RU2430948C2 - Карбидо-нитридосиликатные люминофоры - Google Patents

Карбидо-нитридосиликатные люминофоры Download PDF

Info

Publication number
RU2430948C2
RU2430948C2 RU2008111869/05A RU2008111869A RU2430948C2 RU 2430948 C2 RU2430948 C2 RU 2430948C2 RU 2008111869/05 A RU2008111869/05 A RU 2008111869/05A RU 2008111869 A RU2008111869 A RU 2008111869A RU 2430948 C2 RU2430948 C2 RU 2430948C2
Authority
RU
Russia
Prior art keywords
radiation
phosphor
seed material
excited
phosphors
Prior art date
Application number
RU2008111869/05A
Other languages
English (en)
Other versions
RU2008111869A (ru
Inventor
Детлеф ШТАРИК (DE)
Детлеф ШТАРИК
Свен РЕСЛЕР (DE)
Свен РЕСЛЕР
Зильке РЕСЛЕР (DE)
Зильке РЕСЛЕР
Хубертус Терезиа ХИНТЦЕН (NL)
Хубертус Терезиа ХИНТЦЕН
Йуан Кианг ЛИ (JP)
Йуан Кианг ЛИ
Original Assignee
Лейхьтштоффверк Брайтунген Гмбх
Тридоник.Атко Оптоэлектроникс Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Лейхьтштоффверк Брайтунген Гмбх, Тридоник.Атко Оптоэлектроникс Гмбх filed Critical Лейхьтштоффверк Брайтунген Гмбх
Publication of RU2008111869A publication Critical patent/RU2008111869A/ru
Application granted granted Critical
Publication of RU2430948C2 publication Critical patent/RU2430948C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/77747Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77927Silicon Nitrides or Silicon Oxynitrides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Изобретение относится к неорганическим люминесцирующим материалам, которые могут быть использованы в белых источниках света высокой мощности. Люминофор состоит из кристаллической решетки затравочного материала с добавками-активаторами, представляющими собой ионы Eu2+, Tb3+ и/или Eu3+, который при возбуждении его высокоэнергетическим излучением возбуждения поглощает, по меньшей мере, часть этого возбуждающего излучения, а затем испускает излучение с меньшей энергией, при этом решетка затравочного материала представляет собой карбидо-нитридосиликатное соединение, которое не содержит добавки церия в качестве активатора. Также предлагается люминофор, решетка затравочного материала которого представляет собой соединение с общей формулой: Ln2Si4N6C, где Ln означает элемент или смесь элементов, выбранных из группы, включающей иттрий, лантан, гадолиний и лютеций. Предлагаемые карбидо-нитридосиликатные люминофоры отличаются сниженной склонностью к температурному тушению люминесценции, высокой химической и термической устойчивостью и низкой склонностью к старению. 3 н. и 8 з.п. ф-лы, 6 ил.

