как показано на фиг.7, примерный вариант осуществления системы 710 мониторинга напряжений рельсов включает в себя, в электрической и/или цифровой связи друг с другом, модуль 720 чувствительных элементов, датчик 730, модуль 740 сбора данных и модуль 750 обработки данных. Как показано на фиг.9, модуль 720 чувствительных элементов обычно устанавливают прямо на рельсовом звене 760, и он включает в себя защитный корпус 721 и рельсовое скрепление 722 для закрепления модуля 720 чувствительных элементов на рельсе. Крышка 723 может быть удалена с целью доступа к внутреннему источнику 724 электропитания, который обычно является аккумуляторной батареей. Доступ к внутреннему источнику электропитания, таким образом, делает удаление от рельса всего модуля 720 чувствительных элементов не обязательным.
В примерном варианте осуществления датчик 730, который упоминается как "тонкопленочная гибкая схема", используется для обнаружения, измерения и мониторинга напряжения, то есть для двухосной деформации, которую испытывает рельс 760 при некоторых условиях окружающей среды. Такое напряжение обнаруживается и измеряется двумя чувствительными элементами 734, которые установлены с использованием эпоксидной смолы или другого средства, в общем, на плоской, тонкой металлической прокладке 731, таким образом, определяя область 733 восприятия на прокладке 731. В примерном варианте осуществления прокладка 731 имеет длину приблизительно один дюйм (2,54 см) и ширину приблизительно 0,5 дюйма (1,27 см) и включает в себя фольгу из относительно тяжелого металла (например, олова). В дополнение к чувствительным элементам 734, которые обычно являются датчиками деформаций, некоторые варианты осуществления этого изобретения включают в себя дополнительные, различные датчики, такие как температурные датчики. На прокладке 731 может быть определен периметр 732, и может быть включен прорезиненный материал, чтобы обеспечивать защитное покрытие по всей области 733 восприятия. Фиг.8 обеспечивает иллюстрацию собранного датчика 730, который включает в себя защитное покрытие 738.
В примерном варианте осуществления чувствительные элементы 734 представляют собой коммерчески доступные датчики деформаций (Hitec Products, Inc, Ayer, MA), каждый из которых включает в себя два активных воспринимающих элемента, установленных под прямыми углами друг к другу (фиг.7), чтобы образовывать симметричную на виде сбоку "V"-образную конфигурацию, упоминаемую как конфигурация "елочкой". Как показано на фиг.7, открытые концы двух V-образных чувствительных элементов обращены друг к другу на прокладке 731 и ориентированы ортогонально к деформациям, представляющим интерес к деформациям, испытываемым в области рельса 760. Как должно быть понятно специалистам в данной области техники, часто имеются трудности, связанные с передачей коробления через тонкий исходный материал прокладки. В частности, деформации сжатия могут вызывать локальное коробление прокладки, приводя к деформации, которая несколько отличается от деформации коренной конструкции. Это, в общем, не является проблемой с одноосным датчиком, посредством чего продольная ось образца для испытания находится в том же самом направлении, что и у воспринимающего элемента. Используя конфигурацию елочкой и ориентируя воспринимающие элементы ортогонально деформациям, представляющим интерес, прокладку, в общем, размещают со сдвигающим усилием и предположительно с более правильной реакцией на двухосные деформации.
