RU2412147C2 - Способ рекуперации водорода и метана из потока крекинг-газа в низкотемпературной части установки для получения этилена - Google Patents

Способ рекуперации водорода и метана из потока крекинг-газа в низкотемпературной части установки для получения этилена Download PDF

Info

Publication number
RU2412147C2
RU2412147C2 RU2008119407/04A RU2008119407A RU2412147C2 RU 2412147 C2 RU2412147 C2 RU 2412147C2 RU 2008119407/04 A RU2008119407/04 A RU 2008119407/04A RU 2008119407 A RU2008119407 A RU 2008119407A RU 2412147 C2 RU2412147 C2 RU 2412147C2
Authority
RU
Russia
Prior art keywords
section
separator
fed
methane
condensate
Prior art date
Application number
RU2008119407/04A
Other languages
English (en)
Other versions
RU2008119407A (ru
Inventor
Тат Фам ДУК (DE)
Тат Фам ДУК
Хольгер ШМИГАЛЛЕ (DE)
Хольгер ШМИГАЛЛЕ
Роланд ВАЛЬЦЛЬ (DE)
Роланд Вальцль
Original Assignee
Линде Акциенгезельшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Линде Акциенгезельшафт filed Critical Линде Акциенгезельшафт
Publication of RU2008119407A publication Critical patent/RU2008119407A/ru
Application granted granted Critical
Publication of RU2412147C2 publication Critical patent/RU2412147C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/09Purification; Separation; Use of additives by fractional condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/12Refinery or petrochemical off-gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/62Ethane or ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/32Compression of the product stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/40Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к способу рекуперации водорода и метана из потока крекинг-газа в низкотемпературной части установки для получения этилена, заключающемуся в том, что фракцию С2, поступающую из устройства отделения этана (деэтанизатора), подают через теплообменник (Е1) в первую секцию (А) многосекционного отделителя (D1) конденсата, конденсат отбирают из первой секции (А) многосекционного отделителя (D1) конденсата и подают в отделитель (Т1) метана, газ из многосекционного отделителя (D1) конденсата подают в следующий теплообменник (Е2) и дополнительно охлаждают в нем, дополнительно охлажденный газ подают на отделение от него жидкости во второй секции (В) многосекционного отделителя (D1) конденсата, образовавшийся при этом конденсат вновь подают в отделитель (Т1) метана, газ из второй секции (В) многосекционного отделителя (D1) конденсата подают в расширитель (X1), расширяют в нем и затем подают в отделитель (Т1) метана и фракцию С2 из низа отделителя (Т1) метана дросселируют с понижением ее давления до давления, преобладающего в колонне для отгонки углеводородов С2, частично испаряют в теплообменнике (Е1) и подают в колонну для отгонки углеводородов С2. Применение настоящего способа позволяет существенно снизить энергопотребление при одновременном снижении капиталовложений. 2 з.п. ф-лы, 2 ил.