Description

Изобретение относится к неорганическим люминесцирующим материалам, способным поглощать возбуждающее излучение высокой энергии и с высокой эффективностью превращать его в испускаемое излучение меньшей энергии. При этом в качестве возбуждающего излучения возможно использование в особенности ультрафиолетового излучения или синего света, из которого в процессе преобразования получают излучение в зеленой, желтой, оранжевой и/или красной области видимого спектра.
Давно известно, что неорганические люминофоры целесообразно использовать как для визуализации изображений в невидимом излучении (например, в рентгенодиагностике или в производстве экранов), так и вообще в целях освещения (например, в люминесцентных лампах или при изготовлении светодиодов). У таких люминофоров обычно есть кристаллическая решетка затравочного материала, в которую введены добавки специальных элементов. При этом при использовании в технике в качестве решетки затравочного материала таких люминофоров до сих пор применяли в основном сульфиды, галогениды и оксиды либо же, в особо значительной мере, комплексные соли кислородсодержащих кислот (бораты, алюминаты, силикаты, фосфаты, молибдаты, вольфраматы и т.д.).
Только в последние годы удалось освоить в качестве решеток основного кристалла для синтеза эффективных люминофоров также и нитридные (как, например, описанные Hintzen et al. в европейских патентах ЕР 1104799 А1 и ЕР 1238041 В1 соединения типа M2Si5N8:Eu2+, где М=Са, Sr, Ba, с красным излучением) и оксинитридные вещества (в качестве примера следует назвать соединения MSi2O2N2 согласно Delsing et al. в международной заявке WO 2004/030109 А1; М=Са, Sr, Ba, с синим, зеленым и желтым излучением). Интерес к таким люминофорам с тех пор существенно возрос в первую очередь в связи с целесообразностью их применения в качестве люминофоров-преобразователей при изготовлении белых светодиодов. Это обусловлено в первую очередь тем, что, как ожидается, материалы этого типа ввиду высокой степени ковалентности химических связей и подтвержденной выраженной жесткости основной решетки обладают особо высокой химической и температурной стабильностью. Недостатки большинства сульфидных люминофоров-преобразователей и таковых с доминированием кислорода состоят, прежде всего, в том, что выход люминесценции, как правило, очень быстро падает, когда температура превышает 100°С. Для производства усовершенствованных белых светодиодов, обладающих более высокой потребляемой мощностью, необходимы, однако, люминофоры-преобразователи, обладающие гораздо лучшей температурной стабильностью.
С другой стороны, в связи с этим необходимо отметить, что все без исключения применяемые сейчас в технике неорганические люминофоры-преобразователи (алюминат иттрия, тиогаллат, сульфиды и силикаты щелочноземельных металлов, нитриды, оксинитриды), которые служат для получения белого света в сочетании со светодиодом синего излучения, это активированные системы Eu2+ или Се3+ с чрезвычайно широкой полосой эмиссии. Для таких люминофоров характерны электронные переходы 5d-4f, подверженные влиянию внешнего поля кристалла и, таким образом, разумеется, также и центров тушения, если таковые имеются. Соответственно ситуация принципиально отличается от таковой применения люминофоров в люминесцентных лампах. В этом случае в качестве зеленого и красного компонента в основном используют люминофоры с линейчатым спекторм испускания, люминесценция которых основана на переходах между 4f-электронами (переходы 4f-4f), хорошо экранированных от воздействия внешних полей кристаллов.
Высокая доля ковалентных связей характерна также еще для одного класса соединений, открытого лишь в последнее время. Речь идет о карбидо-нитридосиликатах, содержащих редкоземельные или щелочноземельные металлы. Удалось синтезировать и охарактеризовать с точки зрения основных физико-химических свойств первые вещества-представители этого класса материалов (например, соединения Ho2Si4N6C, Tb2Si4N6C (см. Норре et al. J.Mater. Chem 11 (2001) 3300) и (La,Y,Ca)2(Si,Al)4(N,C)7 (см. Liddel et al. J. Eur. Ceram Soc. 25 (2005) 37).