Контактные площадки 735 для припоя и контактные площадки 736 прикрепления силовых проволочных выводов установлены на прокладке 731 в пространстве, расположенном между этими двумя чувствительными элементами. Ряд проводов 737 чувствительных элементов соединяют контактные площадки 735 для припоя с контактными площадками 736 прикрепления силовых проволочных выводов, размещение которых позволяет прикреплять проволочные выводы 739 к центральному участку датчика. Конфигурация межсоединений примерного варианта осуществления обеспечивает "шлейфовые подключения" четырех воспринимающих элементов в замкнутую систему, и эта замкнутая система становится мостом Уитстона. Как должно быть понятно специалистам в данной области техники, мост Уитстона представляет собой электрическую схему, используемую для измерения сопротивления. Мост Уитстона обычно состоит из общего источника электрического тока (такого, как аккумуляторная батарея) и гальванометра, который соединяет два параллельных плеча, содержащие четыре резистора, три из которых известны. Одно параллельное плечо содержит резистор известного сопротивления и резистор неизвестного сопротивления; другое параллельное плечо содержит резисторы известного сопротивления. Для определения сопротивления неизвестного резистора сопротивление других трех резисторов регулируют и балансируют до тех пор, пока ток, проходящий через гальванометр, не уменьшится до нуля. Мост Уитстона также хорошо подходит для измерения небольших изменений в сопротивлении и поэтому является подходящим для измерения изменения сопротивления в датчике деформаций, который преобразовывает деформацию, прикладываемую к нему, в пропорциональное изменение сопротивления. В общепринятой терминологии выводы моста в примерном варианте осуществления обозначены как Red (Красный) (+ входная мощность), Black (Черный) (- входная мощность), Green (Зеленый) (+ выходной сигнал) и White (Белый) (- выходной сигнал).
Модуль 720 чувствительных элементов может быть установлен на рельсе 760 в соответствии со следующим примерным способом: выбирают общее место на рельсе, на котором отсутствуют заводские маркировки и другие, ранее существовавшие элементы или конструкции; устанавливают рельсовую дрель или другое устройство сверления на рельсе 760 и образуют болтовое отверстие на предварительно определенной высоте; шлифуют/полируют место на рельсе 60 (760), где будет помещен датчик 730; датчик 730 приваривают точечной сваркой или иначе прикрепляют к рельсу 760, используя трафарет, который точно располагает датчик 30 (730) относительно болтового отверстия и который обеспечивает и надлежащую ориентацию относительно нейтральной оси рельса, и ортогональность воспринимающих элементов; накладывают водонепроницаемый материал (например, силиконовый материал RTV (клей-герметик, вулканизирующийся при комнатной температуре)) поверх области 733 считывания; и при тщательном удалении любого деформирования выводов, подключающих датчик 730 к модулю 740 сбора данных, устанавливают защитный корпус 721 так, что узел крепления может быть прилажен и стянут. Как должно быть понятно специалистам в данной области техники, с модулем 720 чувствительных элементов и его компонентами можно использовать другие средства крепления или монтажа. Например, в других вариантах осуществления прокладку из композиционного материала наклеивают на рельс 760, используя быстроотверждающийся клей или другое адгезивное средство.
Когда модуль 720 чувствительных элементов собран, датчик 730 подсоединяют к модулю 740 сбора данных, который собирает данные, генерируемые датчиком 730, когда работает система 710. Как должно быть понятно специалистам в данной области техники, модуль 740 сбора данных обычно включает в себя схемную плату или подобное устройство, обычно создаваемые из имеющихся в наличии, коммерчески располагаемых компонентов, хотя для некоторых применений могут использоваться устройства, изготовленные на заказ. Передающее средство, то есть антенну 741, подсоединяют или, иначе, связывают со схемной платой и посылают радиочастотные сигналы в модуль 750 обработки данных, который обычно располагают на расстоянии от модуля 720 чувствительных элементов. Как показано на фиг.10, модуль 750 обработки данных может включать в себя разработанное на заказ считывающее устройство/опросное устройство 751, которое использует различные технологии, известные в технике. В примерном варианте осуществления считывающее устройство/опросное устройство 751 взаимодействует с модулями 720 чувствительных элементов, передает данные в одну или больше баз данных и осуществляет связь с факультативным, дополнительным устройством 752 обработки данных, когда техник или другой пользователь системы 710 выполняет мониторинг напряжения или других состояний, испытываемых рельсом 760. Факультативное устройство 752 обработки данных обычно использует беспроводное средство, чтобы связываться со считывающим устройством/опросным устройством 751, и может включать в себя объединенное устройство отображения изображений для расширенных функциональных возможностей.
