RU2706455C1 - Способ измерения положения границы раздела двух веществ в резервуаре - Google Patents

Способ измерения положения границы раздела двух веществ в резервуаре Download PDF

Info

Publication number
RU2706455C1
RU2706455C1 RU2019109835A RU2019109835A RU2706455C1 RU 2706455 C1 RU2706455 C1 RU 2706455C1 RU 2019109835 A RU2019109835 A RU 2019109835A RU 2019109835 A RU2019109835 A RU 2019109835A RU 2706455 C1 RU2706455 C1 RU 2706455C1
Authority
RU
Russia
Prior art keywords
substances
long line
interface
segments
excited
Prior art date
Application number
RU2019109835A
Other languages
English (en)
Inventor
Александр Сергеевич Совлуков
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority to RU2019109835A priority Critical patent/RU2706455C1/ru
Application granted granted Critical
Publication of RU2706455C1 publication Critical patent/RU2706455C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Изобретение может быть использовано для измерения положения границы раздела двух веществ, находящихся в резервуаре одно над другим и образующих плоскую границу раздела, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от электрофизических параметров обоих веществ. Техническим результатом является повышение точности измерения. В способе размещают вертикально два идентичных отрезка коаксиальной длинной линии, заполняемых средами в соответствии с их расположением в резервуаре, возбуждают в отрезках длинной линии электромагнитные колебания на резонансных частотах ƒ1 и ƒ2, которым соответствуют разные распределения энергии электромагнитного поля стоячей волны вдоль данных отрезков длинной линии, и измеряют эти резонансные частоты, дополнительно между параллельными наружными проводниками отрезков длинной линии возбуждают как в отрезке двухпроводной линии электромагнитные волны на фиксированной частоте, принимают на том же конце распространившиеся вдоль него и отраженные от его нижнего конца отрезка электромагнитные волны, измеряют фазовый сдвиг Δϕ этих возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ1 и ƒ2 и Δϕ, по результату которого определяют положение границы раздела веществ. 2 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения положения границы раздела двух веществ, находящихся в каком-либо резервуаре одно над другим и образующих плоскую границу раздела, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от электрофизических параметров обоих веществ.
Известны способы и устройства для измерения положения границы раздела двух веществ в резервуарах, основанные на применении отрезков длинных линий (коаксиальной линии, двухпроводной линии и др.) в качестве чувствительных элементов (Викторов В.А. Резонансный метод измерения уровня. М.: Энергия. 1969. 192 с.). Такой отрезок длинной линии размещается вертикально в емкости с контролируемыми веществами, образующими в резервуаре границу раздела. Измеряя какой-либо его информативный параметр, в частности, резонансную частоту электромагнитных колебаний, можно определить положение границы раздела двух веществ. Недостатком таких способов измерения и реализующих их устройств является невысокая точность измерения, обусловленная зависимостью результатов измерения уровня от электрофизических параметров обоих или одного из веществ, образующих границу раздела.
Известно также техническое решение (SU 460447, 10.04.1973), которое содержит описание двухканального устройства - уровнемера, в котором в двух независимых отрезках длинных линий с разными нагрузками на их на концах, образующих его измерительные каналы, возбуждаются электромагнитные колебания типа ТЕМ на основной (1-ой) гармонике. Их другие концы подсоединены к входам соответствующих вторичных преобразователей, выходы которых соединены с входом блока обработки информации, выход которого подключен к индикатору. Вдоль данных отрезков длинной линии имеет место разное распределение энергии электромагнитного поля стоячей волны, требуемое для получения информации об уровне жидкости независимо от ее электрофизических параметров. Измеряя их резонансные частоты ƒ1 и ƒ2 электромагнитных колебаний (являющиеся функциями уровня z жидкости и его диэлектрической проницаемости ε), можно найти уровень z из соотношения
Figure 00000001
где
Figure 00000002
и
Figure 00000003
- начальные (при z=0) значения ƒ1 и ƒ2. Это соотношение обладает свойством инвариантности к величине ε и ее возможным изменениям. Недостатком этого способа является невысокая точность измерения при измерении положения границы раздела двух веществ в резервуаре, с непостоянными значениями диэлектрической проницаемости вышерасположенного вещества.
Известно также техническое решение (SU 1765712 А1, 10.10.1980), по технической сущности наиболее близкое к предлагаемому способу и принятое в качестве прототипа, в котором применяют два независимых отрезка длинной линии с оконечными горизонтальными участками разной длины, располагаемых вертикально отрезок длинной линии, и заполняемых жидкостью в соответствии с ее уровнем в резервуаре. Измеряя резонансные частоты этих отрезков длинной линии или фазовые сдвиги волн фиксированной частоты после их распространения вдоль этих отрезков длинной линии и производя их совместную функциональную обработку согласно математическим соотношениям, соответствующим именно этому способу измерения, можно определить значения уровня жидкости независимо от диэлектрической проницаемости жидкости.