Description

Настоящее изобретение относится к способу рекуперации водорода и метана из потока крекинг-газа в низкотемпературной части установки для получения этилена.
Установки для получения этилена обычно имеют систему подачи нефтяного сырья или природного газа, крекинг-печь для расщепления длинных цепей этих веществ, а также различное оборудование для фракционирования и последующего химического превращения продуктов. В низкотемпературной части фракцию С2-, поступающую из процесса гидрирования, обычно ступенчато охлаждают до отделения большей части содержащихся в крекинг-газе углеводородов С2 от водорода и метана. Углеводороды С2, оставшиеся в водородно-метановой фракции, отделяют, например, в так называемом абсорбере углеводородов С2 (например, в абсорбере конструктивной серии Т4002 фирмы Linde). Для уменьшения нагрузки на отделитель метана (например, отделитель конструктивной серии Т4101) накапливающиеся в процессе охлаждения конденсаты обычно направляют в предварительный отделитель метана (например, отделитель конструктивной серии Т4001). В этом предварительном отделителе частично удаляют растворенный водород и метан (отпариванием). Обычный предварительный отделитель метана имеет три зоны или секции, в которых частично сконденсированный поток углеводородов С2- разделяют после каждой стадии охлаждения на его газовую и жидкую фазы. Конденсаты из выше расположенных секций предварительного отделителя метана поступают в следующую ниже расположенную секцию, благодаря чему создается барьер для газа, поступающего из ниже расположенных секций. Низ предварительного отделителя метана сообщается с отделителем метана (например, отделителем конструктивной серии Т4101), в котором от фракции С2 отделяют (отпариванием) оставшийся растворенный водород и оставшийся метан. Продукт, отбираемый из низа отделителя метана, затем обычно подают в разделительную колонну для отделения углеводородов С2 (колонну для отгонки углеводородов С2). Отбираемый с верха абсорбера углеводородов С2 поток не содержит углеводороды С2. Он содержит только водород и метан и после двухступенчатого расширения в так называемых расширителях (детандерах) остаточного газа (например, расширителях конструктивной серии Х4001/Х4002) подается в противоточные теплообменники в низкотемпературной части установки для получения этилена и в предварительном холодильнике для регенерации тепла.
После повторного сжатия в узле повышения давления остаточного газа его подают в систему регенерации и систему сжигания горючего газа. Продукт, отбираемый из низа абсорбера углеводородов С2, возвращают в качестве флегмы в предварительный отделитель метана (например, отделитель конструктивной серии Т4001). Пример подобной известной из уровня установки для получения этилена показан на схеме, приведенной на фиг.1. На этой схеме показаны также следующие потоки:
10: исходный поток, поступающий из процесса гидрирования,
11: поток на предварительное охлаждение,
12: поток в колонну для отгонки углеводородов С2,
13: поток остаточного газа после предварительного охлаждения и
14: поток остаточного газа в систему сжигания горючего газа.
В основу настоящего изобретения была положена задача усовершенствовать процесс отделения водорода и метана от углеводородов С2 в низкотемпературной части установки для получения этилена, снизив при этом расход необходимой на это энергии и уменьшив связанные с этим затраты по сравнению с известным уровнем техники.
Эта задача решается с помощью способа рекуперации водорода и метана из потока крекинг-газа в низкотемпературной части установки для получения этилена, заключающегося в том, что
- фракцию C2, поступающую из устройства отделения этана (деэтанизатора), подают через теплообменник (Е1), где ее охлаждают примерно до -57°С, в первую секцию (А) многосекционного отделителя (D1) конденсата,
- конденсат отбирают из первой секции (А) многосекционного отделителя (D1) конденсата и подают в отделитель (Т1) метана,
- газ из многосекционного отделителя (D1) конденсата подают в следующий теплообменник (Е2) и дополнительно охлаждают в нем примерно до -77°С,
- дополнительно охлажденный газ подают на отделение от него жидкости во второй секции (В) многосекционного отделителя (D1) конденсата,
- образовавшийся при этом конденсат вновь подают в отделитель (Т1) метана,