Хотя настоящее изобретение было проиллюстрировано с помощью описания его примерных вариантов осуществления и хотя варианты осуществления были описаны с определенными подробностями, намерением Заявителя не является сужать или каким-либо образом ограничивать объем прилагаемой формулы изобретения такими подробностями. Специалистам в данной области техники должны быть понятны его дополнительные преимущества и модификации. Поэтому изобретение в его более широких аспектах не ограничено ни одной из конкретных подробностей, репрезентативных устройств и способов и/или иллюстративных примеров, которые были показаны и описаны. Соответственно можно делать отклонения от таких подробностей, не выходя при этом за рамки объема или сущности общей, обладающей признаками новизны концепции заявителя.

Claims (29)

1. Система для мониторинга напряжения рельсов, содержащая:
(a) модуль чувствительных элементов, причем модуль чувствительных элементов дополнительно содержит
(i) по меньшей мере, один датчик, причем, по меньшей мере, один датчик выполнен с возможностью установления прямо на рельсовом звене и дополнительно включает в себя, по существу, плоскую прокладку, имеющую, по меньшей мере, один чувствительный элемент, установленный на ней, и,
(ii) по меньшей мере, один модуль сбора данных, находящийся на связи, по меньшей мере, с одним датчиком, и
(b) модуль обработки данных, причем модуль обработки данных принимает и обрабатывает информацию, собираемую, по меньшей мере, одним модулем сбора данных, чтобы определять напряжение рельса.
2. Система по п.1, дополнительно содержащая передающее средство, находящееся на связи, по меньшей мере, с одним модулем сбора данных для передачи информации в модуль обработки данных.
3. Система по п.1, дополнительно содержащая, по меньшей мере, одно рельсовое звено, на которое может быть установлен датчик.
4. Система по п.1, в которой модуль чувствительных элементов дополнительно содержит защитный корпус для заключения в него, по меньшей мере, одного датчика и, по меньшей мере, одного модуля сбора данных.
5. Система по п.1, в которой модуль чувствительных элементов дополнительно содержит автономный источник электропитания.
6. Система по п.1, в которой, по меньшей мере, один датчик дополнительно содержит защитное покрытие, и в которой защитное покрытие размещено по поверхности, которая окружает, по меньшей мере, один чувствительный элемент.
7. Система по п.1, в которой прокладка составляет приблизительно 1 дюйм (2,54 см) в длину, приблизительно 0,5 дюйма (1,27 см) в ширину и дополнительно содержит металлическую фольгу.
8. Система по п.1, в которой, по меньшей мере, один чувствительный элемент представляет собой, по меньшей мере, один из датчика деформаций и температурного датчика.
9. Система по п.1, в которой модуль обработки данных дополнительно содержит портативный считыватель и портативный процессор для обработки данных.
10. Система по п.9, в которой портативный считыватель и портативный процессор для обработки данных объединены в единый портативный модуль.
11. Устройство для мониторинга напряжения рельса, содержащее модуль чувствительных элементов, причем модуль чувствительных элементов дополнительно включает в себя, по меньшей мере, один датчик, причем, по меньшей мере, один датчик можно устанавливать прямо на рельсовом звене, и дополнительно включает в себя, по существу, плоскую прокладку и, по меньшей мере, два чувствительных элемента, установленных на одной стороне прокладки в конфигурации елочкой, и при этом, по меньшей мере, один датчик выполнен с возможностью осуществления связи, по меньшей мере, с одним модулем сбора данных, и причем, по меньшей мере, один модуль сбора данных выполнен с возможностью осуществления связи с модулем обработки данных.
12. Устройство по п.11, дополнительно содержащее передающее средство, находящееся на связи, по меньшей мере, с одним модулем сбора данных для передачи информации в модуль обработки данных.
