RU2439064C1 - СПОСОБ ПОЛУЧЕНИЯ КАПЕЦИТАБИНА И ИСПОЛЬЗУЕМОГО ПРИ ЭТОМ ОБОГАЩЕННОГО β-АНОМЕРОМ ТРИАЛКИЛКАРБОНАТНОГО СОЕДИНЕНИЯ - Google Patents

СПОСОБ ПОЛУЧЕНИЯ КАПЕЦИТАБИНА И ИСПОЛЬЗУЕМОГО ПРИ ЭТОМ ОБОГАЩЕННОГО β-АНОМЕРОМ ТРИАЛКИЛКАРБОНАТНОГО СОЕДИНЕНИЯ Download PDF

Info

Publication number
RU2439064C1
RU2439064C1 RU2010125257/04A RU2010125257A RU2439064C1 RU 2439064 C1 RU2439064 C1 RU 2439064C1 RU 2010125257/04 A RU2010125257/04 A RU 2010125257/04A RU 2010125257 A RU2010125257 A RU 2010125257A RU 2439064 C1 RU2439064 C1 RU 2439064C1
Authority
RU
Russia
Prior art keywords
formula
compound
mixture
anomer
pyridine
Prior art date
Application number
RU2010125257/04A
Other languages
English (en)
Inventor
Дзаехеон ЛИ (KR)
Дзаехеон Ли
Га-Сеунг ПАРК (KR)
Га-Сеунг ПАРК
Веон Ки ЯНГ (KR)
Веон Ки ЯНГ
Дзин Хи КИМ (KR)
Дзин Хи КИМ
Чеол Хиун ПАРК (KR)
Чеол Хиун ПАРК
Йонг-Хоон АН (KR)
Йонг-Хоон АН
Йоон Дзу ЛИ (KR)
Йоон Дзу ЛИ
Янг-Кил ЧАНГ (KR)
Янг-Кил Чанг
Гван Сун ЛИ (KR)
Гван Сун ЛИ
Original Assignee
Ханми Холдингс Ко.Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ханми Холдингс Ко.Лтд. filed Critical Ханми Холдингс Ко.Лтд.
Application granted granted Critical
Publication of RU2439064C1 publication Critical patent/RU2439064C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/08Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon radicals, substituted by hetero atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

Настоящее изобретение относится к способу получения капецитабина, включающему стадии: 1) гидролиза метилацетонидного соединения для получения триольного соединения формулы , 2) взаимодействия триольного соединения с галогеналкилформиатом формулы в присутствии смеси пиридина и триэтиламина для получения обогащенного β-аномером триалкилкарбонатного соединения формулы , 3) гликозилирования триалкилкарбонатного соединения с использованием 5-фторцитозина в присутствии кислоты, 4) карбамоилирования полученного соединения формулы с использованием н-пентилхлорформиата с последующим удалением карбонатных гидроксизащитных групп фуранового цикла. 2 н. и 5 з.п. ф-лы.

