RU2415409C1 - Способ определения физических свойств жидкостей или газов - Google Patents

Способ определения физических свойств жидкостей или газов Download PDF

Info

Publication number
RU2415409C1
RU2415409C1 RU2009142008/28A RU2009142008A RU2415409C1 RU 2415409 C1 RU2415409 C1 RU 2415409C1 RU 2009142008/28 A RU2009142008/28 A RU 2009142008/28A RU 2009142008 A RU2009142008 A RU 2009142008A RU 2415409 C1 RU2415409 C1 RU 2415409C1
Authority
RU
Russia
Prior art keywords
frequency
long line
substance
physical properties
section
Prior art date
Application number
RU2009142008/28A
Other languages
English (en)
Inventor
Александр Сергеевич Совлуков (RU)
Александр Сергеевич Совлуков
Михаил Вениаминович Жиров (RU)
Михаил Вениаминович Жиров
Низамутдин Маллараджабович Магомедов (RU)
Низамутдин Маллараджабович Магомедов
Владимир Михайлович Жиров (RU)
Владимир Михайлович Жиров
Original Assignee
Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН filed Critical Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН
Priority to RU2009142008/28A priority Critical patent/RU2415409C1/ru
Application granted granted Critical
Publication of RU2415409C1 publication Critical patent/RU2415409C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Изобретение относится к области измерительной техники и может быть использованы для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам. Способ определения физических свойств жидкостей или газов включает возбуждение электромагнитных волн фиксированной частоты в отрезке длинной линии с оконечным нагрузочным сопротивлением в виде чувствительного элемента с образованием стоячей электромагнитной волны и размещение контролируемого вещества в электромагнитном поле нагрузочного сопротивления. Согласно изобретению в предложенном способе предварительно устанавливают минимум напряженности поля стоячей волны в фиксированном сечении отрезка длинной линии при некотором номинальном значении определяемого физического свойства контролируемого вещества, в процессе измерения изменяют частоту возбуждаемых электромагнитных волн до достижения напряженностью поля стоячей волны ее минимума в указанном фиксированном сечении отрезка длинной линии и о физических свойствах вещества судят по величине этой частоты. Изобретение обеспечивает повышение точности измерений. 1 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, газов), находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.) и перемещаемых по трубопроводам. В частности, оно может быть применено в винодельческой промышленности для измерения концентрации водо-спиртовых растворов, виноматериалов и вин, содержания сахара в них и др.
Известны различные способы определения физических свойств веществ, основанные на измерении их электрофизических параметров с применением радиочастотных датчиков, содержащих контролируемое вещество (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука, 1989. 280 с.).
Известно также техническое решение (SU 867923, 30.09.1981), которое по технической сущности наиболее близко к предлагаемому способу и принято в качестве прототипа. Это техническое решение реализуется согласно способу, который заключается в возбуждении электромагнитных волн в волноводе, в частности в отрезке длинной линии, оконечной нагрузкой которого является чувствительный элемент, контактирующий с контролируемым веществом. Измеряя напряженность поля стоячей волны в каком-либо сечении вдоль отрезка длинной линии, судят о величине физического свойства вещества. Недостатком этого способа является невысокая точность измерения, обусловленная проведением амплитудных измерений.
Техническим результатом настоящего изобретения является повышение точности измерения.
Технический результат в предлагаемом способе определения физических свойств жидкостей или газов, включающий возбуждение электромагнитных волн фиксированной частоты в отрезке длинной линии с оконечным нагрузочным сопротивлением в виде чувствительного элемента с образованием стоячей электромагнитной волны и размещение контролируемого вещества в электромагнитном поле нагрузочного сопротивления, достигается тем, что при этом предварительно устанавливают минимум напряженности поля стоячей волны в фиксированном сечении отрезка длинной линии при некотором номинальном значении определяемого физического свойства контролируемого вещества, в процессе измерения изменяют частоту возбуждаемых электромагнитных волн до достижения напряженностью поля стоячей волны ее минимума в указанном фиксированном сечении отрезка длинной линии и о физических свойствах вещества судят по величине этой частоты.
Предлагаемый способ поясняется чертежом, изображающим схему устройства для его реализации. Здесь введены обозначения: 1 - генератор, 2 - отрезок длинной линии, 3 - чувствительный элемент, 4 - детектор, 5 - блок перестройки частоты генератора, 6 - индикатор.
Способ реализуется следующим образом.
При возбуждении с помощью генератора 1 фиксированной частоты электромагнитных волн в отрезке длинной линии 2, к концу которого подсоединено нагрузочное сопротивление - чувствительный элемент 3, в отрезке длинной линии имеет место интерференция возбуждаемых и отраженных от чувствительного элемента волн. Она характеризуется режимом стоячих (точнее, смешанных) смешанных волн. Напряженность поля стоячей электромагнитной волны в какой-либо точке вдоль отрезка длинной линии является функцией нагрузочного сопротивления отрезка длинной линии, т.е. величины измеряемого параметра (физического свойства вещества). При отклонении этой величины от ее некоторого номинального значения, соответствующего определенному значению измеряемого параметра, напряженность поля стоячей волны в указанной точке также изменяется. Проведение частотных измерений позволяет получать полезную информацию независимо от нестабильности напряженности поля возбуждаемой электромагнитной волны.