13. Устройство по п.11, в котором модуль чувствительных элементов дополнительно содержит защитный корпус для заключения в него, по меньшей мере, одного датчика и, по меньшей мере, одного модуля сбора данных.
14. Устройство по п.11, в котором модуль чувствительных элементов дополнительно содержит автономный источник электропитания.
15. Устройство по п.11, в котором, по меньшей мере, один датчик дополнительно содержит защитное покрытие, и в котором защитное покрытие расположено по поверхности, которая окружает, по меньшей мере, один чувствительный элемент.
16. Устройство по п.11, в котором прокладка составляет приблизительно 1 дюйм (2,54 см) в длину, приблизительно 0,5 дюйма (1,27 см) в ширину и дополнительно содержит металлическую фольгу.
17. Устройство по п.11, в котором, по меньшей мере, два чувствительных элемента представляют собой датчики деформаций.
18. Устройство по п.11, в котором модуль обработки данных дополнительно содержит портативный считыватель и портативный процессор для обработки данных.
19. Устройство по п.18, в котором портативный считыватель и портативный процессор для обработки данных объединены в единый портативный модуль.
20. Способ мониторинга напряжения рельса, содержащий этапы, на которых выполняют:
(а) обеспечение модуля чувствительных элементов, причем модуль чувствительных элементов дополнительно включает в себя, по меньшей мере, один датчик, причем, по меньшей мере, один датчик можно устанавливать прямо на рельсовом звене, и дополнительно включает в себя, по существу, плоскую прокладку и, по меньшей мере, два чувствительных элемента, установленных на одной стороне прокладки в конфигурации елочкой, и, по меньшей мере, один модуль сбора данных, находящийся на связи, по меньшей мере, с одним датчиком;
(b) обеспечение модуля обработки данных, причем модуль обработки данных принимает и обрабатывает информацию, собираемую, по меньшей мере, одним модулем сбора данных, чтобы определять напряжение рельса; и
(c) регистрацию и рассмотрение информации, обрабатываемой модулем обработки данных.
21. Способ по п.20, дополнительно содержащий обеспечение средства антенны, в котором средство антенны находится на связи, по меньшей мере, с одним модулем сбора данных, для передачи информации в модуль обработки данных.
22. Способ по п.20, дополнительно содержащий обеспечение рельсового звена, на котором можно устанавливать датчик.
23. Способ по п.20, в котором модуль чувствительных элементов дополнительно содержит защитный корпус для заключения в него защищающим образом, по меньшей мере, одного датчика и, по меньшей мере, одного модуля сбора данных.
24. Способ по п.20, в котором модуль чувствительных элементов дополнительно содержит автономный источник электропитания.
25. Способ по п.20, в котором, по меньшей мере, один датчик дополнительно содержит защитное покрытие, и в котором защитное покрытие расположено по периметру поверхности, которая окружает, по меньшей мере, один чувствительный элемент.
26. Способ по п.20, в котором прокладка составляет приблизительно 1 дюйм (2,54 см) в длину, приблизительно 0,5 дюйма (1,27 см) в ширину и дополнительно содержит металлическую фольгу.
27. Способ по п.20, в котором, по меньшей мере, два чувствительных элемента представляют собой датчики деформаций.
28. Способ по п.20, в котором модуль обработки данных дополнительно содержит портативный считыватель и портативный процессор для обработки данных.
29. Способ по п.28, в котором портативный считыватель и портативный процессор для обработки данных объединены в единый портативный модуль.