Description

Область техники
Настоящее изобретение относится к способу получения капецитабина, а также к способу получения используемого при этом обогащенного β-аномером триалкилкарбонатного соединения.
Предшествующий уровень техники
Капецитабин является вводимым перорально противораковым агентом, широко используемым при лечении метастатических раков груди и прямой кишки. Капецитабин является нуклеозидом на основе рибофуранозы и имеет стереохимическую структуру рибофуранозы, содержащей β-ориентированный 5-фторцитозиновый фрагмент в положении С-1.
Патенты США № 5472949 и 5453497 описывают способ получения капецитабина путем гликозилирования три-О-ацетил-5-дезокси-β-D-рибофуранозы формулы I с использованием 5-фторцитозина для получения цитидина формулы II; и карбамоилирования и гидролиза полученного соединения, как показано на схеме реакции 1
Схема реакции 1
Figure 00000001
Соединение формулы I, применяемое в качестве промежуточного в схеме реакции I, представляет собой изомер, имеющий β-ориентированную ацетильную группу в положении 1 по той причине, что 5-фторцитозин является более реакционноспособным по отношению к β-изомеру, чем α-изомер в реакции гликозилирования вследствие возникновения существенного участия соседней группы, которое имеет место, когда защитной группой для 2-гидроксигруппы является ацил.
Соответственно, β-ориентированную три-О-ацетил-5-дезокси-β-D-рибофуранозу (формула 1) рассматривали в традиционной практике как незаменимое промежуточное соединение для получения капецитабина. Однако такая реакция дает смесь β- и α-изомеров, из которой цитидин (формула II) должен быть выделен путем неэкономичной стадии.
Между тем патент США № 4340729 раскрывает способ получения капецитабина по методике, показанной на схеме реакции 2, которая включает гидролиз 1-метилацетонида формулы III для получения тиола формулы IV; ацетилирование соединения формулы IV с использованием безводного уксусного ангидрида в пиридине для получения β-/α-аномерной смеси три-О-ацетил-5-дезокси-D-рибофуранозы формулы V; проведение вакуумной дистилляции для очистки β-/α-аномерной смеси и выделение из нее β-аномера формулы I
Схема реакций 2
Figure 00000002
Однако вышеуказанный способ также затруднен требованием проводить стадии неэкономичной и усложненной перекристаллизации для выделения β-аномера из смеси β-/α-изомеров формулы V, что приводит к низкому выходу в только примерно 35-40% (Guangyi Wang et al., J. Med. Chem., 2000, vol. 43, 2566-2574; Pothukuchii Sairam et al., Carbohydrate Research, 2003, vol. 338, 303-306; Xiangshu Fei et al., Nuclear Medicine and Biology, 2004, vol. 31, 1033-1041 и Henry M. Kissman et al., J. Am. Chem. Soc., 1957, vol. 79, 5534-5540).
Далее, патент США № 5476932 описывает способ получения капецитабина реакцией 5'-дезокси-5-фторцитидина формулы VI с пентилхлорформиатом для получения соединения формулы VII, имеющего аминогруппы и 2-,3-гидроксигруппы, защищенные группами С5Н11СО2, и удаления гидроксизащищенных групп из полученного соединения, как показано на схеме реакций 3
Схема реакций 3
Figure 00000003
Однако этот способ сопряжен с большими производственными затратами и также требует проведения нескольких усложненных стадий для получения 5'-дезокси-5-фторцитидина формулы VI, защиты 2-,3-гидроксигрупп, проведения его взаимодействия с 5-фторцитозином и снятия защиты 2-,3-гидроксигрупп.
Соответственно, авторы настоящего изобретения пытались разработать эффективный способ получения капецитабина и неожиданно нашли новый эффективный способ получения высокочистого капецитабина с использованием триалкилкарбонатного промежуточного соединения, который не требует проведения неэкономичных стадий выделения β-аномера.
Сущность изобретения
Соответственно, задача настоящего изобретения состоит в разработке усовершенствованного способа получения капецитабина, а также способа получения обогащенного β-аномером триалкилкарбоната, который может быть использован как промежуточное соединение в указанном способе.