- газ из второй секции (В) многосекционного отделителя (D1) конденсата подают в расширитель (X1), расширяют в нем и затем подают в отделитель (Т1) метана и
- фракцию C2 из низа отделителя (Т1) метана дросселируют с понижением ее давления до давления, преобладающего в колонне для отгонки углеводородов С2, частично испаряют в теплообменнике (Е1) и подают в колонну для отгонки углеводородов С2.
При осуществлении может использоваться рекуперационная система, предназначенная для рекуперации водорода и метана из потока крекинг-газа в низкотемпературной части установки для получения этилена и имеющая следующие компоненты:
- интегрированный многосекционный отделитель конденсата,
- абсорбер углеводородов С2,
- расширитель водорода/метана и
- колонну низкого давления (деметанизатор) для отделения углеводородов С12,
при этом многосекционный отделитель конденсата имеет по меньшей мере две разные секции, в которые подаются потоки крекинг-газа разного состава. Подобный многосекционный отделитель конденсата можно рассматривать как комбинацию из конденсатора газа и дистилляционного аппарата для отделения водорода и метана. Многосекционный отделитель конденсата можно выполнить, например, в виде барабана с тремя секциями (А, В и С), в каждой из которых разделение газа и жидкости происходит при иной температуре.
Отделитель (Т1) метана в предпочтительном варианте работает при давлении примерно 13 бар. В него подают потоки конденсата из многосекционного отделителя (D1) конденсата и из расширителя (X1). Нижний продукт для отделения от него метана вновь доводят до кипения путем конденсации этилена высокого давления из третьей ступени компрессора этилена. Из верхней части колонны отбирают два газообразных боковых потока, которые дополнительно охлаждают в теплообменнике (Е3) примерно до -150°С. Теплообменник (Е3) служит своего рода боковым конденсатором, в котором конденсируются все присутствующие в газовой фазе углеводороды С2. Этот теплообменник или боковой конденсатор расположен у верхнего конца колонны, что обеспечивает возможность обратного стекания в нее конденсата под действием силы тяжести, т.е. самотеком. Внутри колонны размещено два жидкостных (гидравлических) барьера (сифона), которые допускают стекание жидкости вниз, но не допускают прохождение газа вверх. Поток, отбираемый с верха колонны и представляющий собой фракцию остаточного газа, подается в расширитель, в котором он расширяется с понижением его давления до примерно 5 бар, и может выполнять функцию охладителя в теплообменнике (Е3).
Рабочую энергию расширителей X1 и Х2 (в Х2 давление газового потока из верхней части отделителя метана понижается примерно до 5 бар) регенерируют для повторного сжатия потока остаточного газа.
Все теплообменники можно разместить в теплоизолированном кожухе, связанное с чем преимущество состоит в возможности предварительного изготовления такого теплоизолированного кожуха и тем самым в снижении расходов на сооружение установки непосредственно на месте ее монтажа.
Согласно изобретению наиболее предпочтительно использовать многосекционный отделитель (D1) конденсата, имеющий более двух секций (А, В). Газовый поток, оставшийся после отделения во второй секции (В) многосекционного отделителя (D1) конденсата, дополнительно охлаждают примерно до -97°С и подают в третью секцию (С) многосекционного отделителя (D1) конденсата, а газ из третьей секции (С) многосекционного отделителя (D1) конденсата подают в расширитель (X1), расширяют в нем с понижением давления примерно до 13 бар и охлаждением примерно до -117°С и затем подают в отделитель (Т1) метана, который работает в диапазоне давлений от 11 до 14 бар.
В одном из предпочтительных вариантов осуществления изобретения предлагается использовать многосекционный отделитель (D1) конденсата с четырьмя или более секциями (А, В, С,…).
Изобретение наиболее пригодно для отделения и рекуперации углеводородов С2 из потока углеводородов С2- в установке для получения этилена из этана либо этана/пропана в качестве исходного сырья для крекинга.
Ниже изобретение, а также другие варианты его осуществления более подробно рассмотрены на примере одного из вариантов его осуществления со ссылкой на фиг.2.
