US20090293537A1 - NGL Extraction From Natural Gas - Google Patents

NGL Extraction From Natural Gas Download PDF

Info

Publication number
US20090293537A1
US20090293537A1 US12/455,124 US45512409A US2009293537A1 US 20090293537 A1 US20090293537 A1 US 20090293537A1 US 45512409 A US45512409 A US 45512409A US 2009293537 A1 US2009293537 A1 US 2009293537A1
Authority
US
United States
Prior art keywords
stream
distillation column
heat exchanger
hydrocarbon
turboexpander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/455,124
Inventor
Greg E. Ameringer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/455,124 priority Critical patent/US20090293537A1/en
Publication of US20090293537A1 publication Critical patent/US20090293537A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval

Definitions

  • the present invention generally relates to methods for extraction and recovery of natural gas liquids from a hydrocarbon gas stream.
  • the methods of the present invention more efficiently and more economically separate ethane, propane, and other hydrocarbon liquids from a hydrocarbon gas stream, i.e., from natural gas or from gases from refineries or petrochemical plants.
  • Natural gas from the wellhead is a mixture of various different gases including methane, ethane, propane, butane, etc.
  • Natural gas liquid (“NGL”) processing plants liquefy and extract these components since they are generally of greater value for purposes other than as a gaseous heating fuel.
  • C 2 , C 3 and C 4 hydrocarbons are valuable chemical intermediates and the C 3 and C 4 hydrocarbons are of greater value when separated and utilized as a liquefied petroleum gas (LPG).
  • LPG liquefied petroleum gas
  • C 5 and higher molecular weight hydrocarbons are valuable as blending stocks for motor fuels and for other purposes.
  • other components such as ethylene and propylene may be contained in gas streams obtained from refineries or from petrochemical plants that may have a higher value if extracted.
  • cryogenic turboexpander plant is the current state of the art for deep ethane recovery.
  • cryogenic refrigeration required in the process is primarily produced by the turboexpander.
  • the turboexpander is typically a major expense in the cryogenic turboexpander design.
  • NGL recovery processes There are many known NGL recovery processes that can be designed to process a specific gas composition at specific inlet conditions. However, when the feed gas composition changes, NGL recovery will typically be reduced and potential product revenue can be lost.
  • the “turndown” capability which is the ability to recover a reduced quantity of NGL's from the processed stream, is limited. In many plant designs if the quantity of NGL recovered is desired to be reduced, such as for economic reasons, the efficiency of the plant can be severely decreased. This can occur as a result of equipment such as a turboexpander or a turbine compressor that have limited operational conditions and have diminishing effectiveness below a certain RPM, for example.
  • Refrigeration schemes generally include external refrigeration cycles utilizing refrigerants, such as for example ethane or propane. In some applications, mixed refrigerants and cascade refrigeration cycles have been used. An external refrigeration cycle can be a major expense in a NGL recovery process. Refrigeration can also be provided by turboexpansion or work expansion of the compressed gas feed.
  • Embodiments of the present invention generally include processes for NGL extraction from a hydrocarbon gas stream wherein the need for a turboexpander is eliminated and the required process refrigeration is produced by expansion of the NGL liquid product.
  • the process may herein be referred to as the SRNE (Self Refrigeration No Expander) process.
  • the liquid NGL is vaporized and passes through a heat exchanger to chill the inlet gas to the necessary cryogenic temperature.
  • the NGL product vapor exiting the heat exchanger is then compressed to a higher pressure and condensed to produce the desired liquid NGL product.
  • One embodiment of the present invention is a process for the separation of C 2 + or C 3 + hydrocarbons from a hydrocarbon-containing gas feed under pressure.
  • the process includes cooling a first stream of hydrocarbon gas in a first heat exchanger and introducing the cooled first stream into a distillation column at one or more feed trays.
  • the column has a plurality of liquid recovery trays for condensing hydrocarbon liquids in said recovery trays.
  • a vapor hydrocarbon stream is withdrawn from an upper portion of the column having a reduced content of C 2 + or C 3 + hydrocarbons.
  • a liquid NGL hydrocarbon stream is withdrawn from a lower portion of said column having an increased content of C 2 + or C 3 + hydrocarbons.
  • the pressure of the NGL liquid hydrocarbon stream is reduced to vaporize the NGL and generate cold energy and the vaporized NGL stream passes through the first heat exchanger to chill the first stream of hydrocarbon gas.
  • the process can further comprise passing a portion of the vapor hydrocarbon stream from an upper portion of said column through the first heat exchanger.
  • a portion of the first stream of hydrocarbon gas can be diverted through a second heat exchanger to provide reboiler duty to the column.
  • the first heat exchanger can provide heat duty to a side reboiler of the column.
  • the column can be operated with a bottom temperature of 0° F. to 250° F. and a top temperature of ⁇ 160° F. to 0° F. and at a pressure of 150 psia to 700 psia.
  • Embodiments of the process does not include a turboexpander, or optionally the process includes a turboexpander that expands at least a portion of the first stream.
  • the vaporization of at least a portion of the fourth stream can provide at least 50% of the required cooling of the process, optionally at least 75%, optionally 100%.
  • the process can be capable of operating at a turndown of less than 60% of plant capacity, while at least 50% of the ethane in the first stream is recovered in the fourth stream.
  • the process is capable of operating from 5% to 100% of plant capacity, while recovering at least 60% of the ethane and at least 90% of C 3 + from the first stream in the fourth stream.
  • the process is capable of operating from 5% to 100% of plant capacity, while recovering at least 85% of the ethane and at least 95% of C 3 + from the first stream in the fourth stream.
  • the process can operate with a reduced compression of at least 10% as compared to a comparable turboexpander process.
  • FIG. 1 illustrates a simplified process flow diagram of an embodiment of the present invention.
  • FIG. 2 illustrates a simplified process flow diagram of an embodiment of the present invention.
  • FIG. 3 illustrates a simplified process flow diagram of an embodiment of the present invention.
  • FIG. 1 One non-limiting embodiment of the design of the present invention is shown in FIG. 1 .
  • Inlet gas enters the plant at stream 1 and is routed to an Inlet Dehydration section 20 to remove the majority of any water.
  • the Inlet Dehydration section 20 can comprise equipment and processes known in the industry, such as glycol dehydration systems and/or molecular sieve units, for example.
  • stream 2 which is the main inlet gas feed into a distillation column, herein referred to as a Demethanizer, T- 1 .
  • a portion of the inlet gas can be directed to stream 3 to be used as a reflux stream for the Demethanizer.
  • the reflux stream 3 may need to be compressed in an Inlet Compression section 22 , such as in one non-limiting example, if the inlet gas pressure is 550 psig or lower.
  • Streams 2 and 3 pass through the process exchanger, E- 1 and are cooled before entering the Demethanizer.
  • the process exchanger, E- 1 can comprise one or more exchangers that can be configured in parallel, in series, or combinations thereof.
  • Control valves CV- 1 & CV- 2 can decompress and further chill streams 2 and 3 prior to the Demethanizer.
  • the Demethanizer provides separation of the hydrocarbon components in the inlet gas via boiling point distillation.
  • a vapor overhead stream 4 composed primarily of methane and having a reduced content of NGL's is removed from an upper portion of the Demethanizer.
  • a liquid bottoms stream 5 of extracted NGL's is removed from a lower portion of the Demethanizer.