В профессиональной литературе до сих пор совершенно отсутствовала информация о люминесценции подобных соединений. Теперь, однако, Schmidt et al. представили в международной заявке WO 2005/083037 А1, опубликованной после даты приоритета настоящей заявки, карбидо-нитридосиликатные материалы, активируемые церием, в частности люминофоры состава Y2Si4N6C:Ce с концентрацией активатора, составляющей 5% Се. Эти материалы люминесцируют в широкой области желтой части спектра при возбуждении ультрафиолетовым излучением или светом синего светодиода и, согласно опубликованным данным, в аспектах квантового выхода, эффективности поглощения и температурной характеристики обладают свойствами, практически неотличимыми от соответствующих параметров других известных люминофоров-преобразователей с желтым светом, как, например, иттрий-алюминиевых гранатов, также с добавкой церия или ортосиликатов щелочноземельных металлов с активацией Eu2+.
Задача настоящего изобретения, напротив, состоит в том, чтобы предложить новые карбидо-нитридосиликатные люминофоры, в частности, для применения в белых, светодиодах высокой мощности, отличающиеся первичными или улучшенными характеристиками люминесценции.
Эту задачу решают люминофоры, определенные в пунктах формулы изобретения 1 и 2.
Материалы согласно изобретению принадлежат к классу карбидонитридов, в частности карбидо-нитридосиликатов. Их можно использовать в качестве люминофоров-преобразователей, в чистом виде или же в смеси с другими надлежащими люминофорами, для изготовления источников света, в частности для производства светодиодов с белым светом.
Введение в соответствующую нитридосиликатную матрицу ионов углерода связано с ростом ковалентности решетки. С учетом этого факта в качестве особых преимуществ люминофоров согласно изобретению следует упомянуть, например, сниженную склонность к температурному тушению люминесценции, высокую химическую и термическую устойчивость и низкую склонность к старению.
Общая формула основной решетки люминофоров согласно изобретению выглядит следующим образом:
Ln(2-a-b+f)MI(a+b-f)Si(4-c-d-e-f)MII(c+d+e+f)N(6-a+b-d+e)O(a+d)C(1-b-e),
где 0≤а≤2, 0≤b<1, 0≤c<4, 0≤d<4, 0≤е<1, 0≤f≤(a+b) и 0≤(b+e)<1, причем Ln означает по меньшей мере один из металлов из группы, включающей индий (In), скандий (Sc), иттрий (Y) и редкоземельные элементы, в особенности элементы лантан (La), гадолиний (Gd) и лютеций (Lu) или же смеси этих металлов.
Как указано в общей формуле, в особой форме исполнения Ln также может быть полностью или частично заменен двухвалентным металлом MI, предпочтительно цинком (Zn) или щелочноземельными металлами, как то: магнием (Mg), кальцием (Са), стронцием (Sr) и барием (Ва), если одновременно эквимолярные количества азота (N) замещают кислородом (O) или углерода (С) - азотом (N).
Еще в одной видоизмененной форме исполнения также возможно замещение кремния (Si) компонентом MII, например германием (Ge), и/или бором (В), и/или алюминием (Al). В последних указанных случаях также необходимо замещение эквимолярных количеств N кислородом О, или углерода С азотом N, или металла MI металлом Ln.
В зависимости от точного состава основной решетки люминофора возможно формирование различных кристаллических структур с различными точками встраивания активаторных ионов редкоземельных и/или переходных металлов. Предпочтительные активаторы - это церий и/или тербий, а также европий или же определенные элементы - переходные металлы, которые могут быть встроены в матрицу в виде двухвалентных (особенно Eu2+) или трехвалентных (в частности, Се3+, Tb3+, Eu3+) ионов.
Концентрация активатора может составлять от 0,001 до 1,5 моль активатора на моль люминофора. Церий, при необходимости добавляемый в качестве соактиватора, может наличествовать в концентрациях от 0,0005 до 1,5 моль церия на моль люминофора.
Предпочтительные формы исполнения люминофоров согласно изобретению определяются следующими формулами:
Ln(2-x)Si4N6C:Tbx,
Ln(2-x-y)Si4N6C:Tbx,Cey
или Ln(2-x)Si4N6C:Eux,
причем в каждом случае Ln=Y, La, Gd и/или Lu и причем 0,001<х<1,0, а также 0,001≤y≤1,0.
Люминофоры согласно изобретению при возбуждении в УФ-диапазоне (200-380 нм) или в фиолетовой (380-420 нм) или синей (420-480 нм) области спектра испускают зеленое, желтое, оранжевое или красное люминесцентное излучение. Они характеризуются высоким поглощением возбуждающего излучения, а кроме того, отличаются высоким квантовым выходом и низким уровнем температурного тушения люминесценции.
Ввиду этих своих признаков и других благоприятных свойств люминофоры согласно изобретению целесообразно применять как в виде отдельных компонентов, так и в виде смеси нескольких люминофоров согласно изобретению либо же в сочетании (в смеси) с другими известными люминофорами-преобразователями с излучением синего, зеленого, желтого или красного цвета для изготовления белых светодиодов.