RU2007139507/11A 2006-10-24 2007-10-24 Система мониторинга напряжений для железных дорог RU2441788C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/552,386 2006-10-24
US11/552,386 US7869909B2 (en) 2004-07-26 2006-10-24 Stress monitoring system for railways

Publications (2)

Publication Number Publication Date
RU2007139507A RU2007139507A (ru) 2009-04-27
RU2441788C2 true RU2441788C2 (ru) 2012-02-10

Family

ID=39027576

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007139507/11A RU2441788C2 (ru) 2006-10-24 2007-10-24 Система мониторинга напряжений для железных дорог

Country Status (11)

Country Link
US (1) US7869909B2 (ru)
EP (1) EP1918172B1 (ru)
JP (1) JP5410669B2 (ru)
CN (1) CN101229814B (ru)
AT (1) ATE528192T1 (ru)
AU (1) AU2007231641B2 (ru)
CA (1) CA2607634C (ru)
DK (1) DK1918172T3 (ru)
ES (1) ES2374948T3 (ru)
HK (1) HK1116146A1 (ru)
RU (1) RU2441788C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2584756C1 (ru) * 2015-05-26 2016-05-20 Общество с ограниченной ответственностью "Р-Инновации" Система мониторинга объектов железнодорожной инфраструктуры

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10308265B2 (en) 2006-03-20 2019-06-04 Ge Global Sourcing Llc Vehicle control system and method
US9733625B2 (en) 2006-03-20 2017-08-15 General Electric Company Trip optimization system and method for a train
US9950722B2 (en) 2003-01-06 2018-04-24 General Electric Company System and method for vehicle control
US9956974B2 (en) 2004-07-23 2018-05-01 General Electric Company Vehicle consist configuration control
US9828010B2 (en) 2006-03-20 2017-11-28 General Electric Company System, method and computer software code for determining a mission plan for a powered system using signal aspect information
US20100194533A1 (en) * 2009-01-30 2010-08-05 Sullivan Henry W Method and apparatus for encoding railroad ties and other railroad track components
DE102009020124A1 (de) * 2009-03-04 2010-09-09 Siemens Aktiengesellschaft Fernüberwachung von Betriebsparametern einer Fahrleitungsanlage
ES2352774B1 (es) * 2009-03-05 2011-11-14 Product & Process Development, S.L. Método de aplicación de sensores de extensometría en vías ferroviarias.
US8914171B2 (en) 2012-11-21 2014-12-16 General Electric Company Route examining system and method
WO2010142073A1 (zh) * 2009-06-08 2010-12-16 中国铁道科学研究院机车车辆研究所 一种基于钢轨应变的轮轨垂直力连续测量方法及装置
JP5717972B2 (ja) * 2010-02-26 2015-05-13 太平洋セメント株式会社 ひずみ計測装置及びひずみ計測システム
RU2469894C2 (ru) * 2010-10-07 2012-12-20 Государственное образовательное учреждение высшего профессионального образования "Сибирский государственный университет путей сообщения" (СГУПС) Способ определения продольно-напряженного состояния рельсовых плетей бесстыкового пути
ES2391333B1 (es) * 2010-12-27 2013-10-02 Administrador De Infraestructuras Ferroviarias (Adif) Sistema de medida de deformaciones de raíles ferroviarios
RU2457969C1 (ru) * 2011-03-17 2012-08-10 Закрытое акционерное общество Научно-производственный центр информационных и транспортных систем (ЗАО НПЦ ИНФОТРАНС) Способ определения состояния рельсошпальной решетки бесстыкового железнодорожного пути
CN102323552A (zh) * 2011-09-16 2012-01-18 东南大学 直线电机电磁推力测量装置
CN102628244B (zh) * 2012-04-27 2014-01-29 中铁二十三局集团轨道交通工程有限公司 一种单元板式无砟轨道定位智能监控器
EP2852637A1 (en) * 2012-05-22 2015-04-01 Borouge Compounding Shanghai Co., Ltd. Moulded article with low warpage
CN102735155A (zh) * 2012-06-23 2012-10-17 合肥高创传感器有限公司 高铁铁轨监测专用传感器
AU2013299501B2 (en) 2012-08-10 2017-03-09 Ge Global Sourcing Llc Route examining system and method
US9222904B2 (en) 2012-08-13 2015-12-29 Harold Harrison Method and apparatus for detecting track failure
CN102877385B (zh) * 2012-10-16 2015-04-22 哈尔滨安通测控技术开发有限公司 基于钢轨纵向力零应力轨温测量装置的无缝线路钢轨零应力轨温测量方法
CN103043079A (zh) * 2012-12-21 2013-04-17 江苏睿励信息科技研究院有限公司 链网式无缝钢轨的在线应力和温度监测***
FR3001237B1 (fr) * 2013-01-21 2016-03-11 Sncf Dispositif de surveillance de la geometrie d'une voie ferree ; rail, traverse, voie ferree et systeme comprenant un tel dispositif.