  • the Demethanizer can be of any suitable design for the separation of hydrocarbons and are generally known to those in the industry.
  • the column is operated with a bottom temperature of from 0° F. to 350° F. and a top temperature of from ⁇ 160° F. to 0° F. and is operated at a pressure of from 150 psia to 700 psia.
  • All or a portion of the Demethanizer overhead gas can pass through the process exchanger, E- 1 before exiting the plant in stream 10 .
  • the Demethanizer overhead gas will generally be a lower temperature than the inlet gas and can be used to chill the inlet stream 2 and reflux stream 3 .
  • the Demethanizer overhead gas can pre-chill one or both of the inlet streams prior to the inlet streams cooling from heat exchange from stream 5 .
  • Residue gas compression 26 may be required to compress the vapor overhead stream 10 into the residue gas pipeline.
  • the liquid NGL product in stream 5 is flashed, such as through a static expansion valve, CV- 3 , to a lower pressure then routed to the process exchanger E- 1 to chill the inlet gas streams.
  • the NGL product vapor leaving the process exchanger in stream 6 is then compressed and condensed to produce the desired NGL liquid product stream.
  • the NGL liquid product stream is then pumped out of the plant via stream 7 , the flow regulated by valve CV- 5 .
  • a portion of the NGL liquid product stream can be diverted from stream 7 to stream 5 to provide additional refrigeration capability if needed.
  • a portion of the NGL liquid product can cycle as needed based on refrigeration needs and operational considerations.
  • a portion of reflux stream 3 can be directed to stream 8 to be used as a heat source for the Demethanizer and utilized as reboiler duty.
  • a portion of feed stream 2 can be directed to stream 8 to be used as a heat source for the Demethanizer and utilized as reboiler duty rather than a portion of reflux stream 3 .
  • a portion of either or both of feed stream 2 and reflux stream 3 can be directed to stream 8 to be used as a heat source for the Demethanizer and utilized as reboiler duty.
  • Control valve CV- 4 can regulate the flow through stream 8 to provide thermal energy to one or more reboilers of the Demethanizer.
  • Heat exchanger E- 2 can exchange heat duty from stream 8 to warm the fluids within the lower portion of the Demethanizer to strip residual methane from the NGL liquid product stream.
  • Stream 8 will generally be separated from reflux stream 3 after any compression 22 that may be required for reflux stream 3 , as the compression will warm reflux stream 3 .
  • FIG. 1 shows two liquid draws from the Demethanizer passing through exchanger E- 2 , but alternate embodiments can contain one, or more than two, draws.
  • the reboiler exchanger E- 2 can comprise one or more exchangers that can be configured in parallel, in series, or combinations thereof.
  • a side stream draw from the Demethanizer is shown as stream 9 , which is warmed by cross exchange with the process exchanger E- 1 , acting as a reboiler, to provide heat to the middle section of the Demethanizer and assist in the separation of NGL from methane.
  • One or more side stream draws can be incorporated into the present invention, but are not required.
  • the design includes an upper side stream reboiler utilizing heat from the process exchanger E- 1 , a middle reboiler utilizing heat from a portion of the inlet feed, and a lower reboiler utilizing heat from a portion of the inlet feed, where the three reboilers provide a temperature profile within the Demethanizer that is preferred as compared to a design having only two reboilers.
  • Simulation data for three examples of Demethanizer design, each utilizing a total reboiler duty of 59 and providing a bottom reboiler out temperature of 63° F. is shown in Table 1.
  • the first design having two reboilers as shown in FIG. 2 gives a middle reboiler out temperature of ⁇ 16° F. and provides a temperature difference of 79° F. between the reboiler outlets.
  • the second design having three reboilers as shown in FIG. 1 gives a middle reboiler out temperature of 40° F. and a top reboiler out temperature of ⁇ 13° F., providing a temperature difference of 76° F. between the top and bottom reboiler outlets.
  • the third design also has three reboilers but a different duty profile, giving a middle reboiler out temperature of 40° F. and a top reboiler out temperature of ⁇ 54° F.
  • the modified three reboiler design provides a more defined temperature profile within the Demethanizer and a greater temperature difference of 117° F. between the top and bottom reboiler outlets.
  • a portion of the Demethanizer overhead gas stream 10 can be used as an optional reflux stream 11 to the Demethanizer T- 1 as shown in FIG. 3 .
  • the optional reflux stream 1 can be cooled in exchanger E- 1 , its flow controlled by control valve CV- 6 , and can enter the upper portion of the Demethanizer. If the optional reflux stream 11 is fed to the Demethanizer T- 1 , the reflux stream 3 will enter at a location below the optional reflux stream 11 .
  • turboexpander there can be several advantages of the present invention over the current state of the art turboexpander plants. There can be significant capital and maintenance savings produced by reducing or eliminating the turboexpander, the turboexpander inlet separator, and the turboexpander auxiliary systems.
  • the overall plant reliability can be improved by eliminating the turboexpander, which is a rotating device operating at high speeds, for example between 10,000-20,000 rpm, and can be subject to failure.
  • turboexpander which is a rotating device operating at high speeds, for example between 10,000-20,000 rpm, and can be subject to failure.
  • Embodiments of the present invention can produce the necessary cryogenic refrigeration significantly more efficiently than the turboexpander design. This is particularly true when the inlet gas pressure is at 550 psig or lower.
  • Embodiments of the present invention can provide 100% of the required cooling. Alternate embodiments can provide at least 90% of the required cooling, optionally at least 80%, optionally at least 75%, optionally at least 50%.
  • the present invention can reduce the required compression horsepower by at least 10%, optionally at least 25%, and optionally at least 50%.
  • the initial capital expense and the ongoing fuel gas and plant maintenance expenses can be significantly reduced.
  • the plant operating range can be improved with the present invention as compared to a conventional turboexpander plant.
  • Most turboexpander plants can only efficiently turn down to approximately 60% of the maximum inlet flow due to limitations in the expander ability to turn down.
  • Embodiments of the present design being not limited by an expander, can efficiently turn down to as low as 5% of the maximum inlet flow.
  • Simulation data for an expander plant and a plant of the present invention is shown in Table 2 and Table 3 that illustrate the ability of the two designs to reduce plant processing capabilities, which can be referred to as “turn down” of the plant.
  • the expander plant exhibits increased fuel usage as the throughput is reduced from 100% to 60%, and is not able to operate at levels of 40% or less.
  • the design of an embodiment of the present invention maintains fuel efficiency and recoveries at reduced throughput down to 10% of design capacity.
  • the fuel efficiency is shown as Fuel Usage (BTU/Gal) in Tables 2 & 3, which is the BTU value of the fuel usage of the process per gallon of NGL recovered by the process.
  • Embodiments of the present invention include a plant design capable of operating at throughputs of from 5% to 100% of plant design while achieving ethane recovery of at least 50%, optionally at least 60%, optionally at least 80%.
  • Alternate embodiments can include an optional turboexpander located on the inlet feed stream that can provide cooling while operating from 100% down to 60% of plant design capacity while the turboexpander can be bypassed to enable the plant to continue to operate at throughputs below 60% of plant design capacity.
  • Another embodiment is a process of the current design that reduces the net compression of the process by at least 10% as compared to a comparable turboexpander plant.