Настоящее изобретение впервые представляет эффективные люминофоры для изготовления белых светодиодов с линейчатыми спектрами 4f-4f, возбуждаемые в синей области спектра, активированные редкоземельными элементами. Неожиданно все же оказалось, что одновременное введение в обладающие признаками изобретения основные кристаллические решетки карбидо-нитридосиликатных люминофоров ионов тербия и церия ведет к зеленой линейчатой эмиссии Tb3+, возбуждаемой светом синего светодиода. Люминофоры, активируемые редкоземельными элементами, с линейчатыми спектрами 4f-4f обладают уже упомянутыми выше преимуществами в том, что касается устойчивости к воздействию внешних полей кристаллов и внешних факторов тушения. Кроме того, при использовании карбонитридосиликатных люминофоров согласно изобретению, имеющих совместные добавки Се3+ и Tb3+, в качестве зеленого компонента в белом светодиоде можно воспользоваться прочими преимуществами. Во-первых, главный пик эмиссии Tb3+, расположенный на длине волны ок. 545 нм, характеризуется чрезвычайно малой полушириной по сравнению с соответствующими широкополосными спектрами, во-вторых, спектр испускания состоит из других групп линий, распределенных по всей видимой области спектра. Свойство, названное первым, благоприятно при применении белых светодиодов для фонового освещения жидкокристаллических экранов (согласование характеристики излучения с используемым светофильтром), в то время как характерное и (в определенных пределах, посредством варьирования соотношения Се/Tb) управляемое спектральное распределение люминесценции люминофоров, совместно активированных Се3+-Tb3+, способствует улучшению отображения цветов (величин CRI) при использовании в белых светодиодах для общего освещения.
Еще одним важным преимуществом настоящего изобретательского решения следует считать то, что с его помощью можно синтезировать новый люминофор-преобразователь с красным свечением. В неорганических нитридных соединениях можно обеспечить значительно более сильные поля кристаллов, чем в случае люминофоров с доминированием кислорода. Это важная предпосылка для желаемого красного сдвига люминесценции, испускаемой, например, ионами Eu2+.
Эксперименты, проведенные в связи с настоящим изобретением, неожиданно показали, что люминофоры с красной эмиссией, имеющие спектр возбуждения, пригодный для их использования в белых светодиодах, можно получать также и при добавке в основную решетку согласно изобретению ионов европия.
Прочие подробности, преимущества и формы исполнения настоящего изобретения ясны из описания условий синтеза люминофоров, а также из прилагаемых чертежей, на которых изображены:
Фиг.1 - спектры возбуждения (левая часть иллюстрации) и испускания (правая часть) люминофора Y2Si4N6C с добавкой церия,
Фиг.2 - спектр диффузного отражения, спектр возбуждения и линейчатый спектр испускания Y2Si4N6C-фосфора, активированного Tb3+,
Фиг.3 - спектр возбуждения (левая часть иллюстрации) и испускания (правая часть) Y2Si4N6C-материала с совместной добавкой Се и Tb,
Фиг.4 - спектр возбуждения и испускания люминофора, активированного европием.
Синтез содержащих редкоземельные или щелочноземельные металлы карбидо-нитридосиликатов, описанных вышеупомянутой общей формулой, целесообразно осуществлять методом реакции в твердой фазе при высокой температуре. Процесс синтеза описан ниже на примере общего препаративного образца, а также посредством двух примеров исполнения карбонитридосиликатных люминофоров с добавками Се и Tb или Eu.
В качестве исходных компонентов используют α-Si3N4, β-Si3N4, угольный порошок, SiC, а также редкоземельные элементы иттрий, церий, тербий и европий, в каждом случае в металлической форме. До перехода к последующим этапам процесса редкоземельные металлы сначала азотируют в атмосфере азота или аммиака. Затем азотированные соединения добавляют к Si3N4, SiC или угольному порошку в соответствующих стехиометрических соотношениях, отвешивая необходимые количества, и интенсивно перемешивают. Поскольку некоторые исходные компоненты гигроскопичны, все эти манипуляции проводят в перчаточной камере в сухой атмосфере азота. Порошковые смеси помещают в тигели соответствующего размера и прокаливают в высокотемпературной печи при температуре от 1500 до 1800°С на протяжении 2-48 часов в атмосфере чистого азота. По окончании процесса прокаливания образцы охлаждают до комнатной температуры и при необходимости подвергают дальнейшей надлежащей обработке.
Пример 1