GB2514143A (en) * 2013-05-15 2014-11-19 Selex Es Ltd Sensing device method and system
ITGE20130055A1 (it) * 2013-06-06 2014-12-07 Si Consulting S R L Apparato per la misura e la gestione della tensione meccanica della lunga rotaia saldata.
US9255913B2 (en) 2013-07-31 2016-02-09 General Electric Company System and method for acoustically identifying damaged sections of a route
CN103758098B (zh) * 2014-01-20 2016-01-06 河海大学 一种人字闸门枕支垫块工作状况监测***
EP2949540B1 (en) * 2014-05-26 2018-08-22 Alpha Caesar Srl Method for the measurement of tensional stress of a continuously welded rail during thermal regulation operation of rail
CN104309640A (zh) * 2014-09-29 2015-01-28 中国神华能源股份有限公司 铁路路基动力性能检测装置及***
RU2569504C1 (ru) * 2014-10-31 2015-11-27 Акционерное общество "Транспутьстрой" Способ определения продольно-напряженного состояния рельсовых плетей бесстыкового железнодорожного пути
US10349491B2 (en) 2015-01-19 2019-07-09 Tetra Tech, Inc. Light emission power control apparatus and method
CA2892885C (en) 2015-02-20 2020-07-28 Tetra Tech, Inc. 3d track assessment system and method
CN104897457B (zh) * 2015-04-09 2018-02-02 中交第二公路勘察设计研究院有限公司 一种现场测试路基动力响应的试验方法及***
CN104880274A (zh) * 2015-06-23 2015-09-02 华东交通大学 垂向轮轨力连续测试方法
CN105043443B (zh) * 2015-07-03 2017-10-20 中国铁路总公司 一种高速列车车体应力测试装置及其工作方法
JP6484156B2 (ja) * 2015-10-08 2019-03-13 川崎重工業株式会社 鉄道車両用台車の無線通信機能付き温度センサユニット
CN106192633B (zh) * 2016-08-24 2017-11-28 中铁十七局集团有限公司铺架分公司 排除线上焊接钢轨接头平直度检测误判诱因的方法
CN106758602A (zh) * 2016-12-05 2017-05-31 首都师范大学 一种轨道静态平顺性检测***及方法
ES2685119B1 (es) * 2017-03-31 2019-07-25 Analisis Y Simulacion S L Método de medida de fuerzas sobre raíles y sistema que ejecuta dicho método
US10807623B2 (en) 2018-06-01 2020-10-20 Tetra Tech, Inc. Apparatus and method for gathering data from sensors oriented at an oblique angle relative to a railway track
US10625760B2 (en) 2018-06-01 2020-04-21 Tetra Tech, Inc. Apparatus and method for calculating wooden crosstie plate cut measurements and rail seat abrasion measurements based on rail head height
US11377130B2 (en) 2018-06-01 2022-07-05 Tetra Tech, Inc. Autonomous track assessment system
US10730538B2 (en) 2018-06-01 2020-08-04 Tetra Tech, Inc. Apparatus and method for calculating plate cut and rail seat abrasion based on measurements only of rail head elevation and crosstie surface elevation
CN110055827B (zh) * 2019-04-28 2023-09-22 中铁二院工程集团有限责任公司 一种路堑大坡度齿轨铁路结构的构筑方法
EP3969939A4 (en) 2019-05-16 2023-06-07 Tetra Tech, Inc. SYSTEM AND METHOD FOR GENERATION AND INTERPRETATION OF POINT CLOUDS OF A RAILWAY CORRIDOR ALONG A STUDY ROUTE
US11834082B2 (en) * 2019-09-18 2023-12-05 Progress Rail Services Corporation Rail buckle detection and risk prediction