Abstract

A process of extraction of natural gas liquids from a hydrocarbon stream is disclosed. The recovered natural gas liquids are flashed to a vapor to provide refrigeration to the process.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The subject application claims priority to provisional application No. 61/128,977 filed on May 27, 2008.
  • FIELD
  • The present invention generally relates to methods for extraction and recovery of natural gas liquids from a hydrocarbon gas stream. In particular, the methods of the present invention more efficiently and more economically separate ethane, propane, and other hydrocarbon liquids from a hydrocarbon gas stream, i.e., from natural gas or from gases from refineries or petrochemical plants.
  • BACKGROUND
  • Natural gas from the wellhead is a mixture of various different gases including methane, ethane, propane, butane, etc. Natural gas liquid (“NGL”) processing plants liquefy and extract these components since they are generally of greater value for purposes other than as a gaseous heating fuel. For example, C2, C3 and C4 hydrocarbons are valuable chemical intermediates and the C3 and C4 hydrocarbons are of greater value when separated and utilized as a liquefied petroleum gas (LPG). C5 and higher molecular weight hydrocarbons are valuable as blending stocks for motor fuels and for other purposes. In addition to these NGL components, other components such as ethylene and propylene may be contained in gas streams obtained from refineries or from petrochemical plants that may have a higher value if extracted.
  • There are several different types of NGL plants including mechanical refrigeration, lean oil and cryogenic turboexpander designs. Of these, the cryogenic turboexpander plant is the current state of the art for deep ethane recovery. In the cryogenic turboexpander plant, the cryogenic refrigeration required in the process is primarily produced by the turboexpander. The turboexpander is typically a major expense in the cryogenic turboexpander design.
  • There are many known NGL recovery processes that can be designed to process a specific gas composition at specific inlet conditions. However, when the feed gas composition changes, NGL recovery will typically be reduced and potential product revenue can be lost. In general, and specifically in a turboexpander plant, the “turndown” capability, which is the ability to recover a reduced quantity of NGL's from the processed stream, is limited. In many plant designs if the quantity of NGL recovered is desired to be reduced, such as for economic reasons, the efficiency of the plant can be severely decreased. This can occur as a result of equipment such as a turboexpander or a turbine compressor that have limited operational conditions and have diminishing effectiveness below a certain RPM, for example.
  • A significant cost in NGL recovery processes is related to the refrigeration required to chill the inlet gas. Refrigeration schemes generally include external refrigeration cycles utilizing refrigerants, such as for example ethane or propane. In some applications, mixed refrigerants and cascade refrigeration cycles have been used. An external refrigeration cycle can be a major expense in a NGL recovery process. Refrigeration can also be provided by turboexpansion or work expansion of the compressed gas feed.
  • In view if the above it would be desirable to have a NGL recovery process that does not require high expense components such as a turboexpander or an external refrigeration cycle. It would also be desirable to have a process with increased efficiency and turndown capability.
  • SUMMARY
  • Embodiments of the present invention generally include processes for NGL extraction from a hydrocarbon gas stream wherein the need for a turboexpander is eliminated and the required process refrigeration is produced by expansion of the NGL liquid product. The process may herein be referred to as the SRNE (Self Refrigeration No Expander) process. The liquid NGL is vaporized and passes through a heat exchanger to chill the inlet gas to the necessary cryogenic temperature. The NGL product vapor exiting the heat exchanger is then compressed to a higher pressure and condensed to produce the desired liquid NGL product.
  • One embodiment of the present invention is a process for the separation of C2+ or C3+ hydrocarbons from a hydrocarbon-containing gas feed under pressure. The process includes cooling a first stream of hydrocarbon gas in a first heat exchanger and introducing the cooled first stream into a distillation column at one or more feed trays. The column has a plurality of liquid recovery trays for condensing hydrocarbon liquids in said recovery trays. A vapor hydrocarbon stream is withdrawn from an upper portion of the column having a reduced content of C2+ or C3+ hydrocarbons. A liquid NGL hydrocarbon stream is withdrawn from a lower portion of said column having an increased content of C2+ or C3+ hydrocarbons. The pressure of the NGL liquid hydrocarbon stream is reduced to vaporize the NGL and generate cold energy and the vaporized NGL stream passes through the first heat exchanger to chill the first stream of hydrocarbon gas.
  • The process can further comprise passing a portion of the vapor hydrocarbon stream from an upper portion of said column through the first heat exchanger. A portion of the first stream of hydrocarbon gas can be diverted through a second heat exchanger to provide reboiler duty to the column. The first heat exchanger can provide heat duty to a side reboiler of the column.
  • The column can be operated with a bottom temperature of 0° F. to 250° F. and a top temperature of −160° F. to 0° F. and at a pressure of 150 psia to 700 psia.
  • Embodiments of the process does not include a turboexpander, or optionally the process includes a turboexpander that expands at least a portion of the first stream.
  • The vaporization of at least a portion of the fourth stream can provide at least 50% of the required cooling of the process, optionally at least 75%, optionally 100%.
  • The process can be capable of operating at a turndown of less than 60% of plant capacity, while at least 50% of the ethane in the first stream is recovered in the fourth stream. Optionally the process is capable of operating from 5% to 100% of plant capacity, while recovering at least 60% of the ethane and at least 90% of C3+ from the first stream in the fourth stream. Optionally the process is capable of operating from 5% to 100% of plant capacity, while recovering at least 85% of the ethane and at least 95% of C3+ from the first stream in the fourth stream.