На фиг.2 показана схема предлагаемого в изобретении устройства с уже описанными выше компонентами. На этой схеме используются следующие условные обозначения и позиции:
20: поток углеводородов С2 из отделителя этана (деэтанизатора),
21: поток углеводородов С2 в колонну для отгонки углеводородов С2,
22а, 22b, 22с: потоки остаточного газа,
23: поток этана,
E1, E2 и Е3: теплообменники,
24: теплоизолированный кожух, в котором размещены теплообменники Е1, E2 и Е3,
25: холодоноситель,
D1: многосекционный отделитель конденсата,
X1, Х2: расширители и
Т1: отделитель метана.
Настоящее изобретение обладает целым рядом следующих преимуществ.
Предлагаемое в изобретении решение позволяет существенно снизить по сравнению с известным уровнем техники энергопотребление при одновременном уменьшении капиталовложений. Для реализации изобретения требуется меньшее количество отдельных узлов (например, не требуется использовать насосы для перекачки холодных сред), что позволяет снизить капитальные вложения, расходы на техническое обслуживание и потребление эксплуатационных материалов. Достижение этих преимуществ обеспечивается благодаря многократному пропусканию газовых потоков разного состава через многосекционный отделитель конденсата.
Помимо этого, интеграция расширителя остаточного газа позволяет отказаться от применения отдельного компрессора метана с обеспечением в результате дополнительной экономии средств.
Настоящее изобретение позволяет добиться высокой степени рекуперации этилена. Соединение отделителя метана с теплообменниками E2 и Е3 и расширителями X1 и Х2 обладает преимуществом так называемой технологии реконтактора, что обеспечивает исключительно высокую степень рекуперации. Потери этилена с потоком остаточного газа составляют, например, примерно 300 част./млн или 27 кг/ч, что соответствует примерно 0,035% от объема производства этилена.
Еще одно преимущество настоящего изобретения заключается в достижении высокой чистоты получаемого этилена. В сочетании с предварительно проводимой рекуперацией углеводородов С3+ и с превращением ацетилена исходный поток, поступающий в криогенную часть, не содержит никакого материала, который мог бы привести к загрязнению или закупорке тех или иных частей установки, благодаря чему появляется бескомпромиссная возможность использования ребристых пластинчатых теплообменников и полностью сварных колонн и трубопроводных систем. При этом для снижения затрат на сооружение установки по месту ее расположения возможно даже использование теплоизолированного кожуха предварительно разработанной и изготовленной конструкции.
Преимущество изобретения состоит также в использовании особо простой системы управления и регулирования. В установке по существу достаточно использовать два регулирующих клапана, через которые газ поступает в турбодетандеры. Конденсаты из многосекционного отделителя D1 конденсата подают в колонну через регулятор уровня. Работа (теплопроизводительность) кипятильника (ребойлера) регулируется в зависимости от температуры колонны.
Следующее преимущество изобретения состоит в высоком по сравнению с другими системами коэффициенте использования низкотемпературной части установки. Низкотемпературная часть не имеет насосов и требует лишь небольшого технического обслуживания. Применение насосов прежде всего при очень низких температурах потребовало бы значительных капиталовложений, а сами такие насосы были бы исключительно ненадежными в работе.
При выходе из строя одного из расширителей установка способна и далее эффективно работать без существенных сбоев. В этом случае поток газа расширяют пропусканием через байпасный клапан, что при выходе из строя одного из расширителей приводит к возрастанию потерь этилена с потоком остаточного газа до нескольких сотен кг/ч. При выходе же из строя обоих расширителей потери этилена возрастает лишь до нескольких т/ч.
В заключение необходимо еще раз отметить, что особое преимущество, связанное с простотой и компактностью конструкции предлагаемого в изобретении устройства, не в последнюю очередь состоит в значительном сокращении необходимых капиталовложений. Уменьшение количества частей установки позволяет уменьшить необходимое для ее размещения пространство, минимизировать тепловые потери в процессах охлаждения и использовать предварительно изготовленный теплоизолированный кожух.

Claims (3)

1. Способ рекуперации водорода и метана из потока крекинг-газа в низкотемпературной части установки для получения этилена, заключающийся в том, что
фракцию С2, поступающую из устройства отделения этана (деэтанизатора), подают через теплообменник (Е1) в первую секцию (А) многосекционного отделителя (D1) конденсата,
конденсат отбирают из первой секции (А) многосекционного отделителя (D1) конденсата и подают в отделитель (Т1) метана,
газ из многосекционного отделителя (D1) конденсата подают в следующий теплообменник (Е2) и дополнительно охлаждают в нем,
дополнительно охлажденный газ подают на отделение от него жидкости во второй секции (В) многосекционного отделителя (D1) конденсата,
образовавшийся при этом конденсат вновь подают в отделитель (Т1) метана,
газ из второй секции (В) многосекционного отделителя (D1) конденсата подают в расширитель (X1), расширяют в нем и затем подают в отделитель (Т1) метана, и
фракцию С2 из низа отделителя (Т1) метана дросселируют с понижением ее давления до давления, преобладающего в колонне для отгонки углеводородов С2, частично испаряют в теплообменнике (Е1) и подают в колонну для отгонки углеводородов C2.
2. Способ по п.1, при осуществлении которого газовый поток, оставшийся после отделения во второй секции (В) многосекционного отделителя (D1) конденсата, перед его подачей в расширитель (X1) дополнительно охлаждают и подают в третью секцию (С) многосекционного отделителя (D1) конденсата.
3. Способ по п.1 или 2, при осуществлении которого используют многосекционный отделитель (D1) конденсата с четырьмя или более секциями (А, В, С,…).
RU2008119407/04A 2005-10-20 2006-10-06 Способ рекуперации водорода и метана из потока крекинг-газа в низкотемпературной части установки для получения этилена RU2412147C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005050388.8 2005-10-20
DE102005050388A DE102005050388A1 (de) 2005-10-20 2005-10-20 Rückgewinnungssystem für die Weiterverarbeitung eines Spaltgasstroms einer Ethylenanlage

Publications (2)

Publication Number Publication Date
RU2008119407A RU2008119407A (ru) 2009-11-27
RU2412147C2 true RU2412147C2 (ru) 2011-02-20

Family

ID=37891569

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008119407/04A RU2412147C2 (ru) 2005-10-20 2006-10-06 Способ рекуперации водорода и метана из потока крекинг-газа в низкотемпературной части установки для получения этилена

Country Status (5)

Country Link
DE (1) DE102005050388A1 (ru)
MY (1) MY146026A (ru)
NO (1) NO20082280L (ru)
RU (1) RU2412147C2 (ru)
WO (1) WO2007045364A2 (ru)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9790144B2 (en) 2015-03-17 2017-10-17 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US9944573B2 (en) 2016-04-13 2018-04-17 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
US9969660B2 (en) 2012-07-09 2018-05-15 Siluria Technologies, Inc. Natural gas processing and systems
US10047020B2 (en) 2013-11-27 2018-08-14 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US10787398B2 (en) 2012-12-07 2020-09-29 Lummus Technology Llc Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US10829424B2 (en) 2014-01-09 2020-11-10 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
US10836689B2 (en) 2017-07-07 2020-11-17 Lummus Technology Llc Systems and methods for the oxidative coupling of methane
US10865165B2 (en) 2015-06-16 2020-12-15 Lummus Technology Llc Ethylene-to-liquids systems and methods
US10894751B2 (en) 2014-01-08 2021-01-19 Lummus Technology Llc Ethylene-to-liquids systems and methods
US10960343B2 (en) 2016-12-19 2021-03-30 Lummus Technology Llc Methods and systems for performing chemical separations
US11001543B2 (en) 2015-10-16 2021-05-11 Lummus Technology Llc Separation methods and systems for oxidative coupling of methane
US11001542B2 (en) 2017-05-23 2021-05-11 Lummus Technology Llc Integration of oxidative coupling of methane processes
US11186529B2 (en) 2015-04-01 2021-11-30 Lummus Technology Llc Advanced oxidative coupling of methane
US11254626B2 (en) 2012-01-13 2022-02-22 Lummus Technology Llc Process for separating hydrocarbon compounds