Для приготовления активированного тербием и церием карбидо-нитридосиликата Y1,00Si4N6C:Tb0,99Ce0,01 металлический тербий сначала азотируют при 1200°С в течение 12 часов в горизонтальной трубчатой печи в атмосфере чистого азота до TbNx (x≈0,99).
Исходные вещества - 34,24 г TbNx; 17,78 г металлического иттрия; 0,28 г металлического церия; 28,06 г α-Si3N4 и 8,02 г SiC, затем интенсивно перемешивают в агатовой ступке в сухой азотной атмосфере и помещают в молибденовый тигель. Эту порошковую смесь калят в атмосфере чистого азота в течение 10 часов при 1600°С, а затем в этой же печи охлаждают до комнатной температуры. После удаления непрореагировавших и растворимых компонентов получают люминофор с зеленым свечением состава Y1,00Si4N6C:Tb0,99Ce0,01.
Пример 2
Для производства активированного 5% европием карбидо-нитридосилиаката состава Gd1,8Sr0,2Si4N6,2C0,8 чистые металлические стронций и европий азотируют при 850°С в течение двух часов в горизонтальной трубчатой печи в атмосфере чистого азота до предшественников Sr3N2 и EuN. Затем 56,61 г металлического гадолиния; 2,91 г Sr3N2; 1,66 г EuN; 29,93 г α-Si3N4 и 6,42 г SiC тщательно смешивают в сухой азотной атмосфере и помещают в термоустойчивый тигель. Прокаливание смеси осуществляют в течение 24 часов при 1750°С в азотно-водородной атмосфере (90:10). После надлежащей последующей обработки образца получают люминофор с сильной красной люминесценцией.
Дополнительные примеры карбидо-нитридосиликатных люминофоров
Пример 3
Для приготовления активированного тербием карбидо-нитридосиликата состава Lu1,6Tb0,4Si4N6C металлический тербий сначала нитруют, как указано в примере 1 описания изобретения, в TbNx (х≈0,99). Затем 6,912 г порошка TbNx, 28,00 г порошка металлического лютеция, 18,70 г α-Si3N4 и 1,201 г графитового порошка (углеродного порошка) в атмосфере сухого азота интенсивно перемешивают в агатовой ступке и загружают в молибденовый тигель. Порошковую смесь обжигают в атмосфере чистого азота при температуре 1700°С в течение 20 ч и затем оставляют остывать в печи. Получают люминофор, испускающий зеленое излучение (фиг.5).
Пример 4
Для приготовления активированного церием и тербием карбидо-нитридосиликата состава La0,99Ce0,01TbSi4N6C в герметичном боксе с перчатками отвешивают под атмосферой сухого азота 23,84 г металлического тербия, 20,63 г порошка металлического лантана, 0,210 г порошка металлического церия, 21,04 г α-Si3N4 и 6,014 г карбида кремния и интенсивно перемешивают в агатовой ступке. Порошковую смесь помещают в молибденовый тигель с крышкой, подвергают обжигу в атмосфере чистого азота при температуре 1650°С в течение 10 ч и затем оставляют остывать в печи. Получают люминофор, испускающий сине-зеленое излучение при возбуждении излучением с длиной волны 370 нм, который характеризуется типичным для активированных тербием люминофоров спектром в зеленой области длин волн (фиг.6).
Прилагаемые чертежи полностью ясны специалисту в люминофорах и не нуждаются в пояснениях. Основные данные о представленном положении вещей были приведены выше. Ниже в порядке дополнения даны указания на некоторые особенности.
Из Фиг.1 видно, что все люминофоры Y2Si4N6C с добавкой церия люминесцируют в желто-зеленой области спектра при возбуждении между 360 и 450 нм. Различные кривые в каждом случае относятся к различным концентрациям добавок, величины которых также приведены на диаграмме.
Фиг.2 показывает, что активированные Tb3+ люминофоры Y2Si4N6C необходимо возбуждать в области от 280 до 320 нм, чтобы получить эффективное линейчатое зеленое испускание Tb3+.
Из Фиг.3 хорошо видно, что основную решетку Y2Si4N6C с совместной добавкой Се и Tb также можно эффективно возбуждать между 360 и 450 нм. В выбранном примере при этом получают линейчатое испускание Tb3+, на которое наложено широкополосное испускание Се. Можно, однако, найти соотношения концентраций Се/Tb, при который линейчатое испускание тербия обладает существенным превосходством, а люминесценция церия сильно подавлена.
Наконец, из Фиг.4 понятно, что полоса испускания матрицы, активированной европием, зарегистрированная при максимальной длине волны 610 нм, также может быть получена при возбуждении в интересующем нас диапазоне между 350 и 480 нм.
Хотя в подробностях были описаны только некоторые формы исполнения, специалисту ясно, что возможны многочисленные варианты люминофора согласно изобретению. Возможность варьирования была продемонстрирована посредством общих формул и именования возможных элементов-заместителей.