В соответствии с одним аспектом настоящего изобретения предложен способ получения капецитабина формулы 1, включающий стадии (1) гидролиза метилацетонидного соединения формулы 2 для получения триольного соединения формулы 3; (2) взаимодействия соединения формулы 3 с галогеналкилформиатом формулы 4 в присутствии смеси пиридина и триэтиламина для получения обогащенного β-аномером триалкилкарбонатного соединения формулы 5; (3) проведения гликозилирования соединения формулы 5 с использованием 5-фторцитозина в присутствии кислоты для получения диалкоксикарбонилцитидинового соединения формулы 6; (4) проведения карбамоилирования соединения формулы 6 с использованием н-пентилхлорформиата для получения карбамоилцитидинового соединения формулы 7; и (5) удаления карбонатных групп, защищающих гидроксигруппы соединения формулы (7)
Figure 00000004
Figure 00000005
где Х представляет хлор, бром или йод и R представляет метил или этил.
Согласно другому аспекту настоящего изобретения предложен способ получения триалкилкарбонатного соединения формулы 5, используемого в качестве промежуточного соединения в указанном способе
Figure 00000006
где R имеет такое же значение, как определено выше.
Подробное описание изобретения
В настоящем изобретении триалкилкарбонатное соединение формулы 5 представляет собой смесь в соотношении от 2:1 до 4:1 β- и α-аномеров, которая может быть использована для получения высокочистого капецитабина формулы 1 с высоким выходом по усовершенствованному методу гликозилирования триалкилкарбонатного промежуточного соединения с использованием 5-фторцитозина.
Способ получения капецитабина по изобретению суммирован в схеме реакций 4.
Схема реакций 4
Figure 00000007
где Х и R имеют такие же значения, как определено выше.
Далее стадии способа по изобретению, показанного на схеме реакций 4, будут описаны подробно, как следует ниже.
Стадия 1
На стадии 1 триольное соединение формулы 3 может быть получено гидролизом метилацетонидного соединения формулы 2 в растворителе, таком как водная серная кислота, согласно обычному способу, описанному в патенте США № 4340729. Способ по настоящему изобретению может дополнительно, необязательно, включать процесс выделения каждого из аномеров полученного триольного соединения.
Стадия 2
На стадии 2 обогащенное β-аномером триалкилкарбонатное соединение может быть получено путем предоставления полученному на стадии 1 триольному соединению возможности реагировать с галогеналкилформиатным соединением формулы 4 в растворителе в присутствии основания, предпочтительно органического основания, такого как пиридин, триэтиламин и их смесь. Полученное в результате соединение представляет собой обогащенный β-аномером триалкилкарбонат формулы 5, который подвергается быстрому гликозилированию на стадии 3, потому что β-аномер является более реакционноспособным, чем α-аномер.
Когда карбонизацию триольного соединения проводят в присутствии только пиридина, получаемое в результате соединение может быть в форме смеси 1:1 α- и β-аномеров или обогащенной α-аномером смеси. Далее, если карбонизацию проводят в присутствии только триэтиламина, получаемое в результате соединение может быть сильно обогащенной β-аномером смесью, имеющей соотношение β-аномер:α-аномер такое высокое, как 6:1, в зависимости от температуры реакции и ее эквивалента. Однако такая карбонизация с использованием только триэтиламина осложнена тем, что побочный продукт - соединение формулы 1а - может образовываться в избыточном количестве
Figure 00000008
где R имеет такое же значение, как определено выше.
Согласно настоящему изобретению в качестве основания в этой реакции карбонизации триольного соединения может быть применена смесь пиридина и триэтиламина, имеющая специфическое соотношение компонентов, которое делает возможным получение обогащенного β-аномером соединения формулы 5, содержание которого более чем в два раза превышает содержание α-аномера, в то же время минимизируя образование загрязнений, например, циклического карбонатного соединения формулы 1а. В особенности, когда реакцию проводят в присутствии пиридина и триэтиламина при низкой температуре, содержание циклического карбонатного соединения в продукте реакции может быть уменьшено до менее чем 0,2%.