CN115485534B (zh) * 2020-01-30 2024-02-02 坦萨国际公司 用于监测基础设施的健康、状况和/或状态的配有传感器的***和方法
US11858488B2 (en) * 2020-03-03 2024-01-02 Pennsy Digital Inc. Rail monitoring system, method and devices
CN113138162B (zh) * 2021-06-22 2021-09-21 南京高华科技股份有限公司 一种钢丝绳状态监控装置及监控方法
CN114659690A (zh) * 2022-03-09 2022-06-24 同济大学 一种轮轨力无线监测装置、***及方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995247A (en) * 1975-10-22 1976-11-30 Kulite Semiconductor Products, Inc. Transducers employing gap-bridging shim members
GB1584173A (en) * 1977-07-27 1981-02-11 Battelle Development Corp Apparatus for measuring strain in a solid object
FR2521883B1 (fr) * 1982-02-19 1985-08-30 Sacilor Procede de dressage d'un rail de chemin de fer et rail de chemin de fer dresse
JPS60122303A (ja) * 1983-12-05 1985-06-29 Agency Of Ind Science & Technol 歪計
US5098080A (en) * 1990-12-19 1992-03-24 Xerox Corporation Ski jump stack height sensor
HU219436B (hu) 1995-05-09 2001-04-28 Magyar Államvasutak Rt. Eljárás és berendezés hézag nélküli vágányok semleges hőmérsékletének meghatározására
JPH095010A (ja) * 1995-06-19 1997-01-10 Silver Kk 位置検出装置
US5529267A (en) * 1995-07-21 1996-06-25 Union Switch & Signal Inc. Railway structure hazard predictor
US6044698A (en) 1996-04-01 2000-04-04 Cairo Systems, Inc. Method and apparatus including accelerometer and tilt sensor for detecting railway anomalies
JPH09304006A (ja) * 1996-05-09 1997-11-28 Kyowa Electron Instr Co Ltd ひずみゲージ式センサーおよびその製造方法
US5713540A (en) * 1996-06-26 1998-02-03 At&T Corp. Method and apparatus for detecting railway activity
US6125708A (en) * 1999-02-05 2000-10-03 Ford Global Technologies, Inc. Quick installing axial deformation transducer
US7164975B2 (en) 1999-06-15 2007-01-16 Andian Technologies Ltd. Geometric track and track/vehicle analyzers and methods for controlling railroad systems
GB2364127B (en) * 2000-06-29 2004-08-25 Univ London Method and apparatus for monitoring structural fatigue and use
JP2002236065A (ja) 2001-02-06 2002-08-23 Railway Technical Res Inst レール横方向水平力検出方法
US6655639B2 (en) * 2001-02-20 2003-12-02 Grappone Technologies Inc. Broken rail detector for communications-based train control and positive train control applications
US6570497B2 (en) 2001-08-30 2003-05-27 General Electric Company Apparatus and method for rail track inspection
JP2003075301A (ja) * 2001-09-07 2003-03-12 Topy Ind Ltd 構造物の疲労亀裂モニタリングシステム
AU2003267880B2 (en) * 2002-09-20 2009-10-08 Brent Felix Jury Apparatus for and methods of stress testing metal components
US6951132B2 (en) * 2003-06-27 2005-10-04 General Electric Company Rail and train monitoring system and method
US7392117B1 (en) * 2003-11-03 2008-06-24 Bilodeau James R Data logging, collection, and analysis techniques
JP4317461B2 (ja) * 2004-01-21 2009-08-19 財団法人鉄道総合技術研究所 鉄道レールへの潤滑剤塗布方法及び装置