Claims (11)

1. Люминофор для применения в белых источниках света высокой мощности, состоящий из кристаллической решетки затравочного материала с добавками-активаторами, представляющими собой ионы Eu2+, Tb3+ и/или Eu3+, который при возбуждении его высокоэнергетическим излучением возбуждения поглощает, по меньшей мере, часть этого возбуждающего излучения, а затем испускает излучение с меньшей энергией, отличающийся тем, что решетка затравочного материала представляет собой карбидонитридосиликатное соединение, которое не содержит добавки церия в качестве активатора.
2. Люминофор, состоящий из кристаллической решетки затравочного материала с добавками-активаторами, представляющими собой ионы Eu2+, Се3+, Tb3+ и/или Eu3+, который при возбуждении его высокоэнергетическим излучением возбуждения поглощает, по меньшей мере, часть этого возбуждающего излучения, а затем испускает излучение с меньшей энергией, отличающийся тем, что решетка затравочного материала представляет собой соединение со следующей общей формулой:
Ln2Si4N6C,
причем Ln означает элемент или смесь элементов, выбранных из группы, включающей иттрий, лантан, гадолиний и лютеций.
3. Люминофор по п.2, отличающийся тем, что в кристаллическую решетку затравочного материала в качестве активаторов добавлены ионы Tb3+, а в качестве соактиваторов - ионы Се3+.
4. Люминофор по п.2, отличающийся тем, что концентрация активатора составляет от 0,001 до 1,5 моль активатора на моль люминофора.
5. Люминофор по п.3, отличающийся тем, что в качестве соактиватора в кристаллическую решетку затравочного материала добавлен церий в концентрации от 0,0005 до 1,5 моль церия на моль люминофора.
6. Люминофор по п.1, отличающийся тем, что он определен одной из следующих общих формул:
Ln(2-x)Si4N6C:TbX,
Ln(2-x-y)Si4N6C:Tbx,Cey,
Ln(2-x)Si4N6C:Eux,
причем в каждом случае Ln=Y, La, Gd и/или Lu и причем 0,001<х<1,5, а также 0,0005≤y≤1,5.
7. Люминофор по одному из пп.1-6, отличающийся тем, что при возбуждении излучением с длинами волн 200-480 нм он испускает зеленое, желтое, оранжевое или красное излучение.
8. Люминофор по п.1, отличающийся тем, что при возбуждении синим светом он испускает излучение, обладающее линейчатым спектром, обусловленным электронными переходами 4f-4f.
9. Источник белого света, отличающийся тем, что включает в себя испускающий свет элемент и, по меньшей мере, один люминофор по одному из пп.1-8, возбуждаемый излучением, создаваемым испускающим элементом, и испускающий зеленое, желтое или красное излучение.
10. Источник света по п.9, отличающийся тем, что испускающий свет элемент представляет собой светодиод.
11. Источник света по п.10, отличающийся тем, что светодиод излучает в диапазоне длин волн 200-480 нм.
RU2008111869/05A 2005-08-30 2006-08-29 Карбидо-нитридосиликатные люминофоры RU2430948C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005041153A DE102005041153A1 (de) 2005-08-30 2005-08-30 Nitridocarbid-Leuchtstoffe
DE102005041153.3 2005-08-30

Publications (2)

Publication Number Publication Date
RU2008111869A RU2008111869A (ru) 2009-10-10
RU2430948C2 true RU2430948C2 (ru) 2011-10-10

Family

ID=37316069

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008111869/05A RU2430948C2 (ru) 2005-08-30 2006-08-29 Карбидо-нитридосиликатные люминофоры

Country Status (12)

Country Link
US (1) US8007683B2 (ru)
EP (1) EP1922904B1 (ru)
JP (1) JP2009506185A (ru)
KR (1) KR101323481B1 (ru)
CN (1) CN101253814B (ru)
CA (1) CA2620558C (ru)
DE (1) DE102005041153A1 (ru)
HK (1) HK1119016A1 (ru)
MY (1) MY148264A (ru)
RU (1) RU2430948C2 (ru)
TW (1) TW200722504A (ru)
WO (1) WO2007025973A1 (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7994702B2 (en) 2005-04-27 2011-08-09 Prysm, Inc. Scanning beams displays based on light-emitting screens having phosphors
JP5395342B2 (ja) * 2007-09-18 2014-01-22 株式会社東芝 蛍光体および発光装置
KR101114061B1 (ko) * 2009-02-23 2012-02-21 주식회사 포스포 형광체 및 발광소자
KR20120083933A (ko) * 2009-12-04 2012-07-26 아나톨리 바실리예비치 비신야코프 고체 백색광원용 복합 발광 물질
CN101735812A (zh) * 2009-12-14 2010-06-16 福建华映显示科技有限公司 碳氮化物荧光粉、其制造方法及其发光装置
EP2857479B1 (en) * 2010-05-14 2016-08-24 Lightscape Materials Inc. Oxycarbonitride phosphors and light emitting devices using the same
SG185404A1 (en) * 2010-05-14 2012-12-28 Lightscape Materials Inc Carbonitride based phosphors and light emitting devices using the same
WO2012033557A1 (en) * 2010-09-10 2012-03-15 Lightscape Materials, Inc. Silicon carbidonitride based phosphors and lighting devices using the same
US9017574B2 (en) 2011-12-19 2015-04-28 Lightscape Materials, Inc. Carbidonitride phosphors and LED lighting devices using the same
US20140062287A1 (en) * 2012-08-29 2014-03-06 Lightscape Materials, Inc. Oxycarbidonitride phosphor and devices using same
US8815121B2 (en) 2012-08-31 2014-08-26 Lightscape Materials, Inc. Halogenated oxycarbidonitride phosphor and devices using same
CN105273716B (zh) * 2014-07-21 2017-07-14 中国科学院上海硅酸盐研究所 稀土离子Ce3+掺杂的Y2Si4N6C黄色荧光粉的制备方法
US9200199B1 (en) 2014-08-28 2015-12-01 Lightscape Materials, Inc. Inorganic red phosphor and lighting devices comprising same
US9315725B2 (en) 2014-08-28 2016-04-19 Lightscape Materials, Inc. Method of making EU2+ activated inorganic red phosphor
US9200198B1 (en) 2014-08-28 2015-12-01 Lightscape Materials, Inc. Inorganic phosphor and light emitting devices comprising same
CN107674676B (zh) * 2016-08-01 2021-05-04 有研稀土新材料股份有限公司 一种Sc基碳氮化物荧光粉以及含该荧光粉的器件