Согласно настоящему изобретению пиридин, используемый в смеси, может быть применен в количестве, составляющем от 1 до 2 эквивалентов, предпочтительно от 1,3 до 1,6 эквивалентов, в расчете на триэтиламин. Далее, смесь пиридина и триэтиламина может быть применена в количестве, составляющем от 4 до 10 эквивалентов, предпочтительно от 4 до 6 эквивалентов, в расчете на триольное соединение.
Растворителем может быть дихлорметан, дихлорэтан, хлороформ, тетрагидрофуран, ацетонитрил, диметилформамид или их смесь, предпочтительно дихлорметан.
Галогеноалкилформиатное соединение формулы 4 может быть применено в количестве, составляющем от 3 до 10 эквивалентов, предпочтительно от 5 до 7 эквивалентов в расчете на триольное соединение.
Предпочтительно вышеуказанную реакцию проводят при температуре от -50 до -30°С, предпочтительно от -35 до 30°С, так как в случае проведения реакции при температуре выше -30°С может образоваться циклическое карбонатное соединение в избыточном количестве.
Стадия 3
На стадии 3 диалкоксикарбонилцитидиновое соединение (формула 6) может быть получено путем гликозилирования соединения, полученного на стадии 2, с использованием 5-фторцитозина в растворителе в присутствии кислоты.
В вышеуказанной реакции для того, чтобы подавить конкурирующую реакцию аминогрупп в 1-аномерном положении, предпочтительно использовать вместо 5-фторцитозина силилированное производное 5-фторцитозина, полученное реакцией 5-фторцитозина с силилирующим агентом, таким как гексаметилдисилазан, согласно обычному методу. 5-Фторцитозин или его силилированное производное могут быть применены в количестве, составляющем от 1 до 2 эквивалентов, предпочтительно одного эквивалента в расчете на триалкилкарбонатное соединение формулы 5.
Кислоту используют для ускорения гликозилирования, и репрезентативные примеры кислот могут включать этилалюминийдихлорид, метилалюминийдихлорид, SnCl4, триметилсилилтрифторметансульфоновую кислоту и трифторметансульфоновую кислоту, предпочтительно триметилтрифторметансульфоновую кислоту. Далее, кислота может применяться в количестве, составляющем от 0,5 до 3 эквивалентов, предпочтительно одного эквивалента в расчете на триалкилкарбонатное соединение формулы 5.
Согласно настоящему изобретению растворителем, используемым в вышеуказанной реакции, может быть этилацетат, дихлорметан, дихлорэтан, хлороформ, тетрагидрофуран, ацетонитрил или диметилформамид, предпочтительно ацетонитрил, и реакция может проводиться при температуре от 0 до 50°С, предпочтительно от 20 до 35°С.
Согласно настоящему изобретению соединение диалкилоксикарбонилцитидина формулы 6 может быть получено из обогащенного β-аномером триалкилкарбонатного соединения формулы 5 с повышенным более чем на 10% выходом относительно обычного способа с использованием три-О-ацетил-5-дезокси-β-D-рибофуранозы (формула I), например, с высоким выходом более 90% путем гликозилирования. В особенности, соединение формулы 6, полученное способом по изобретению, имеет высокую чистоту более 98,5%. Далее, благодаря использованию такого высокочистого соединения с высоким выходом на последующих стадиях способа по изобретению можно получить конечный продукт, капецитабин, имеющий высокую чистоту 99,5%.
Стадия 4
На стадии 4 карбамоилцитидиновое соединение формулы 7 может быть получено осуществлением карбамоилирования диалкоксикарбонилцитидинового соединения, полученного на стадии 3, с использрванием н-пентилхлорформиата в растворителе в соответствии с обычным способом.
В этой реакции н-пентилхлорформиат может быть применен в количестве, составляющем от 1 до 3 эквивалентов, предпочтительно от 1,1 до 1,5 эквивалента в расчете на диалкоксикарбонилцитидиновое соединение формулы 6.
Растворителем может быть органический растворитель, такой как хлороформ, дихлорметан, дихлорэтан, тетрагидрофуран и ацетонитрил, предпочтительно дихлорметан.
Между тем, во время карбамоилирования органическое основание, такое как триэтиламин и пиридин, может быть добавлено в реакционную смесь, чтобы нейтрализовать хлористоводородную кислоту, образующуюся при реакции, и органическое основание может быть применено в количестве, составляющем от 1 до 5 эквивалентов, предпочтительно, от 1,3 до 2,5 эквивалента в расчете на диалкоксикарбонилцитидиновое соединение формулы 6.