JP2005315819A (ja) * 2004-04-30 2005-11-10 Kyowa Electron Instr Co Ltd ひずみゲージの防湿構造およびひずみゲージの防湿方法
JP2006029931A (ja) * 2004-07-15 2006-02-02 Hitachi Ltd 建築構造物損傷検知装置
US7502670B2 (en) 2004-07-26 2009-03-10 Salient Systems, Inc. System and method for determining rail safety limits
CN100429106C (zh) * 2005-03-15 2008-10-29 吴良善 长钢轨因温度变化产生应力的测力装置和检测方法
JP2006267051A (ja) * 2005-03-25 2006-10-05 Hitachi Ltd 物品の損傷検知デバイス及び損傷検知システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2584756C1 (ru) * 2015-05-26 2016-05-20 Общество с ограниченной ответственностью "Р-Инновации" Система мониторинга объектов железнодорожной инфраструктуры

Also Published As

Publication number Publication date
JP2008106603A (ja) 2008-05-08
JP5410669B2 (ja) 2014-02-05
HK1116146A1 (en) 2008-12-19
AU2007231641B2 (en) 2012-08-16
CA2607634A1 (en) 2008-04-24
CN101229814A (zh) 2008-07-30
US7869909B2 (en) 2011-01-11
AU2007231641A1 (en) 2008-05-08
ES2374948T3 (es) 2012-02-23
ATE528192T1 (de) 2011-10-15
DK1918172T3 (da) 2012-01-09
US20070044566A1 (en) 2007-03-01
CN101229814B (zh) 2012-10-10
EP1918172B1 (en) 2011-10-12
EP1918172A1 (en) 2008-05-07
RU2007139507A (ru) 2009-04-27
CA2607634C (en) 2015-06-09

Similar Documents

Publication Publication Date Title
RU2441788C2 (ru) Система мониторинга напряжений для железных дорог
Chen Structural health monitoring of large civil engineering structures
US5421204A (en) Structural monitoring system
US8746077B2 (en) Wireless enabled fatigue sensor for structural health monitoring
JP2008507647A (ja) レールの安全限界を判定するシステム及び方法
KR101300010B1 (ko) 광섬유 브릴루앙 산란 센서를 이용한 철도 레일 상시 감시 시스템 및 방법
Costa et al. Evaluation of a strain monitoring system for existing steel railway bridges
CN112208570A (zh) 一种铁路轨道锁定温度监测的***与方法
CN107014486B (zh) 一种输电线路微风振动监测装置的核查单元及方法
CN104685314A (zh) 应变变送器
KR20020051340A (ko) 계측용 교좌장치 및 그 시스템, 그리고 이를 이용한 교량유지관리방법
KR100473481B1 (ko) 와이어를 이용한 교량상판의 안전진단장치
US20210396625A1 (en) Building strain monitoring system
KR200239172Y1 (ko) 계측용 교좌장치
KR200336791Y1 (ko) 계측용 교좌장치 시스템
HEIZA et al. State of the art review of structural health monitoring for bridges using wireless system techniques
Wiqar et al. Low-cost civil structure health monitoring using wireless sensor network
KR200239375Y1 (ko) 계측용 교좌장치
Oshima et al. Application of smart materials and systems to long-term bridge health monitoring
KR101509743B1 (ko) 구조물 손상 측정용 게이지를 이용한 이동식 구조물 손상 측정 장치와 측정 방법
RU220058U1 (ru) Механический тензометр со съемным деформометром
CN218937604U (zh) 一种钢混梁温度场及温度效应测量***
US11221284B2 (en) Structural health monitoring sensor
GB2371114A (en) Plug type strain sensor for a railway rail
JPS62103533A (ja) レ−ル軸力測定装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171025