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012018602A1 (de) * 2012-09-20 2014-03-20 Linde Aktiengesellschaft Anlage und Verfahren zur Herstellung von Ethylen
RU2663159C2 (ru) * 2014-01-07 2018-08-01 Линде Актингезелльшафт Способ разделения водородсодержащей углеводородной смеси, сепарационная секция и олефиновая установка
EP3282212A1 (de) 2016-08-12 2018-02-14 Linde Aktiengesellschaft Verfahren zur gewinnung eines überwiegend kohlenwasserstoffe mit zwei kohlenstoffatomen enthaltenden trennprodukts
EP3550240A1 (de) * 2018-04-06 2019-10-09 Linde Aktiengesellschaft Verfahren zur trennung eines komponentengemischs und trenneinrichtung
RU2703132C1 (ru) * 2018-09-03 2019-10-15 Андрей Владиславович Курочкин Установка низкотемпературной сепарации с дефлегмацией нтсд для получения углеводородов с2+ из природного газа (варианты)
CN109000429B (zh) * 2018-10-15 2020-12-25 聊城市鲁西化工工程设计有限责任公司 一种二氧化碳液化装置及工艺
RU2703135C1 (ru) * 2019-03-07 2019-10-15 Игорь Анатольевич Мнушкин Газохимический комплекс

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257794A (en) * 1979-07-20 1981-03-24 Shirokov Vasily I Method of and apparatus for separating a gaseous hydrocarbon mixture
US4720293A (en) * 1987-04-28 1988-01-19 Air Products And Chemicals, Inc. Process for the recovery and purification of ethylene
US5452581A (en) * 1994-04-01 1995-09-26 Dinh; Cong X. Olefin recovery method
DE4417584A1 (de) * 1994-05-19 1995-11-23 Linde Ag Verfahren zur Trennung von C¶2¶/C¶3¶-Kohlenwasserstoffen in Ethylenanlagen
EA000800B1 (ru) * 1996-03-26 2000-04-24 Филлипс Петролеум Компани Способ извлечения конденсацией и отгонкой ароматических и/или высокомолекулярных углеводородов из сырья на основе метана и устройство для его осуществления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ХИМИЧЕСКАЯ ЭНЦИКЛОПЕДИЯ, Т.2. /ПОД РЕД. И.Л.КНУНЯНЦА. - М.: ИЗДАТЕЛЬСТВО «СОВЕТСКАЯ ЭНЦИКЛОПЕДИЯ», 1990, СТОЛБЦЫ 890-894. *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254626B2 (en) 2012-01-13 2022-02-22 Lummus Technology Llc Process for separating hydrocarbon compounds
US9969660B2 (en) 2012-07-09 2018-05-15 Siluria Technologies, Inc. Natural gas processing and systems
RU2664802C2 (ru) * 2012-07-09 2018-08-22 Силурия Текнолоджиз, Инк. Способы и системы переработки природного газа
US11242298B2 (en) 2012-07-09 2022-02-08 Lummus Technology Llc Natural gas processing and systems
US10787398B2 (en) 2012-12-07 2020-09-29 Lummus Technology Llc Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US11168038B2 (en) 2012-12-07 2021-11-09 Lummus Technology Llc Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US10927056B2 (en) 2013-11-27 2021-02-23 Lummus Technology Llc Reactors and systems for oxidative coupling of methane
US11407695B2 (en) 2013-11-27 2022-08-09 Lummus Technology Llc Reactors and systems for oxidative coupling of methane
US10047020B2 (en) 2013-11-27 2018-08-14 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US10894751B2 (en) 2014-01-08 2021-01-19 Lummus Technology Llc Ethylene-to-liquids systems and methods
US11254627B2 (en) 2014-01-08 2022-02-22 Lummus Technology Llc Ethylene-to-liquids systems and methods
US11008265B2 (en) 2014-01-09 2021-05-18 Lummus Technology Llc Reactors and systems for oxidative coupling of methane
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US11208364B2 (en) 2014-01-09 2021-12-28 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
US10829424B2 (en) 2014-01-09 2020-11-10 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
US9790144B2 (en) 2015-03-17 2017-10-17 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US11542214B2 (en) 2015-03-17 2023-01-03 Lummus Technology Llc Oxidative coupling of methane methods and systems
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US10787400B2 (en) 2015-03-17 2020-09-29 Lummus Technology Llc Efficient oxidative coupling of methane processes and systems
US11186529B2 (en) 2015-04-01 2021-11-30 Lummus Technology Llc Advanced oxidative coupling of methane
US10865165B2 (en) 2015-06-16 2020-12-15 Lummus Technology Llc Ethylene-to-liquids systems and methods
US11001543B2 (en) 2015-10-16 2021-05-11 Lummus Technology Llc Separation methods and systems for oxidative coupling of methane
US10870611B2 (en) 2016-04-13 2020-12-22 Lummus Technology Llc Oxidative coupling of methane for olefin production
US10407361B2 (en) 2016-04-13 2019-09-10 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
US9944573B2 (en) 2016-04-13 2018-04-17 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
US11505514B2 (en) 2016-04-13 2022-11-22 Lummus Technology Llc Oxidative coupling of methane for olefin production
US10960343B2 (en) 2016-12-19 2021-03-30 Lummus Technology Llc Methods and systems for performing chemical separations
US11001542B2 (en) 2017-05-23 2021-05-11 Lummus Technology Llc Integration of oxidative coupling of methane processes
US10836689B2 (en) 2017-07-07 2020-11-17 Lummus Technology Llc Systems and methods for the oxidative coupling of methane