  • The process can operate with a reduced compression of at least 10% as compared to a comparable turboexpander process.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 illustrates a simplified process flow diagram of an embodiment of the present invention.
  • FIG. 2 illustrates a simplified process flow diagram of an embodiment of the present invention.
  • FIG. 3 illustrates a simplified process flow diagram of an embodiment of the present invention.
  • DETAILED DESCRIPTION
  • One non-limiting embodiment of the design of the present invention is shown in FIG. 1. Inlet gas enters the plant at stream 1 and is routed to an Inlet Dehydration section 20 to remove the majority of any water. The Inlet Dehydration section 20 can comprise equipment and processes known in the industry, such as glycol dehydration systems and/or molecular sieve units, for example.
  • Depending on the desired NGL recovery, all or a majority of the dehydrated inlet gas is then directed to stream 2, which is the main inlet gas feed into a distillation column, herein referred to as a Demethanizer, T-1. If a higher ethane recovery is required, a portion of the inlet gas can be directed to stream 3 to be used as a reflux stream for the Demethanizer. Depending on the plant operating conditions the reflux stream 3 may need to be compressed in an Inlet Compression section 22, such as in one non-limiting example, if the inlet gas pressure is 550 psig or lower.
  • Streams 2 and 3 pass through the process exchanger, E-1 and are cooled before entering the Demethanizer. The process exchanger, E-1, can comprise one or more exchangers that can be configured in parallel, in series, or combinations thereof. Control valves CV-1 & CV-2 can decompress and further chill streams 2 and 3 prior to the Demethanizer.
  • The Demethanizer provides separation of the hydrocarbon components in the inlet gas via boiling point distillation. A vapor overhead stream 4 composed primarily of methane and having a reduced content of NGL's is removed from an upper portion of the Demethanizer. A liquid bottoms stream 5 of extracted NGL's is removed from a lower portion of the Demethanizer. The Demethanizer can be of any suitable design for the separation of hydrocarbons and are generally known to those in the industry. In one non-limiting embodiment the column is operated with a bottom temperature of from 0° F. to 350° F. and a top temperature of from −160° F. to 0° F. and is operated at a pressure of from 150 psia to 700 psia.
  • All or a portion of the Demethanizer overhead gas can pass through the process exchanger, E-1 before exiting the plant in stream 10. The Demethanizer overhead gas will generally be a lower temperature than the inlet gas and can be used to chill the inlet stream 2 and reflux stream 3. In one embodiment the Demethanizer overhead gas can pre-chill one or both of the inlet streams prior to the inlet streams cooling from heat exchange from stream 5. Residue gas compression 26 may be required to compress the vapor overhead stream 10 into the residue gas pipeline.
  • To provide the necessary process refrigeration, the liquid NGL product in stream 5 is flashed, such as through a static expansion valve, CV-3, to a lower pressure then routed to the process exchanger E-1 to chill the inlet gas streams. The NGL product vapor leaving the process exchanger in stream 6 is then compressed and condensed to produce the desired NGL liquid product stream. The NGL liquid product stream is then pumped out of the plant via stream 7, the flow regulated by valve CV-5. A portion of the NGL liquid product stream can be diverted from stream 7 to stream 5 to provide additional refrigeration capability if needed. In this embodiment, not shown, a portion of the NGL liquid product can cycle as needed based on refrigeration needs and operational considerations.
  • As shown in FIG. 1, a portion of reflux stream 3 can be directed to stream 8 to be used as a heat source for the Demethanizer and utilized as reboiler duty. In an alternate embodiment (not shown) a portion of feed stream 2 can be directed to stream 8 to be used as a heat source for the Demethanizer and utilized as reboiler duty rather than a portion of reflux stream 3. In another alternate embodiment (not shown) a portion of either or both of feed stream 2 and reflux stream 3 can be directed to stream 8 to be used as a heat source for the Demethanizer and utilized as reboiler duty. Control valve CV-4 can regulate the flow through stream 8 to provide thermal energy to one or more reboilers of the Demethanizer. Heat exchanger E-2 can exchange heat duty from stream 8 to warm the fluids within the lower portion of the Demethanizer to strip residual methane from the NGL liquid product stream. Stream 8 will generally be separated from reflux stream 3 after any compression 22 that may be required for reflux stream 3, as the compression will warm reflux stream 3. FIG. 1 shows two liquid draws from the Demethanizer passing through exchanger E-2, but alternate embodiments can contain one, or more than two, draws. The reboiler exchanger E-2 can comprise one or more exchangers that can be configured in parallel, in series, or combinations thereof.
  • A side stream draw from the Demethanizer is shown as stream 9, which is warmed by cross exchange with the process exchanger E-1, acting as a reboiler, to provide heat to the middle section of the Demethanizer and assist in the separation of NGL from methane. One or more side stream draws can be incorporated into the present invention, but are not required. In one embodiment of the present invention the design includes an upper side stream reboiler utilizing heat from the process exchanger E-1, a middle reboiler utilizing heat from a portion of the inlet feed, and a lower reboiler utilizing heat from a portion of the inlet feed, where the three reboilers provide a temperature profile within the Demethanizer that is preferred as compared to a design having only two reboilers.