Недостатком этого способа также является невысокая точность измерения при измерении положения границы раздела двух веществ в резервуаре, в частности двух несмешивающихся жидкостей с разной плотностью, с непостоянными значениями электрофизических параметров вышерасположенного вещества.
Техническим результатом является повышение точности измерения положения границы раздела двух веществ в резервуаре.
Технический результат достигается тем, что в предлагаемом способе измерения положения границы раздела двух веществ в резервуаре, содержащем два вещества, одно над другим, образующие плоскую горизонтальную границу раздела, размещают вертикально два идентичных отрезка коаксиальной длинной линии, заполняемых средами в соответствии с их расположением в резервуаре, возбуждают в отрезках длинной линии электромагнитные колебания на резонансных частотах ƒ1 и ƒ2, которым соответствуют разные распределения энергии электромагнитного поля стоячей волны вдоль данных отрезков длинной линии, и измеряют эти резонансные частоты, дополнительно между параллельными наружными проводниками отрезков коаксиальной длинной линии возбуждают как в отрезке двухпроводной длинной линии электромагнитные волны на фиксированной частоте, принимают на том же конце распространившиеся вдоль него и отраженные от его нижнего конца отрезка электромагнитные волны, измеряют фазовый сдвиг Δϕ этих возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ1 и ƒ2 и Δϕ, по результату которого определяют положение границы раздела веществ независимо от значений электрофизических параметров обоих веществ, образующих границу раздела.
Предлагаемый способ поясняется чертежами на фиг. 1 и фиг. 2.
На фиг. 1 приведена схема устройства для реализации способа.
На фиг. 2 показано распределение напряженности электрического поля стоячей волны вдоль отрезков коаксиальной длинной линии.
Здесь показаны контролируемые вещества 1 и 2, отрезки коаксиальной длинной линии 3 и 4, отрезок двухпроводной длинной линии 5, электронные блоки 6 и 7, вычислительный блок 8, регистратор 9, электронный блок 10.
Способ реализуется следующим образом.
В резервуаре, содержащем расположенные одно над другим вещества 1 и 2, образующие плоскую границу раздела, размещают вертикально два идентичных отрезка коаксиальной длинной линии 3 и 4 (фиг. 1). Координата z границы раздела веществ 1 и 2, подлежащая определению, отсчитывается от нижних концов отрезков длинной линии; считается, что нижний конец каждого отрезка длинной линии совмещен с дном емкости.
Третий отрезок длинной линии 5 - двухпроводной длинной линии - образован наружными проводниками отрезков коаксиальной длинной линии 3 и 4. Отрезки коаксиальной длинной линий 3 и 4 имеют разные нагрузочные сопротивления на их концах. Это обеспечивает отличие друг от друга двух зависимостей соответствующих резонансных частот ƒ1 и ƒ2 отрезков длинной линии от координаты z границы раздела двух веществ. Между параллельными наружными проводниками отрезков коаксиальной длинной линии - отрезке двухпроводной длинной линии 5 осуществляют с его торца с помощью электронного блока 10 возбуждают электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн. При этом, при совместной функциональной обработке ƒ1, ƒ2 и Δϕ за счет наличия трех отрезков длинной линии, устраняется недостаток способа-прототипа - зависимость результатов измерения значения z от электрофизических параметров обоих веществ, образующих границу раздела.
Для осуществления способа измерения с использованием указанных двух отрезков коаксиальной длинной линии 3 и 4, являющихся резонаторами, возможна, в частности, следующая реализация устройства для этой цели. Один из отрезков однородной коаксиальной длинной линии 3 выполняют короткозамкнутым на нижнем конце (в этом случае реактивное сопротивление нагрузки равно нулю) и разомкнутым на верхнем конце, другой отрезок однородной коаксиальной длинной линии 4 выполняют разомкнутым на нижнем конце (в этом случае реактивное сопротивление нагрузки равно бесконечности) (фиг. 1). Третий отрезок длинной линии - отрезок двухпроводной длинной линии 5, образованный наружными проводниками отрезков коаксиальной длинной линии 3 и 4, разомкнут на нижнем конце
С помощью высокочастотных генераторов, входящего в состав электронных блоков 6 и 7, соответственно, в отрезках коаксиальной длинной линии 3 и 4 возбуждают электромагнитные колебания основного ТЕМ-типа на резонансных частотах ƒ1 и ƒ2, соответственно. В этих же электронных блоках осуществляют также измерение соответствующих резонансных частот ƒ1 и ƒ2. Далее осуществляют в вычислительном блоке 8 совместное преобразование ƒ1, ƒ2 и Δϕ с целью определения положения границы раздела двух веществ 1 и 2 в емкости независимо от значений диэлектрической проницаемости обоих веществ 1 и 2. С выхода вычислительного блока 8 данные о текущем значении положения границы раздела двух веществ 1 и 2 поступают в регистратор 9.
Распределение напряженности электрического поля стоячей волны в этих четвертьволновых отрезках коаксиальной длинной линии 3 и 4 показано на фиг. 2 соответствующими линиями a и b (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С. 50-59).
Будем считать, что содержащиеся в резервуаре вещества 1 и 2 являются диэлектрическими веществами, характеризуемыми величинами относительных диэлектрических проницаемостей ε1 и ε2, соответственно, вышерасположенного и нижерасположенного веществ.
Для отрезков длинной линии, длина каждого из которых имеет длину
Figure 00000004
и возбуждаемых на, соответственно, резонансных частотах ƒ1 и ƒ2 электромагнитных колебаний, зависимость ƒ1 и ƒ2 от координаты z границы раздела двух веществ можно выразить следующими соотношениями:
Figure 00000005
Figure 00000006
где
Figure 00000007
,
Figure 00000008
- начальные (при отсутствии в резервуаре обоих веществ, образующих границу раздела) значения ƒ1 и ƒ2, соответственно; ε1 и ε2 - диэлектрическая проницаемость вышерасположенного и нижерасположенного веществ, соответственно;
Figure 00000009
U1(ξ) и U2(ξ) - напряжение в точке с координатой ξ соответствующего отрезка линии, возбуждаемого на резонансных частотах ƒ1 и ƒ2, соответственно.
Если отрезок длинной линии короткозамкнут на нижнем конце и разомкнут на верхнем конце (в нем электромагнитные колебания возбуждают на резонансной частоте ƒ1), то в этом случае распределение напряжения вдоль него на основном типе колебаний, возбуждаемом в этом отрезке длинной линии, определяется следующим образом:
Figure 00000010
Тогда
Figure 00000011
Если отрезок длинной линии разомкнут на нижнем конце и короткозамкнут на верхнем конце (в нем электромагнитные колебания возбуждают на резонансной частоте ƒ2), то в этом случае распределение напряжения вдоль него на основном типе колебаний, возбуждаемом в этом отрезке длинной линии, определяется следующим образом:
Figure 00000012
Тогда
Figure 00000013
В результате будем иметь:
Figure 00000014
Figure 00000015
Между параллельными наружными проводниками отрезков коаксиальной длинной линии 3 и 4 как в отрезке двухпроводной длинной линии 5 с его торца с помощью электронного блока 10 возбуждают электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн.
Для фазового сдвига Δϕ возбуждаемой на фиксированной частоте F электромагнитной волны и распространившейся вдоль отрезка двухпроводной длинной линии 5 и электромагнитной волны, отраженной от противоположного (нижнего) конца отрезка длинной линии и принимаемой на том же конце, где производим возбуждение волны, в данном случае - при наличии в емкости двух веществ, образующих границу раздела, будем иметь (это вытекает, например, из сведений в монографии: Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С. 73-74):
Figure 00000016
где z - координата границы раздела между двумя веществами, отсчитываемые от нижнего конца отрезка длинной линии, где координата z=0; Δϕ0 - фазовый сдвиг фиксированной величины, обусловленный отражением от нагрузки на конце отрезка длинной линии.
Фазовый сдвиг Δϕ0 имеет следующее значение: Δϕ0=π-2arctg(Xн/W). Здесь XH - реактивное нагрузочное сопротивление, W - волновое сопротивление отрезка длинной линии. Для короткозамкнутого на конце отрезка длинной линии имеем Δϕ0=π. Для разомкнутого на конце отрезка длинной линии, который в дальнейшем и будем здесь рассматривать, Δϕ0=0.
Рассматривая соотношения (1), (2) и (9) как систему уравнений относительно трех неизвестных ε1, ε2 и z, в результате ее решения находим их значения. Из совместного преобразования соотношений (1) и (2) следует:
Figure 00000017
Figure 00000018
Подставив эти найденные значения ε1 и ε2 в соотношение (9), записанное для отрезка двухпроводной длинной линии, разомкнутого на нижнем конце (при этом Δϕ0=0) получим следующее соотношение для определения z, которое является инвариантом относительно ε1 и ε2:
Figure 00000019
В соотношении (12) информация об измеряемой величине z содержится в неявном виде. Следовательно, производя согласно соотношению (12) совместное функциональное преобразование значений величин ƒ1, ƒ2 и Δϕ, поступающих с трех отрезков длинной линии 3, 4 и 5 в вычислительный блок 8 устройства, реализующего данный способ измерения, можно определить текущее значение величины z независимо от значений величин ε1 и ε2.
В вышеприведенных формулах следует использовать вместо ε1 и ε2 значения эффективной диэлектрической проницаемости εэфф1 и εэфф2, соответственно, при применении отрезков длинной линии, по меньшей мере, один из проводников каждого из которых покрыт диэлектрической оболочкой определенной толщины (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С. 125-131). В этом случае возможно измерение положения границы раздела двух веществ с произвольными электрофизическими параметрами (диэлектрической проницаемости, электропроводности) независимо от их значений для обоих веществ и возможных изменений в процессе измерения.
Таким образом, данный способ позволяет определять положение границы раздела двух веществ в резервуаре независимо от электрофизических параметров обоих веществ, образующих границу раздела.

Claims (1)

  1. Способ измерения положения границы раздела двух веществ в резервуаре, содержащем два вещества, одно над другим, образующие плоскую горизонтальную границу раздела, в котором размещают вертикально два идентичных отрезка коаксиальной длинной линии, заполняемых средами в соответствии с их расположением в резервуаре, возбуждают в отрезках длинной линии электромагнитные колебания на резонансных частотах ƒ1 и ƒ2, которым соответствуют разные распределения энергии электромагнитного поля стоячей волны вдоль данных отрезков длинной линии, и измеряют эти резонансные частоты, отличающийся тем, что дополнительно между параллельными наружными проводниками отрезков коаксиальной длинной линии возбуждают, как в отрезке двухпроводной длинной линии, электромагнитные волны на фиксированной частоте, принимают на том же конце распространившиеся вдоль него и отраженные от его нижнего конца отрезка электромагнитные волны, измеряют фазовый сдвиг Δϕ этих возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ1 и ƒ2 и Δϕ, по результату которого определяют положение границы раздела веществ независимо от значений электрофизических параметров обоих веществ, образующих границу раздела.
RU2019109835A 2019-04-03 2019-04-03 Способ измерения положения границы раздела двух веществ в резервуаре RU2706455C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019109835A RU2706455C1 (ru) 2019-04-03 2019-04-03 Способ измерения положения границы раздела двух веществ в резервуаре

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019109835A RU2706455C1 (ru) 2019-04-03 2019-04-03 Способ измерения положения границы раздела двух веществ в резервуаре

Publications (1)

Publication Number Publication Date
RU2706455C1 true RU2706455C1 (ru) 2019-11-19

Family

ID=68579934

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019109835A RU2706455C1 (ru) 2019-04-03 2019-04-03 Способ измерения положения границы раздела двух веществ в резервуаре

Country Status (1)

Country Link
RU (1) RU2706455C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2752555C1 (ru) * 2020-11-20 2021-07-29 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ определения положения границы раздела двух жидкостей в резервуаре
RU2768556C1 (ru) * 2021-03-15 2022-03-24 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для измерения уровня жидкости в резервуаре

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1744502A1 (ru) * 1990-04-19 1992-06-30 Институт проблем управления Способ определени уровн вещества
SU1765712A1 (ru) * 1990-10-10 1992-09-30 Институт проблем управления Устройство дл определени уровн вещества
US5675259A (en) * 1995-09-14 1997-10-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for measuring fluid flow
US9081087B2 (en) * 2007-12-13 2015-07-14 Endress + Hauser Gmbh + Co. Kg Method for ascertaining and/or evaluating fill-state of a container containing at least one medium
EP3329227A1 (de) * 2015-07-30 2018-06-06 Endress+Hauser SE+Co. KG VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG ZUMINDEST EINER PROZESSGRÖßE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1744502A1 (ru) * 1990-04-19 1992-06-30 Институт проблем управления Способ определени уровн вещества
SU1765712A1 (ru) * 1990-10-10 1992-09-30 Институт проблем управления Устройство дл определени уровн вещества
US5675259A (en) * 1995-09-14 1997-10-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for measuring fluid flow
US9081087B2 (en) * 2007-12-13 2015-07-14 Endress + Hauser Gmbh + Co. Kg Method for ascertaining and/or evaluating fill-state of a container containing at least one medium
EP3329227A1 (de) * 2015-07-30 2018-06-06 Endress+Hauser SE+Co. KG VORRICHTUNG ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG ZUMINDEST EINER PROZESSGRÖßE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2752555C1 (ru) * 2020-11-20 2021-07-29 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ определения положения границы раздела двух жидкостей в резервуаре
RU2768556C1 (ru) * 2021-03-15 2022-03-24 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для измерения уровня жидкости в резервуаре

Similar Documents

Publication Publication Date Title
RU2647182C1 (ru) Способ измерения положения границы раздела двух сред в емкости
JP2004514876A (ja) 流体レベル測定装置および方法
RU2706455C1 (ru) Способ измерения положения границы раздела двух веществ в резервуаре
RU2626409C1 (ru) Способ измерения физических свойств жидкости
RU2473889C1 (ru) Способ измерения физической величины
RU2702698C1 (ru) Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости
RU2698575C1 (ru) Способ измерения положения границы раздела двух веществ в резервуаре
RU2578749C1 (ru) Способ определения положения границы раздела двух веществ в емкости
RU2752555C1 (ru) Способ определения положения границы раздела двух жидкостей в резервуаре
RU2473052C1 (ru) Устройство для измерения уровня диэлектрической жидкости в емкости
RU2534747C1 (ru) Устройство для измерения физических свойств жидкости в емкости
RU2753830C1 (ru) Способ измерения положения границы раздела двух жидкостей в емкости
RU2426076C1 (ru) Устройство для измерения уровня жидкости
RU2774218C1 (ru) Способ измерения положения границы раздела двух диэлектрических сред в резервуаре
RU2757759C1 (ru) Способ измерения положения границы раздела двух диэлектрических сред в емкости
RU2434229C1 (ru) Устройство для измерения физических свойств жидкости
RU2647186C1 (ru) Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости
RU2757472C1 (ru) Способ определения уровня жидкости в емкости
RU2645836C1 (ru) Способ определения уровня жидкости в емкости
RU2768556C1 (ru) Устройство для измерения уровня жидкости в резервуаре
RU2424508C1 (ru) Устройство для измерения физических свойств жидкости
RU2794447C1 (ru) Устройство для измерения уровня диэлектрической жидкости в емкости
RU2791866C1 (ru) Устройство для измерения положения границы раздела двух диэлектрических сред в емкости
RU2536184C1 (ru) Концентратомер
RU2776192C1 (ru) Способ измерения уровня диэлектрической жидкости в емкости