Напряженности E1(z) и Е2(z) полей волн в каком-либо сечении с координатой z вдоль отрезка длинной линии, распространяющихся в противоположном направлении (первая волна - от генератора, вторая волна - от нагрузочного сопротивления) есть
Figure 00000001
Figure 00000002
где Е1 и Е2 - амплитуды величин E1(z) и E2(z); ƒ0 - частота возбуждаемых электромагнитных волн; φ - разность фаз встречных волн, зависящая от величины нагрузочного сопротивления и, следовательно, от величины измеряемого параметра x.
Напряженность поля стоячей электромагнитной волны в сечении с координатой z вдоль отрезка длинной линии при этом есть
Figure 00000003
Из формулы (3) следует, что напряженность поля стоячей волны в сечении с координатой z зависит как от разности фаз φ, так и от амплитуд Е1 и Е2. Эта разность фаз может быть определена независимо от Е1 и E2 по изменению положения какого-либо выбранного значения амплитуды Е, в частности по смещению положения одного из минимумов поля стоячей волны. Указанные минимумы расположены, как следует из (3), в сечениях с координатами zn (n=0, 1, 2,…) вдоль отрезка длинной линии:
Figure 00000004
Если вследствие изменения величины измеряемого параметра x имеет место фазовый сдвиг Δφ(x) относительно значения разности фаз φ=φ0, соответствующего некоторому номинальному значению х0 измеряемого параметра x, то каждый минимум поля стоячей волны перемещается вдоль отрезка длинной линии, как следует из (4), на расстояние
Figure 00000005
Отсюда видно, что величина Δz(x) не зависит от Е1, E2 и n, а является функцией только Δφ(x) и ƒ0. Величина Δφ зависит, в свою очередь, от реактивной (емкостной, индуктивной) составляющей нагрузочного сопротивления, функционально связанного с измеряемым параметром x.
Для определения величины измеряемого параметра x осуществляют, согласно предлагаемому способу, изменение частоты ƒ0 возбуждаемой электромагнитной волны на такую величину Δƒ до значения ƒ=ƒ0+Δƒ. При фиксированной частоте ƒ генератора восстанавливается положение минимума поля стоячей волны в сечении отрезка длинной линии с координатой zk, k=0, 1, 2,…, в котором подсоединен детектор.
Как видно из рассмотрения формулы (5), требуемое изменение частоты Δƒ возбуждаемой электромагнитной волны можно найти из соотношения
Figure 00000006
Отсюда находим
Figure 00000007
Следовательно, изменение частоты ƒ0 возбуждаемой волны на величину Δƒ приводит к восстановлению минимума напряженности поля стоячей волны в указанном сечении с координатой zk вдоль отрезка длинной линии. Частота Δƒ является мерой отклонения величины измеряемого параметра от его номинального значения x0, и значит, частота ƒ=ƒ0+Δƒ служит мерой величины самого измеряемого параметра х.
В реализующем предлагаемый способ устройстве от генератора 1 фиксированной частоты электромагнитные колебания поступают в отрезок длинной линии 2. К его противоположному концу подсоединен чувствительный элемент 3. Его эквивалентная электрическая схема может содержать, в зависимости от электрофизических параметров контролируемого вещества, электрическую емкость, индуктивность или их совокупность; может быть также подсоединен дополнительно резистор, характеризуя наличие диэлектрических потерь в контролируемом веществе.
С изменением величины измеряемого параметра происходит изменение, в частности, емкостной составляющей нагрузочного сопротивления, что предопределяет ее конструкцию, т.е. конструкцию чувствительного элемента 3. Чувствительным элементом 3 может являться, например, коаксиальный конденсатор (измерительная ячейка), заполняемый контролируемым веществом. Если контролируемое вещество является несовершенным диэлектриком или электропроводным веществом, то при покрытии внутреннего проводника указанного коаксиального конденсатора диэлектрической оболочкой контролируемое вещество в нем характеризуется эффективной диэлектрической проницаемостью двухслойного диэлектрика - вещества и диэлектрической оболочки (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука, 1989. С.125-131). При этом такое нагрузочное сопротивление становится емкостным. Величина измеряемого параметра определяется с учетом известных значений параметров такого чувствительного элемента (геометрических параметров конденсатора и диэлектрической проницаемости оболочки).
В некотором сечении вдоль отрезка длинной линии 2 к нему подсоединен детектор 4, с выхода которого продетектированный сигнал поступает в блок перестройки частоты генератора 5, подключенный выходом к генератору 1. В зависимости от амплитуды продетектированного сигнала, определяемой значением напряженности поля стоячей волны в указанном сечении с координатой zk, изменяется частота генератора 1. Величина этого изменения частоты Δƒ выражается формулой (7). При измерениях предварительно выбором частоты генератора ƒ0 или (и) длины отрезка длинной линии устанавливают минимум напряженности поля стоячей волны в указанном сечении с координатой zk при некотором номинальном значении x0 определяемого физического свойства вещества. Возбуждение в отрезке длинной линии электромагнитной волны на фиксированной частоте ƒ, измененной на величину Δƒ относительно частоты ƒ0, приводит к восстановлению в указанном сечении с координатой zk минимума поля стоячей волны. По величине ƒ, фиксируемой индикатором 6, подключенным к генератору 1, можно судить о величине измеряемого параметра x (физического свойства вещества).
Таким образом, предлагаемый способ характеризуется проведением высокоточных частотных измерений вместо амплитудных измерений, что приводит к существенному увеличению точности измерения.
Данный способ может быть применен для измерения различных физических свойств веществ в измерительных ячейках (при отборе пробы вещества), а также при измерениях в технологических емкостях и в трубопроводах с перемещаемыми по ним контролируемыми веществами.

Claims (1)

  1. Способ определения физических свойств жидкостей или газов, включающий возбуждение электромагнитных волн фиксированной частоты в отрезке длинной линии с оконечным нагрузочным сопротивлением в виде чувствительного элемента с образованием стоячей электромагнитной волны и размещение контролируемого вещества в электромагнитном поле нагрузочного сопротивления, отличающийся тем, что предварительно устанавливают минимум напряженности поля стоячей волны в фиксированном сечении отрезка длинной линии при некотором номинальном значении определяемого физического свойства контролируемого вещества, в процессе измерения изменяют частоту возбуждаемых электромагнитных волн до достижения напряженностью поля стоячей волны ее минимума в указанном фиксированном сечении отрезка длинной линии и о физических свойствах вещества судят по величине этой частоты.
RU2009142008/28A 2009-11-13 2009-11-13 Способ определения физических свойств жидкостей или газов RU2415409C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009142008/28A RU2415409C1 (ru) 2009-11-13 2009-11-13 Способ определения физических свойств жидкостей или газов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009142008/28A RU2415409C1 (ru) 2009-11-13 2009-11-13 Способ определения физических свойств жидкостей или газов

Publications (1)

Publication Number Publication Date
RU2415409C1 true RU2415409C1 (ru) 2011-03-27

Family

ID=44052961

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009142008/28A RU2415409C1 (ru) 2009-11-13 2009-11-13 Способ определения физических свойств жидкостей или газов

Country Status (1)

Country Link
RU (1) RU2415409C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2687710C1 (ru) * 2018-11-01 2019-05-15 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для измерения плотности бурового раствора в легкосплавленной бурильной трубе

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2687710C1 (ru) * 2018-11-01 2019-05-15 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для измерения плотности бурового раствора в легкосплавленной бурильной трубе

Similar Documents

Publication Publication Date Title
RU2626409C1 (ru) Способ измерения физических свойств жидкости
US20020053239A1 (en) Device and a process for determining the positions of border areas between different mediums
RU2473889C1 (ru) Способ измерения физической величины
RU2647182C1 (ru) Способ измерения положения границы раздела двух сред в емкости
EP2634568A1 (en) Non-invasive measurement of dielectric properties of a substance
RU2365903C1 (ru) Способ измерения влагосодержания и солесодержания нефти
RU2415409C1 (ru) Способ определения физических свойств жидкостей или газов
RU2706455C1 (ru) Способ измерения положения границы раздела двух веществ в резервуаре
RU2752555C1 (ru) Способ определения положения границы раздела двух жидкостей в резервуаре
RU2620780C1 (ru) Способ определения положения границ раздела между компонентами трехкомпонентной среды в емкости
RU2661349C1 (ru) Способ определения влагосодержания диэлектрической жидкости
RU2331871C2 (ru) Волноводный свч-способ измерения диэлектрической проницаемости жидких сред по критической длине волны
RU2536184C1 (ru) Концентратомер
US11408835B2 (en) Microwave soil moisture sensor based on phase shift method and independent of electrical conductivity of the soil
RU2647186C1 (ru) Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости
RU2412432C1 (ru) Устройство для измерения физических свойств жидкости
RU2645836C1 (ru) Способ определения уровня жидкости в емкости
RU2521722C1 (ru) Устройство для измерения физических параметров объекта
RU2786527C1 (ru) Способ измерения физических свойств жидкости
RU2762058C1 (ru) Устройство для измерения физических свойств диэлектрической жидкости
RU2753830C1 (ru) Способ измерения положения границы раздела двух жидкостей в емкости
RU2354980C2 (ru) Способ определения диэлектрической постоянной диэлектрического продукта
RU2761954C1 (ru) Способ измерения физических свойств диэлектрической жидкости
RU2778284C1 (ru) Устройство для измерения уровня диэлектрической жидкости в резервуаре
RU2757472C1 (ru) Способ определения уровня жидкости в емкости

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181114