  • Simulation data for three examples of Demethanizer design, each utilizing a total reboiler duty of 59 and providing a bottom reboiler out temperature of 63° F. is shown in Table 1. The first design having two reboilers as shown in FIG. 2 gives a middle reboiler out temperature of −16° F. and provides a temperature difference of 79° F. between the reboiler outlets. The second design having three reboilers as shown in FIG. 1 gives a middle reboiler out temperature of 40° F. and a top reboiler out temperature of −13° F., providing a temperature difference of 76° F. between the top and bottom reboiler outlets. The third design also has three reboilers but a different duty profile, giving a middle reboiler out temperature of 40° F. and a top reboiler out temperature of −54° F. The modified three reboiler design provides a more defined temperature profile within the Demethanizer and a greater temperature difference of 117° F. between the top and bottom reboiler outlets.
  • TABLE 1
    Two Three
    Reboilers Three Reboilers
    Only Reboilers (Modified)
    T ° F. T ° F. T ° F.
    Duty T ° F. (in) (out) Duty T ° F. (in) (out) Duty T ° F. (in) (out)
    Top na na na 22 −66 −13 27 −108 −54
    Reboiler
    Middle 35 −66 −16 22 25 40 16 25 40
    Reboiler
    Bottom
    24 46 63 15 48 63 16 48 63
    Reboiler
  • In one embodiment a portion of the Demethanizer overhead gas stream 10 can be used as an optional reflux stream 11 to the Demethanizer T-1 as shown in FIG. 3. The optional reflux stream 1 can be cooled in exchanger E-1, its flow controlled by control valve CV-6, and can enter the upper portion of the Demethanizer. If the optional reflux stream 11 is fed to the Demethanizer T-1, the reflux stream 3 will enter at a location below the optional reflux stream 11.
  • There can be several advantages of the present invention over the current state of the art turboexpander plants. There can be significant capital and maintenance savings produced by reducing or eliminating the turboexpander, the turboexpander inlet separator, and the turboexpander auxiliary systems.
  • The overall plant reliability can be improved by eliminating the turboexpander, which is a rotating device operating at high speeds, for example between 10,000-20,000 rpm, and can be subject to failure.
  • Embodiments of the present invention can produce the necessary cryogenic refrigeration significantly more efficiently than the turboexpander design. This is particularly true when the inlet gas pressure is at 550 psig or lower. Embodiments of the present invention can provide 100% of the required cooling. Alternate embodiments can provide at least 90% of the required cooling, optionally at least 80%, optionally at least 75%, optionally at least 50%.
  • In some low inlet pressure applications, the present invention can reduce the required compression horsepower by at least 10%, optionally at least 25%, and optionally at least 50%. By utilizing the refrigeration from the NGL expansion and reducing or eliminating the need for an external refrigeration system the initial capital expense and the ongoing fuel gas and plant maintenance expenses can be significantly reduced.
  • The plant operating range can be improved with the present invention as compared to a conventional turboexpander plant. Most turboexpander plants can only efficiently turn down to approximately 60% of the maximum inlet flow due to limitations in the expander ability to turn down. Embodiments of the present design, being not limited by an expander, can efficiently turn down to as low as 5% of the maximum inlet flow. Simulation data for an expander plant and a plant of the present invention is shown in Table 2 and Table 3 that illustrate the ability of the two designs to reduce plant processing capabilities, which can be referred to as “turn down” of the plant. The expander plant exhibits increased fuel usage as the throughput is reduced from 100% to 60%, and is not able to operate at levels of 40% or less. The design of an embodiment of the present invention, shown in Table 3, maintains fuel efficiency and recoveries at reduced throughput down to 10% of design capacity. The fuel efficiency is shown as Fuel Usage (BTU/Gal) in Tables 2 & 3, which is the BTU value of the fuel usage of the process per gallon of NGL recovered by the process.
  • TABLE 2
    Expander Plant Design Capacity (%)
    100% 80% 60% 40% 20% 10%
    Recovery %
    Ethane 88% 88% 88% na na na
    Propane 98% 98% 98% na na na
    C4+ 100%  100%  100%  na na na
    Fuel Usage 6600 6798 7062 na na na
    (BTU/Gal)
  • TABLE 3
    SRNE Plant Design Capacity (%)
    100% 80% 60% 40% 20% 10%
    Recovery %
    Ethane 88% 88% 88% 88% 88% 88%
    Propane 98% 98% 98% 98% 98% 98%
    C4+ 100%  100%  100%  100%  100%  100% 
    Fuel Usage 6400 6400 6400 6400 6400 6400
    (BTU/Gal)
  • Embodiments of the present invention include a plant design capable of operating at throughputs of from 5% to 100% of plant design while achieving ethane recovery of at least 50%, optionally at least 60%, optionally at least 80%. Alternate embodiments can include an optional turboexpander located on the inlet feed stream that can provide cooling while operating from 100% down to 60% of plant design capacity while the turboexpander can be bypassed to enable the plant to continue to operate at throughputs below 60% of plant design capacity. Another embodiment is a process of the current design that reduces the net compression of the process by at least 10% as compared to a comparable turboexpander plant.
  • Use of the term “optionally” with respect to any element of a claim is intended to mean that the subject element is required, or alternatively, is not required. Both alternatives are intended to be within the scope of the claim. Use of broader terms such as comprises, includes, having, etc. should be understood to provide substrate for narrower terms such as consisting of, consisting essentially of, comprised substantially of, etc.
  • Depending on the context, all references herein to the “invention” may in some cases refer to certain specific embodiments only. In other cases it may refer to subject matter recited in one or more, but not necessarily all, of the claims. While the foregoing is directed to embodiments, versions and examples of the present invention, which are included to enable a person of ordinary skill in the art to make and use the inventions when the information in this patent is combined with available information and technology, the inventions are not limited to only these particular embodiments, versions and examples. Other and further embodiments, versions and examples of the invention may be devised without departing from the basic scope thereof and the scope thereof is determined by the claims that follow.