Вышеуказанную реакцию можно проводить при температуре от -10 до 10°С, предпочтительно от -5 до 5°С.
Карбамоилирование может быть проведено количественно, и предпочтительно, чтобы его продукт использовался на последующей стадии, не подвергаясь процессу выделения.
Стадия 5
На стадии 5 капецитабин формулы 1 может быть получен путем удаления карбонатных групп, защищающих гидроксильные группы, из карбамоилцитидинового соединения, полученного на стадии 4, согласно обычному методу.
В соответствии с обычным методом, описанным в книге Theodora W. Green, Green's Protective Groups in Organic Synthesis, 4th Ed., 2007, pp. 280, 998 and 1022, Wiley-Interscience, в случае сосуществования в соединении карбонатных групп, защищающих гидрокси, с карбаматными защитными группами карбонатные защитные группы могут быть селективно удалены путем регулирования температуры реакции и концентрации используемого здесь основания. Это селективное снятие защиты основано на том различии между реакционной способностью карбонатных и карбаматных защитных групп, что карбонатные группы могут быть удалены даже при рН 10 и комнатной температуре, тогда как удаление карбаматных групп требует высоких значений рН, выше 12, и высокой температуры более 100°С.
В настоящем изобретении селективное снятие защиты может быть проведено в органическом растворителе, таком как смесь метанола и воды (2:1 об./об.) в присутствии основания, включающего гидроксид натрия и карбонат натрия, при температуре от -10 до 0°С, предпочтительно от -5 до 0°С.
Соответственно, согласно способу по настоящему изобретению, используя в качестве промежуточного соединения, обогащенного β-аномером триалкилкарбонатного соединения, содержащего β-аномера более чем в два раза больше, чем α-аномера, можно получить капецитабин, имеющий высокую чистоту, более 99%, избегая неэкономичный процесс выделения β-аномера. Далее, способ по изобретению обеспечивает высокий суммарный выход в 90% на стадии 4 и стадии 5.
Следующие примеры предназначены для того, чтобы дополнительно пояснить изобретение без ограничения его объема.
Пример 1. Получение 1,2,3-три-О-метиксикарбонил-5-дезокси-D-рибофуранозы (соединение формулы 5)
20 г метил-2,3-О-изопропилиден-5-дезокси-D-рибофуранозы растворяли в 100 мл 2% мол. водной серной кислоты, и смесь перемешивали при 80-85°С в течение 2 часов. Реакционную смесь охлаждали до комнатной температуры и концентрировали при пониженном давлении, чтобы удалить примерно от одной трети до половины растворителя. К полученному в результате концентрату добавляли 100 мл 2% мол. водной серной кислоты, полученную смесь перемешивали при 80-85°С в течение 1 часа, охлаждали до комнатной температуры и добавляли к ней кислый карбонат натрия до тех пор, пока рН смеси не становился равным 3,0-3,5. Полученный в результате раствор концентрировали при пониженном давлении, смешивали с 100 мл ацетонитрила и 20 г безводного сульфата натрия с последующим перемешиванием в течение 30 мин, фильтровали и фильтрат концентрировали при пониженном давлении для получения 5-дезокси-D-рибофуранозы.
14,3 г (0,107 моля) 5-дезокси-D-рибофуранозы добавляли к 200 мл дихлорметана, добавляли к ним 30,1 мл (0,372 моль) пиридина и 37 мл (0,266 моль) триэтиламина и смесь охлаждали до -30°С. 49,1 мл (0,638 моль) метилхлорформиата добавляли к ней по каплям при -30°С за 30 минут, реакционную смесь нагревали до 10°С, добавляли к ней 100 мл воды и полученную смесь перемешивали в течение 30 минут. Органический слой отделяли и промывали последовательно 200 мл 1N HCl, водным бикарбонатом натрия и водным NaCl. Полученный в результате органический слой сушили над безводным сульфатом натрия, фильтровали и удаляли из него растворитель, получая 27,7 г указанного в заголовке соединения.
β-аномер:α-аномер = 2,7:1
ЯМР-характеристика β-аномера: 1Н ЯМР (300 МГц, CDCl3): δ 1,42 (д, 3H), 3,82 (с, 9H), 4,34-4,41 (м, 1H), 5,00 (дд, 1H), 5,28 (дд, 1H), 6,07 (д, 1H)
ЯМР-характеристика α-аномера: 1Н ЯМР (300 МГц, CDCl3): δ 1,37 (д, 3H), 3,81 (с, 9H), 4,40-4,48 (м, 1H), 4,90 (дд, 1H), 5,17 (дд, 1H), 6,29 (д, 1H)
Пример 2. Получение 2',3'-ди-О-метоксикарбонил-5'-дезокси-5-фторцитидина (соединение формулы 6)
Смешивали 11,6 г (0,090 моль) 5-фторцитидина, 19 мл гексаметилдисилазана и 24 мл ацетонитрила и 0,2 г сульфата аммония добавляли к смеси, которую кипятили с обратным холодильником в течение 1 ч. После охлаждения реакционной смеси до комнатной температуры к ней добавляли 72 мл ацетонитрила, после чего подвергали полученную в результате смесь дистилляции для удаления примерно 60 мл растворителя. Полученный раствор охлаждали до комнатной температуры, смешивали с 27,7 г (0,090 моль) соединения, полученного в примере 1, и 72 мл ацетонитрила, и полученную в результате смесь охлаждали до 20°С. После добавления к ней по каплям при 25°С 16,3 мл (0,090 моль) триметилсилилтрифторметансульфоната реакционную смесь перемешивали при комнатной температуре в течение ночи, охлаждали до 10°С, смешивали с 45,4 г кислого карбоната натрия и перемешивали в течение 30 мин. К ней добавляли по каплям 9,8 г воды и 72 мл дихлорметана, и полученный в результате раствор перемешивали в течение 2 ч, фильтровали, и выделенное твердое вещество промывали 72 мл дихлорметана. Фильтрат промывали 120 мл 4% бикарбоната натрия, сушили над безводным сульфатом натрия, фильтровали и концентрировали при пониженном давлении, получая 35,8 г указанного в заголовке соединения.
1Н ЯМР (CDCl3): δ 1,47 (д, 3H), 3,79 (с, 3H), 3,81 (с, 3H), 4,22~4,30 (м, 1H), 4,94 (дд, 1H), 5,39 (дд, 1H), 5,76 (д, 1H), 6,00 (ущир.с, 1H), 7,37 (д, 1H), 8,78 (ушир.с, 1H)
Пример 3. Получение 2',3'-ди-О-метоксикарбонил-5'-дезокси-5-фтор-N 4 -(пентилоксикарбонил)цитидина (соединение формулы 7)
35,8 г (0,099 моль) соединения, полученного в примере 2, смешивали с 163 мл дихлорметана и 11 мл (0,136 моль) пиридина и перемешивали. После охлаждения полученной в результате смеси до температуры от -5 до 0°С к ней добавляли по каплям 15,7 мл (0,109 моль) н-пентилхлорформиата, поддерживая в то же время температуру реакционной смеси ниже 0°С, с последующим добавлением к ней, после того как смесь нагревали до комнатной температуры и перемешивали в течение 2 ч, 1N HCl. Органический слой отделяли, последовательно промывали 163 мл насыщенного бикарбоната натрия и 163 мл воды, сушили над безводным сульфатом натрия и концентрировали при пониженном давлении, получая 42,9 г указанного в заголовке соединения.
1Н ЯМР (CDCl3): δ 0,91 (т, 3H), 1,33~1,40 (м, 4H), 1,48 (д, 3H), 1,69~1,74 (м, 2H), 3,82 (с, 6H), 4,16 (т, 2H), 4,27~4,32 (м, 1H), 4,93 (дд, 1H), 5,32 (дд, 1H), 5,83 (д, 1H), 7,40 (с, 1H), 12,2 (ушир.с, 1H)
Пример 4. Получение 5'-дезокси-5-фтор-N 4 -(пентилоксикарбонил)цитидина (соединение формулы 1)
42,9 г соединения, полученного в примере 3, добавляли к 215 мл метанола, и смесь перемешивали и охлаждали до температуры от -5 до 0°С. 10,8 г NaOH растворяли в 107 мл воды, и раствор NaOH добавляли к ним, поддерживая температуру реакционной смеси ниже 0°С. Полученную в результате смесь перемешивали в течение 30 мин и добавляли к ней по каплям 48 мл 6N HCl, пока рН реакционной смеси не становился равным 5,3. Полученную в результате смесь последовательно промывали дважды 215 мл дихлорметана и один раз 108 мл дихлорметана, и объединенный органический слой промывали 215 мл воды, сушили над безводным сульфатом натрия, фильтровали и концентрировали при пониженном давлении. После добавления к ней 129 мл этилацетата остаток смешивали с 97 мл этилацетата перемешиванием для кристаллизации. К нему добавляли по каплям 97 мл гексана, чтобы дать кристаллам вызреть, и полученную смесь перемешивали в течение 1 ч, охлаждали до 0°С и опять перемешивали в течение 1 ч. Полученное в результате твердое вещество отфильтровывали, промывали 86 мл смеси этилацетата и гексана (1:1 об./об.), охлаждали до 0°С и сушили при 35°С в вакуумном сушильном шкафу в течение ночи, получая 28,6 г соединения, указанного в заголовке.
1Н ЯМР (CD3OD): δ 0,91 (т, 3H), 1,36~1,40 (м, 4H), 1,41 (д, 3H), 1,68~1,73 (м, 2H), 3,72 (дд, 1H), 4,08 (дд, 3H), 4,13~4,21 (м, 3H), 5,70 (с, 1H), 7,96 (д, 1H)
Несмотря на то, что изобретение было описано со ссылкой на вышеприведенные конкретные примеры осуществления, различные модификации изобретения, которые могут быть сделаны специалистами, также попадают в сферу изобретения, как оно определено в прилагаемой формуле изобретения.

Claims (7)

1. Способ получения капецитабина формулы 1, включающий стадии:
(1) гидролиза метилацетонидного соединения формулы 2 для получения триольного соединения формулы 3;
(2) взаимодействия соединения формулы 3 с галогеналкилформиатом формулы 4 в присутствии смеси пиридина и триэтиламина для получения обогащенного β-аномером триалкилкарбонатного соединения формулы 5;
(3) гликозилирования соединения формулы 5 с использованием 5-фторцитозина в присутствии кислоты для получения диалкоксикарбонилцитидинового соединения формулы 6;
(4) карбамоилирования соединения формулы 6 с использованием н- пентилхлорформиата для получения карбамоилцитидинового соединения формулы 7; и
(5) удаления карбонатных гидроксизащитных групп в соединениях формулы (7):
Figure 00000009

Figure 00000010

Figure 00000011

Figure 00000012

Figure 00000013

Figure 00000014

Figure 00000015

где X представляет хлор, бром или йод, и R представляет метил или этил.
2. Способ по п.1, в котором пиридин применяют в количестве, составляющем от 1 до 2 эквивалентов в расчете на триэтиламин.
3. Способ по п.1, в котором смесь пиридина и триэтиламина применяют в количестве, составляющем от 4 до 10 эквивалентов в расчете на соединение формулы 3.
4. Способ по п.1, в котором реакцию на стадии (2) проводят при температуре от -50°С до -30°С.
5. Способ по п.1, в котором кислота, используемая на стадии (3) представляет собой этилалюминийдихлорид, метилалюминийдихлорид, SnCl4, триметилсилилтрифторметансульфоновую кислоту или трифторметансульфоновую кислоту.
6. Способ по п.5, в котором кислоту применяют в количестве, составляющем от 0,5 до 3 эквивалентов в расчете на соединение формулы 5.
7. Способ получения триалкилкарбонатного соединения формулы 5, включающий стадии:
(1) гидролиза метилацетонидного соединения формулы 2 для получения триольного соединения формулы 3; и
(2) взаимодействия соединения формулы 3 с галогеналкилформиатом формулы 4 в присутствии смеси пиридина и триэтиламина для получения обогащенного β-аномером триалкилкарбоната формулы 5:
Figure 00000016

Figure 00000017

Figure 00000018

Figure 00000019

где X и R имеют значения, определенные в п.1.
RU2010125257/04A 2007-11-19 2008-11-07 СПОСОБ ПОЛУЧЕНИЯ КАПЕЦИТАБИНА И ИСПОЛЬЗУЕМОГО ПРИ ЭТОМ ОБОГАЩЕННОГО β-АНОМЕРОМ ТРИАЛКИЛКАРБОНАТНОГО СОЕДИНЕНИЯ RU2439064C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070118062A KR101013312B1 (ko) 2007-11-19 2007-11-19 카페시타빈의 제조방법 및 이에 사용되는 β-아노머가강화된 트리알킬카보네이트 화합물의 제조방법
KR10-2007-0118062 2007-11-19

Publications (1)

Publication Number Publication Date
RU2439064C1 true RU2439064C1 (ru) 2012-01-10

Family

ID=40667680

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010125257/04A RU2439064C1 (ru) 2007-11-19 2008-11-07 СПОСОБ ПОЛУЧЕНИЯ КАПЕЦИТАБИНА И ИСПОЛЬЗУЕМОГО ПРИ ЭТОМ ОБОГАЩЕННОГО β-АНОМЕРОМ ТРИАЛКИЛКАРБОНАТНОГО СОЕДИНЕНИЯ

Country Status (18)

Country Link
US (1) US8097706B2 (ru)
EP (1) EP2220090A4 (ru)
JP (1) JP2011503228A (ru)
KR (1) KR101013312B1 (ru)
CN (1) CN101861320A (ru)
AR (1) AR069319A1 (ru)
AU (1) AU2008327061B2 (ru)
BR (1) BRPI0820494A8 (ru)
CA (1) CA2704815C (ru)
CL (1) CL2008003386A1 (ru)
IL (1) IL205832A0 (ru)
MX (1) MX2010005015A (ru)
NZ (1) NZ585129A (ru)
PE (1) PE20091358A1 (ru)
RU (1) RU2439064C1 (ru)
TW (1) TWI356061B (ru)
WO (1) WO2009066892A1 (ru)
ZA (1) ZA201003216B (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120037932A (ko) * 2009-07-23 2012-04-20 시노팜 타이완 리미티드 플루오로시티딘 유도체를 제조하는 방법
CN102516338B (zh) * 2011-12-09 2014-04-02 海南锦瑞制药股份有限公司 一种卡培他滨化合物、其药物组合物及其制备方法
CN103374052B (zh) * 2012-04-19 2016-04-20 齐鲁制药有限公司 卡培他滨晶型及其制备方法
US10435429B2 (en) 2017-10-03 2019-10-08 Nucorion Pharmaceuticals, Inc. 5-fluorouridine monophosphate cyclic triester compounds
CN111801339A (zh) * 2018-01-19 2020-10-20 纽科利制药公司 5-氟尿嘧啶化合物
US11427550B2 (en) 2018-01-19 2022-08-30 Nucorion Pharmaceuticals, Inc. 5-fluorouracil compounds
EP4143199A1 (en) 2020-04-21 2023-03-08 Ligand Pharmaceuticals, Inc. Nucleotide prodrug compounds