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1104799A1 (en) 1999-11-30 2001-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Red emitting luminescent material
JP4868685B2 (ja) * 2002-06-07 2012-02-01 日亜化学工業株式会社 蛍光体
JP4053926B2 (ja) * 2002-05-27 2008-02-27 日亜化学工業株式会社 窒化物半導体発光素子とそれを用いた発光装置
JP4407204B2 (ja) * 2002-08-30 2010-02-03 日亜化学工業株式会社 発光装置
EP1413618A1 (en) * 2002-09-24 2004-04-28 Osram Opto Semiconductors GmbH Luminescent material, especially for LED application
EP1413619A1 (en) 2002-09-24 2004-04-28 Osram Opto Semiconductors GmbH Luminescent material, especially for LED application
JP4529349B2 (ja) * 2002-11-08 2010-08-25 日亜化学工業株式会社 窒化物系蛍光体および発光装置
WO2004042834A1 (ja) 2002-11-08 2004-05-21 Nichia Corporation 発光装置、蛍光体および蛍光体の製造方法
DE10254175A1 (de) 2002-11-21 2004-06-09 Philips Intellectual Property & Standards Gmbh Plasmabildschirm mit blauemittierendem Leuchtstoff
EP1573826B1 (en) * 2002-12-13 2007-03-21 Philips Intellectual Property & Standards GmbH Illumination system comprising a radiation source and a fluorescent material
EP1716218B1 (en) 2004-02-20 2009-12-02 Philips Intellectual Property & Standards GmbH Illumination system comprising a radiation source and a fluorescent material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HÖPPE А.Н. et al. High-temperature synthesis, crystal structure, optical properties, and magnetism of the carbidonitridosilicates Ho 2 [Si 4 N 6 C] and Tb 2 [Si 4 N 6 C], "Journal of Material Chemistry", 2001, vol.11, p.p.3300-3306. *

Also Published As

Publication number Publication date
TW200722504A (en) 2007-06-16
US8007683B2 (en) 2011-08-30
WO2007025973A1 (de) 2007-03-08
DE102005041153A1 (de) 2007-03-01
HK1119016A1 (en) 2009-02-20
CA2620558C (en) 2014-10-21
RU2008111869A (ru) 2009-10-10
JP2009506185A (ja) 2009-02-12
KR101323481B1 (ko) 2013-10-31
EP1922904B1 (de) 2014-03-12
CA2620558A1 (en) 2007-03-08
US20080251764A1 (en) 2008-10-16
KR20080049771A (ko) 2008-06-04
CN101253814A (zh) 2008-08-27
CN101253814B (zh) 2010-09-01
MY148264A (en) 2013-03-29
EP1922904A1 (de) 2008-05-21

Similar Documents

Publication Publication Date Title
RU2430948C2 (ru) Карбидо-нитридосиликатные люминофоры
JP3668770B2 (ja) 希土類元素を付活させた酸窒化物蛍光体
JP4799549B2 (ja) 白色発光ダイオード
JP5833918B2 (ja) 蛍光体及びその製造方法並びにこれを用いた発光装置
JP5170344B2 (ja) サイアロン系酸窒化物蛍光体の製造方法及びサイアロン系酸窒化物蛍光体
EP1104799A1 (en) Red emitting luminescent material
WO2017006725A1 (ja) 青緑色発光蛍光体、発光素子、発光装置、及び白色光発光装置
US9580649B2 (en) Process for production of phosphors
JP2013543016A (ja) ケイ素カルビドニトリドベースの蛍光体およびこれを使用する発光素子
RU2010110543A (ru) Люминофоры на основе нестехиометрических тетрагональных силикатов меди и щелочноземельного металла и способ их получения
US20160200973A1 (en) Phosphors
US20160152891A1 (en) Phosphors
JP5339976B2 (ja) 橙色蛍光体とその製造方法
JP6017104B1 (ja) 青緑色発光蛍光体、発光素子、発光装置、及び白色光発光装置
CN110317608B (zh) 蓝色发光荧光体、蓝色发光荧光体组合物、发光元件、发光装置和白色光发光装置
KR20140029331A (ko) 할로겐화 옥시카비도니트라이드 형광체 및 이를 사용한 디바이스
US8686626B2 (en) Oxynitride-based phosphor and light emitting device including the same
JP5355441B2 (ja) 橙色蛍光体とその製造方法
JP2016088970A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
Kousaka et al. Development of new red phosphor Na3YSi2O7: Eu3+ for a white LED
Zhang et al. Effects of various fluxes on synthesis of deep red emitting CaAl12O19: Mn4+ phosphors
KR20090049712A (ko) 신규한 장파장 자외선 여기용 적색 형광체 및 이의제조방법
JP2016094533A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2016056246A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2017088791A (ja) 蛍光体、発光装置、照明装置及び画像表示装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180830