Claims (20)

1. A process for the separation of C2+ or C3+ hydrocarbons from a hydrocarbon-containing gas feed under pressure, comprising:
providing a first stream of hydrocarbon gas;
cooling at least a portion of the first stream of hydrocarbon gas in a first heat exchanger to form a second stream;
introducing the second stream into a distillation column;
withdrawing a third stream of vapor hydrocarbon from an upper portion of said column having a reduced content of C2+ or C3+ hydrocarbons as compared to the first stream;
withdrawing a fourth stream of liquid natural gas liquid (NGL) hydrocarbon from as compared to the first stream;
reducing the pressure of the fourth stream to vaporize at least a portion of the fourth stream to form a fifth stream;
passing the fifth stream through the first heat exchanger to cool the first stream of hydrocarbon gas.
2. The process of claim 1, further comprising:
passing at least a portion of the third stream through the first heat exchanger to form a sixth stream.
3. The process of claim 1, further comprising:
diverting a portion of the first stream through a second heat exchanger to provide reboiler duty to the distillation column.
4. The process of claim 1, wherein the first heat exchanger provides heat duty to a side reboiler of the distillation column.
5. The process of claim 1, wherein the distillation column is operated with a bottom temperature of 0° F. to 350° F. and a top temperature of −160° F. to 0° F.
6. The process of claim 1, wherein the distillation column is operated at a pressure of 150 psia to 700 psia.
7. The process of claim 1, wherein a portion of the sixth stream is diverted to an upper region of the distillation column as a reflux stream.
8. The process of claim 1, wherein the process does not include a turboexpander.
9. The process of claim 1, wherein the process includes a turboexpander that expands at least a portion of the first stream.
10. The process of claim 1, wherein the vaporization of at least a portion of the fourth stream provides at least 50% of the required cooling of the process.
11. The process of claim 1, wherein the vaporization of at least a portion of the fourth stream provides at least 75% of the required cooling of the process.
12. The process of claim 1, wherein the vaporization of at least a portion of the fourth stream provides 100% of the required cooling of the process.
13. The process of claim 1, wherein the process is capable of operating at a turndown of less than 60% of plant capacity, while at least 50% of the ethane in the first stream is recovered in the fourth stream.
14. The process of claim 1, wherein the process is capable of operating at a turndown of 10% of plant capacity, while at least 50% of the ethane in the first stream is recovered in the fourth stream.
15. The process of claim 1, wherein the process is capable of operating from 5% to 100% of plant capacity, while recovering at least 60% of the ethane and at least 90% of C3+ from the first stream in the fourth stream.
16. The process of claim 1, wherein the process is capable of operating from 10% to 100% of plant capacity, while recovering at least 85% of the ethane and at least 95% of C3+ from the first stream in the fourth stream.
17. The process of claim 1, wherein the process operates with a reduced compression of at least 10% as compared to a comparable turboexpander process.
18. A process for the separation of natural gas liquids from a hydrocarbon-containing gas feed comprising:
providing a first stream of hydrocarbon gas;
cooling at least a portion of the first stream of hydrocarbon gas in a first heat exchanger to form a second stream;
introducing the second stream into a distillation column;
diverting a portion of the first stream through a second heat exchanger to provide reboiler duty to the distillation column;
wherein the distillation column includes a middle reboiler stream and a lower reboiler stream that are warmed by heat exchange with the second heat exchanger to provide heat duty to the distillation column;
wherein the distillation column includes a side stream that is warmed by heat exchange with the first heat exchanger to provide heat duty to the distillation column;
withdrawing a third stream of vapor hydrocarbon from an upper portion of said column having a reduced content of C2+ or C3+ hydrocarbons as compared to the first stream;
passing at least a portion of the third stream through the first heat exchanger to form a sixth stream;
withdrawing a fourth stream of liquid natural gas liquid (NGL) hydrocarbon from a lower portion of said column having an increased content of C2+ or C3+ hydrocarbons as compared to the first stream;
reducing the pressure of the fourth stream to vaporize at least a portion of the fourth stream to form a fifth stream;
passing the fifth stream through the first heat exchanger to cool the first stream of hydrocarbon gas;
wherein the process does not include a turboexpander and the distillation column is operated with a bottom temperature of 0° F. to 350° F., a top temperature of −160° F. to 0° F. and a pressure of 150 psia to 700 psia;
wherein the vaporization of at least a portion of the fourth stream provides at least 75% of the required cooling of the process; and
wherein the process is capable of operating from 5% to 100% of plant capacity, while recovering at least 85% of the ethane and at least 95% of C3+ from the first stream in the fourth stream.
19. The process of claim 18, wherein a portion of the sixth stream is diverted to an upper region of the distillation column as a reflux stream.
20. The process of claim 18, wherein the process operates with a reduced compression of at least 10% as compared to a comparable turboexpander process.
US12/455,124 2008-05-27 2009-05-27 NGL Extraction From Natural Gas Abandoned US20090293537A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/455,124 US20090293537A1 (en) 2008-05-27 2009-05-27 NGL Extraction From Natural Gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12897708P 2008-05-27 2008-05-27
US12/455,124 US20090293537A1 (en) 2008-05-27 2009-05-27 NGL Extraction From Natural Gas