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1135258A (en) 1979-06-15 1982-11-09 Richard D'souza Process for the preparation of 5'deoxy-5-fluorouridine
US5272949A (en) 1992-09-23 1993-12-28 Buckeye Bluegrass Farms, Inc. Device for cutting sod grown over plastic sheeting
AU671491B2 (en) 1992-12-18 1996-08-29 F. Hoffmann-La Roche Ag N-oxycarbonyl substituted 5'-deoxy-5-fluorcytidines
TW254946B (ru) 1992-12-18 1995-08-21 Hoffmann La Roche
US5476932A (en) 1994-08-26 1995-12-19 Hoffmann-La Roche Inc. Process for producing N4-acyl-5'-deoxy-5-fluorocytidine derivatives
KR100908363B1 (ko) * 2007-02-28 2009-07-20 한미약품 주식회사 트라이-O-아세틸-5-데옥시-β-D-라이보퓨라노즈의입체선택적 제조방법 및 이의 분리방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nobuo Shimma et al. The design and synthesis of a new tumor-selective fluoropyrimidine carbamate, Capecitabine, Bioirganic & Medicinal Chemistry, 2000, vol.8, no.7, pp.1697-1706. *

Also Published As

Publication number Publication date
US8097706B2 (en) 2012-01-17
KR101013312B1 (ko) 2011-02-09
US20100249395A1 (en) 2010-09-30
ZA201003216B (en) 2011-07-27
NZ585129A (en) 2011-11-25
CA2704815C (en) 2012-03-13
EP2220090A4 (en) 2011-03-16
PE20091358A1 (es) 2009-09-23
CN101861320A (zh) 2010-10-13
IL205832A0 (en) 2010-11-30
MX2010005015A (es) 2010-05-27
CA2704815A1 (en) 2009-05-28
CL2008003386A1 (es) 2009-04-13
AU2008327061A1 (en) 2009-05-28
TW200927754A (en) 2009-07-01
KR20090051595A (ko) 2009-05-22
BRPI0820494A2 (pt) 2015-06-16
WO2009066892A1 (en) 2009-05-28
AR069319A1 (es) 2010-01-13
JP2011503228A (ja) 2011-01-27
AU2008327061B2 (en) 2011-03-24
TWI356061B (en) 2012-01-11
EP2220090A1 (en) 2010-08-25
BRPI0820494A8 (pt) 2015-11-03

Similar Documents

Publication Publication Date Title
RU2439064C1 (ru) СПОСОБ ПОЛУЧЕНИЯ КАПЕЦИТАБИНА И ИСПОЛЬЗУЕМОГО ПРИ ЭТОМ ОБОГАЩЕННОГО β-АНОМЕРОМ ТРИАЛКИЛКАРБОНАТНОГО СОЕДИНЕНИЯ
JP7248209B2 (ja) 3’-デオキシアデノシン-5’-o-[フェニル(ベンジルオシキ-l-アラニニル)]ホスフェート(nuc-7738)の合成
EP1831236A1 (en) Method for the preparation of 2'-deoxy-2',2'-difluorocytidine
JPH0673086A (ja) 立体選択的な陰イオングリコシル化法
RU2360919C2 (ru) Способ получения 2'-дезокси-2', 2'-дифторцитидина
JP2012533618A (ja) フルオロシチジン誘導体の製造プロセス
JPH046715B2 (ru)
US5633366A (en) Pyrimidine nucleoside derivatives and methods for producing them
KR100908363B1 (ko) 트라이-O-아세틸-5-데옥시-β-D-라이보퓨라노즈의입체선택적 제조방법 및 이의 분리방법
RU2346948C2 (ru) ПРОИЗВОДНЫЕ 1-α-ГАЛОГЕН-2,2-ДИФТОР-2-ДЕЗОКСИ-D-РИБОФУРАНОЗЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ
KR101259648B1 (ko) 2′,2′-디플루오로뉴클레오시드 및 중간체의 새로운 제조방법
CA2574954C (en) 1-.alpha.-halo-2,2-difluoro-2-deoxy-d-ribofuranose derivatives and process for the preparation thereof
CN112209976B (zh) 一种地西他滨中间体化合物ⅴ
KR100550160B1 (ko) 알부틴 및 알파형 알부틴 제조용 중간체의 제조방법
KR0130942B1 (ko) 3'-아지도-3'-데옥시티미딘의 제조방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20121108