Also Published As

Publication number Publication date
NO20082280L (no) 2008-05-19
WO2007045364A2 (de) 2007-04-26
RU2008119407A (ru) 2009-11-27
DE102005050388A1 (de) 2007-04-26
MY146026A (en) 2012-06-15
WO2007045364A3 (de) 2007-06-07

Similar Documents

Publication Publication Date Title
RU2412147C2 (ru) Способ рекуперации водорода и метана из потока крекинг-газа в низкотемпературной части установки для получения этилена
US7856848B2 (en) Flexible hydrocarbon gas separation process and apparatus
KR101619563B1 (ko) 탄화수소 가스 처리
CA1097564A (en) Process for the recovery of ethane and heavier hydrocarbon components from methane-rich gases
EP0675190B1 (en) Olefin recovery method
EA003854B1 (ru) Способ разделения газового потока (варианты)
KR20120028372A (ko) 탄화수소 가스 처리 방법
SA110310707B1 (ar) معالجة غاز هيدروكربونى
NO328700B1 (no) Kryogenisk prosess som benytter en hoytrykks absorberkolonne
MX2007000242A (es) Configuraciones y metodos para la separacion de condensados de gas a partir de mezclas de hidrocarburos a alta presion.
US8552245B2 (en) Method for treating a cracked gas stream from a hydrocarbon pyrolysis installation and installation associated therewith
JP2020522666A (ja) 炭化水素ガスの処理
KR20120026607A (ko) 탄화수소 가스 처리 방법
RU2734237C1 (ru) Установка комплексной подготовки газа путем низкотемпературной конденсации
RU2732998C1 (ru) Установка низкотемпературного фракционирования для комплексной подготовки газа с выработкой сжиженного природного газа
RU2738815C2 (ru) Переработка углеводородного газа
EA022661B1 (ru) Переработка углеводородного газа
RU2697800C2 (ru) Способы и установки для извлечения этилена из углеводородов
JP2020522665A (ja) 炭化水素ガスの処理
RU2699912C1 (ru) Установка нтдр для получения углеводородов с2+ из магистрального газа (варианты)
US11884621B2 (en) System, apparatus, and method for hydrocarbon processing
RU2640969C1 (ru) Способ извлечения сжиженных углеводородных газов из природного газа магистральных газопроводов и установка для его осуществления
US20090293537A1 (en) NGL Extraction From Natural Gas
KR101680922B1 (ko) 탄화수소 가스 처리 방법
EA023957B1 (ru) Переработка углеводородного газа