Publications (1)

Publication Number Publication Date
US20090293537A1 true US20090293537A1 (en) 2009-12-03

Family

ID=41378096

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/455,124 Abandoned US20090293537A1 (en) 2008-05-27 2009-05-27 NGL Extraction From Natural Gas

Country Status (1)

Country Link
US (1) US20090293537A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140060113A1 (en) * 2012-09-04 2014-03-06 Linde Aktiengesellschaft Method for separating c2+-hydrocarbons or c3+-hydrocarbons from a hydrocarbon-rich fraction
US20150219394A1 (en) * 2014-01-31 2015-08-06 Uop Llc Natural gas liquids stabilizer with side stripper
US20210381757A1 (en) * 2020-06-03 2021-12-09 Chart Energy & Chemicals, Inc. Gas stream component removal system and method
US11268757B2 (en) * 2017-09-06 2022-03-08 Linde Engineering North America, Inc. Methods for providing refrigeration in natural gas liquids recovery plants

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3292380A (en) * 1964-04-28 1966-12-20 Coastal States Gas Producing C Method and equipment for treating hydrocarbon gases for pressure reduction and condensate recovery
US3524897A (en) * 1963-10-14 1970-08-18 Lummus Co Lng refrigerant for fractionator overhead
US4251249A (en) * 1977-01-19 1981-02-17 The Randall Corporation Low temperature process for separating propane and heavier hydrocarbons from a natural gas stream
US4617039A (en) * 1984-11-19 1986-10-14 Pro-Quip Corporation Separating hydrocarbon gases
US4889545A (en) * 1988-11-21 1989-12-26 Elcor Corporation Hydrocarbon gas processing
US5114451A (en) * 1990-03-12 1992-05-19 Elcor Corporation Liquefied natural gas processing
US5509271A (en) * 1994-04-13 1996-04-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the separation of a gaseous mixture
US5568737A (en) * 1994-11-10 1996-10-29 Elcor Corporation Hydrocarbon gas processing
US5615561A (en) * 1994-11-08 1997-04-01 Williams Field Services Company LNG production in cryogenic natural gas processing plants
US5626777A (en) * 1993-03-02 1997-05-06 Hoechst Ceramtec Ag Process for producing dividable plates of brittle material with high accuracy and apparatus for receiving and precision-grinding the end faces of a plate
US5771712A (en) * 1995-06-07 1998-06-30 Elcor Corporation Hydrocarbon gas processing
US5799507A (en) * 1996-10-25 1998-09-01 Elcor Corporation Hydrocarbon gas processing
US5881569A (en) * 1997-05-07 1999-03-16 Elcor Corporation Hydrocarbon gas processing
US5890378A (en) * 1997-04-21 1999-04-06 Elcor Corporation Hydrocarbon gas processing
US5911278A (en) * 1997-06-20 1999-06-15 Reitz; Donald D. Calliope oil production system
US5983664A (en) * 1997-04-09 1999-11-16 Elcor Corporation Hydrocarbon gas processing
US6021647A (en) * 1998-05-22 2000-02-08 Greg E. Ameringer Ethylene processing using components of natural gas processing
US6182469B1 (en) * 1998-12-01 2001-02-06 Elcor Corporation Hydrocarbon gas processing
US6604380B1 (en) * 2002-04-03 2003-08-12 Howe-Baker Engineers, Ltd. Liquid natural gas processing
US6742358B2 (en) * 2001-06-08 2004-06-01 Elkcorp Natural gas liquefaction
US6755965B2 (en) * 2000-05-08 2004-06-29 Inelectra S.A. Ethane extraction process for a hydrocarbon gas stream
US20040172967A1 (en) * 2003-03-07 2004-09-09 Abb Lummus Global Inc. Residue recycle-high ethane recovery process
US20050066686A1 (en) * 2003-09-30 2005-03-31 Elkcorp Liquefied natural gas processing
US20070012072A1 (en) * 2005-07-12 2007-01-18 Wesley Qualls Lng facility with integrated ngl extraction technology for enhanced ngl recovery and product flexibility
US7191617B2 (en) * 2003-02-25 2007-03-20 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US7204100B2 (en) * 2004-05-04 2007-04-17 Ortloff Engineers, Ltd. Natural gas liquefaction
US7216507B2 (en) * 2004-07-01 2007-05-15 Ortloff Engineers, Ltd. Liquefied natural gas processing
US20070137246A1 (en) * 2001-05-04 2007-06-21 Battelle Energy Alliance, Llc Systems and methods for delivering hydrogen and separation of hydrogen from a carrier medium
US20080000266A1 (en) * 2006-06-30 2008-01-03 Dee Douglas P System to increase capacity of LNG-based liquefier in air separation process
US20080202162A1 (en) * 2000-08-11 2008-08-28 Fluor Technologies Corporation Cryogenic Process Utilizing High Pressure Absorber Column

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524897A (en) * 1963-10-14 1970-08-18 Lummus Co Lng refrigerant for fractionator overhead
US3292380A (en) * 1964-04-28 1966-12-20 Coastal States Gas Producing C Method and equipment for treating hydrocarbon gases for pressure reduction and condensate recovery
US4251249A (en) * 1977-01-19 1981-02-17 The Randall Corporation Low temperature process for separating propane and heavier hydrocarbons from a natural gas stream
US4617039A (en) * 1984-11-19 1986-10-14 Pro-Quip Corporation Separating hydrocarbon gases
US4889545A (en) * 1988-11-21 1989-12-26 Elcor Corporation Hydrocarbon gas processing
US5114451A (en) * 1990-03-12 1992-05-19 Elcor Corporation Liquefied natural gas processing
US5626777A (en) * 1993-03-02 1997-05-06 Hoechst Ceramtec Ag Process for producing dividable plates of brittle material with high accuracy and apparatus for receiving and precision-grinding the end faces of a plate
US5509271A (en) * 1994-04-13 1996-04-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the separation of a gaseous mixture
US5615561A (en) * 1994-11-08 1997-04-01 Williams Field Services Company LNG production in cryogenic natural gas processing plants
US5568737A (en) * 1994-11-10 1996-10-29 Elcor Corporation Hydrocarbon gas processing
US5771712A (en) * 1995-06-07 1998-06-30 Elcor Corporation Hydrocarbon gas processing
US5799507A (en) * 1996-10-25 1998-09-01 Elcor Corporation Hydrocarbon gas processing
US5983664A (en) * 1997-04-09 1999-11-16 Elcor Corporation Hydrocarbon gas processing
US5890378A (en) * 1997-04-21 1999-04-06 Elcor Corporation Hydrocarbon gas processing
US5881569A (en) * 1997-05-07 1999-03-16 Elcor Corporation Hydrocarbon gas processing
US5911278A (en) * 1997-06-20 1999-06-15 Reitz; Donald D. Calliope oil production system
US6021647A (en) * 1998-05-22 2000-02-08 Greg E. Ameringer Ethylene processing using components of natural gas processing
US6182469B1 (en) * 1998-12-01 2001-02-06 Elcor Corporation Hydrocarbon gas processing
US6755965B2 (en) * 2000-05-08 2004-06-29 Inelectra S.A. Ethane extraction process for a hydrocarbon gas stream
US20080202162A1 (en) * 2000-08-11 2008-08-28 Fluor Technologies Corporation Cryogenic Process Utilizing High Pressure Absorber Column
US20070137246A1 (en) * 2001-05-04 2007-06-21 Battelle Energy Alliance, Llc Systems and methods for delivering hydrogen and separation of hydrogen from a carrier medium
US6742358B2 (en) * 2001-06-08 2004-06-01 Elkcorp Natural gas liquefaction
US7210311B2 (en) * 2001-06-08 2007-05-01 Ortloff Engineers, Ltd. Natural gas liquefaction
US6941771B2 (en) * 2002-04-03 2005-09-13 Howe-Baker Engineers, Ltd. Liquid natural gas processing
US6604380B1 (en) * 2002-04-03 2003-08-12 Howe-Baker Engineers, Ltd. Liquid natural gas processing
US7191617B2 (en) * 2003-02-25 2007-03-20 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US20040172967A1 (en) * 2003-03-07 2004-09-09 Abb Lummus Global Inc. Residue recycle-high ethane recovery process
US7155931B2 (en) * 2003-09-30 2007-01-02 Ortloff Engineers, Ltd. Liquefied natural gas processing
US20050066686A1 (en) * 2003-09-30 2005-03-31 Elkcorp Liquefied natural gas processing
US7204100B2 (en) * 2004-05-04 2007-04-17 Ortloff Engineers, Ltd. Natural gas liquefaction
US7216507B2 (en) * 2004-07-01 2007-05-15 Ortloff Engineers, Ltd. Liquefied natural gas processing
US20070012072A1 (en) * 2005-07-12 2007-01-18 Wesley Qualls Lng facility with integrated ngl extraction technology for enhanced ngl recovery and product flexibility
US20080000266A1 (en) * 2006-06-30 2008-01-03 Dee Douglas P System to increase capacity of LNG-based liquefier in air separation process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140060113A1 (en) * 2012-09-04 2014-03-06 Linde Aktiengesellschaft Method for separating c2+-hydrocarbons or c3+-hydrocarbons from a hydrocarbon-rich fraction
US9389015B2 (en) * 2012-09-04 2016-07-12 Linde Aktiengesellschaft Method for separating C2+-hydrocarbons or C3+-hydrocarbons from a hydrocarbon-rich fraction
US20150219394A1 (en) * 2014-01-31 2015-08-06 Uop Llc Natural gas liquids stabilizer with side stripper
US9523055B2 (en) * 2014-01-31 2016-12-20 Uop Llc Natural gas liquids stabilizer with side stripper
US11268757B2 (en) * 2017-09-06 2022-03-08 Linde Engineering North America, Inc. Methods for providing refrigeration in natural gas liquids recovery plants
US20210381757A1 (en) * 2020-06-03 2021-12-09 Chart Energy & Chemicals, Inc. Gas stream component removal system and method

Similar Documents

Publication Publication Date Title
US9534837B2 (en) Nitrogen removal with ISO-pressure open refrigeration natural gas liquids recovery
US7257966B2 (en) Internal refrigeration for enhanced NGL recovery
RU2641778C2 (en) Complex method for extraction of gas-condensate liquids and liquefaction of natural gas
US6516631B1 (en) Hydrocarbon gas processing
KR100939053B1 (en) Integrated ngl recovery and liquefied natural gas production
KR100891907B1 (en) Integrated ngl recovery in the production of liquefied natural gas
US8919148B2 (en) Hydrocarbon gas processing
AU2008251750B2 (en) Hydrocarbon gas processing
US8881549B2 (en) Hydrocarbon gas processing
US9021832B2 (en) Hydrocarbon gas processing
US20060218968A1 (en) High propane recovery process and configurations
SA110310707B1 (en) Hydrocarbon gas processing
US20190170435A1 (en) Hydrocarbon Gas Processing
US8840707B2 (en) Configurations and methods for gas condensate separation from high-pressure hydrocarbon mixtures
US9291387B2 (en) ISO-pressure open refrigeration NGL recovery
US10215488B2 (en) Treatment of nitrogen-rich natural gas streams
NO158478B (en) PROCEDURE FOR SEPARATING NITROGEN FROM NATURAL GAS.
US20110036120A1 (en) Method and apparatus for recovering and fractionating a mixed hydrocarbon feed stream
US20210381760A1 (en) Phase implementation of natural gas liquid recovery plants
NO329177B1 (en) Process and system for forming liquid LNG
US20100162755A1 (en) Method for Nitrogen Rejection and or Helium Recovery in an Liquefaction Plant
JP2019529853A (en) Pretreatment of natural gas prior to liquefaction
US20140060114A1 (en) Configurations and methods for offshore ngl recovery
US6658893B1 (en) System and method for liquefied petroleum gas recovery
CN102906232A (en) Process for treating a stream of cracked gas coming from a hydrocarbon pyrolysis plant, and associated plant

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION