RU2409421C2 - Способ изготовления носителя катализатора из отработанного катализатора - Google Patents

Способ изготовления носителя катализатора из отработанного катализатора Download PDF

Info

Publication number
RU2409421C2
RU2409421C2 RU2007127923/04A RU2007127923A RU2409421C2 RU 2409421 C2 RU2409421 C2 RU 2409421C2 RU 2007127923/04 A RU2007127923/04 A RU 2007127923/04A RU 2007127923 A RU2007127923 A RU 2007127923A RU 2409421 C2 RU2409421 C2 RU 2409421C2
Authority
RU
Russia
Prior art keywords
catalyst
carrier material
carrier
cobalt
titanium dioxide
Prior art date
Application number
RU2007127923/04A
Other languages
English (en)
Other versions
RU2007127923A (ru
Inventor
Маринус Йоханнес РЕЙНХАУТ (NL)
Маринус Йоханнес Рейнхаут
Ги Лоде Магда Мария ВЕРБИСТ (NL)
Ги Лоде Магда Мария Вербист
Original Assignee
Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шелл Интернэшнл Рисерч Маатсхаппий Б.В. filed Critical Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Publication of RU2007127923A publication Critical patent/RU2007127923A/ru
Application granted granted Critical
Publication of RU2409421C2 publication Critical patent/RU2409421C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/68Liquid treating or treating in liquid phase, e.g. dissolved or suspended including substantial dissolution or chemical precipitation of a catalyst component in the ultimate reconstitution of the catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу изготовления, а, кроме того, к способу рециркуляции или повторного использования материала-носителя катализатора такого, который применяется в процессе Фишера-Тропша. Описан способ изготовления материала-носителя катализатора из отработанного катализатора Фишера-Тропша на носителе, содержащего диоксид титана и кобальт, который включает: дробление отработанного катализатора на носителе; выщелачивание, по меньшей мере, 50% мас., кобальта из дробленного отработанного катализатора и дополнительное дробление полученного материала-носителя. Также описаны материал-носитель катализатора, изготовленный вышеописанным способом, применение данного материала-носителя катализатора, катализатор, содержащий данный материал-носитель и способ получения углеводородов с применением катализатора, содержащего данный материал-носитель. Технический результат - возможность применения отработанных материалов-носителей катализатора, которые обычно выбрасываются, а также обеспечение способа более эффективной рециркуляции активного компонента. 5 н. и 7 з.п. ф-лы.

Description

Настоящее изобретение относится к способу изготовления, а, кроме того, к способу рециркуляции или повторного использования материала-носителя катализатора такого, который применяется в процессе Фишера-Тропша. Предпочтительно материал-носитель отработанного катализатора Фишера-Тропша используется для изготовления нового катализатора Фишера-Тропша.
Процесс Фишера-Тропша может применяться для конверсии углеводородсодержащего сырья в жидкие и/или твердые углеводороды. Промышленное сырье (например, природный газ, попутный газ и/или метан угольных пластов, биомасса, нефтяные остатки и уголь) конвертируется на первой стадии в смесь водорода и монооксида углерода (эта смесь часто называется синтез-газом или сингазом). Затем синтез-газ подается в реактор, в котором он конвертируется при участии соответствующего катализатора при повышенной температуре и давлении в парафиновые соединения от метана до высокомолекулярных соединений, содержащих до 200 углеродных атомов или при определенных условиях даже больше.
Катализаторы обычно имеют активную часть, например, металл или металлсодержащий компонент, закрепленный на материале-носителе, который может быть в форме пористого огнеупорного оксида, такого как диоксид титана, диоксид кремния или оксид алюминия. Катализаторы дезактивируются со временем, и поэтому их необходимо периодически заменять с целью поддержания приемлемого выхода продукта.
Например, закрепленный кобальтовый катализатор в настоящее время используется в качестве катализатора реакции Фишера-Тропша, а также в некоторых других областях. Вредное действие на катализатор оказывают катализаторные яды, включающие целый ряд различных соединений, например, серо-, натрий-, азот- или углеродсодержащих соединений, которые все дезактивируют катализатор. Кроме того, может снижаться дисперсность металла или металлсодержащего компонента.
Помимо этого, спекание и агломерация частиц носителя сокращают площадь поверхности носителя и, как следствие, активность катализатора.
Как только экономические затраты на отключение реактора и замену катализатора становятся меньше, чем теряемая вследствие дезактивации катализатора прибыль, реактор отключают и катализатор заменяют. Дезактивированный катализатор можно обработать, например, азотной кислотой для вымывания некоторой части или предпочтительно всего количества относительно дорогостоящего кобальта, который можно выделить и использовать повторно. Однако носитель традиционно выбрасывается.
Целью настоящего изобретения является повторное использование материалов-носителей.
Согласно настоящему изобретению обеспечивается способ изготовления материала-носителя катализатора, который включает:
- получение отработанного материала-носителя катализатора путем выщелачивания каталитических компонентов из отработанного катализатора на носителе и
- дробление указанного материала-носителя катализатора таким образом, чтобы часть или весь раздробленный материал можно было использовать повторно, предпочтительно в качестве материала-носителя катализатора.
Благодаря этому, отработанный материал-носитель катализатора может использоваться повторно.
Таким образом, изобретение обеспечивает способ повторного применения материала-носителя катализатора, который включает:
- получение отработанного материала-носителя катализатора и
- дробление указанного материала-носителя катализатора путем выщелачивания каталитических компонентов из отработанного катализатора на носителе таким образом, чтобы часть или весь раздробленный материал можно было использовать повторно.
Изобретение обеспечивает также способ изготовления материала-носителя катализатора, включающий получение отработанного материала-носителя катализатора и дробление указанного материала-носителя катализатора.
Предпочтительно отработанный материал-носитель катализатора представляет собой кристаллический материал-носитель катализатора, соответственно кристаллические пористые огнеупорные оксиды.
Более предпочтительно материал-носитель катализатора представляет собой материал-носитель катализатора высокой кристалличности.
Пригодные для указанной цели материалы-носители катализатора включают огнеупорные оксиды, преимущественно пористые огнеупорные оксиды, такие как диоксид кремния, диоксид титана (рутил и анатаз), диоксид циркония, α-кварц, оксид алюминия, например, α-оксид алюминия, γ-оксид алюминия, θ-оксид алюминия, алюмосиликаты (Al2SiO4), диоксид кремния/оксид алюминия (например, ASA) и их смеси. Пригодными являются также CoTiO3, CoSiO3, MnTiO3, CoAl2O4, MnAl2O4 или их смеси, образование которых может происходить в течение срока службы катализатора и которые пригодны для применения в качестве материалов-носителей катализатора. Предпочтительно материал-носитель катализатора содержит, по меньшей мере, 90% мас. только одного материала-носителя в пересчете на общую массу материала-носителя; более предпочтительно, по меньшей мере, 95% мас.; наиболее предпочтительно - 98% мас. В случае смесей может происходить некоторое разделение на фазы, результатом чего является снижение однородности материала.
Предпочтительно способ настоящего изобретения обеспечивает также стадию обработки только части или всего отработанного катализатора для удаления части его активного компонента(ов). Пригодным способом для этого является способ выщелачивания кислотой или основанием, в ходе которого отработанный катализатор контактирует с раствором кислоты или основания, в котором растворяется его активный компонент. Можно использовать неорганические кислоты, например, соляную кислоту, азотную кислоту, серную кислоту, фосфорную кислоту, а также органические кислоты, например, муравьиную кислоту, уксусную кислоту, щавелевую кислоту, бензойную кислоту и др. Пригодными основаниями являются гидроксид натрия, гидроксид калия и гидроксид кальция. Азотная кислота (или, например, смесь азотной кислоты с соляной кислотой) очень подходит для удаления некоторых активных компонентов, главным образом, железа, кобальта и никеля. При этом могут также удаляться загрязнители, такие как натрий, азот и сера, которые могут присутствовать в отработанном катализаторе.
Проведен анализ образца диоксида титана после выщелачивания. Образец диоксида титана предварительно был использован в качестве материала-носителя катализатора, наряду с кобальтом в качестве активного компонента и марганцем в качестве промотора. Он содержал, как было установлено, 0,1% мас. кобальта и 0,1% мас. марганца и имел средний размер кристаллов 40-50 нм.
Можно удалить, по меньшей мере, 50% мас. активного компонента; предпочтительно, по меньшей мере, 80% мас.; более предпочтительно, по меньшей мере, 90% мас. Активным компонентом преимущественно является кобальт.
Предпочтительно отработанный материал-носитель катализатора дробится перед удалением из него активного компонента, более предпочтительно - частично дробится с тем, чтобы облегчить процесс удаления активного компонента. Это частичное или предварительное дробление предпочтительно уменьшает размер частиц до величины от 10 до 15 мкм.
Необязательно отработанный катализатор кальцинируется с целью удаления некоторых дезактивированных соединений, таких как серо- и/или углеродсодержащие соединения. Обычно кальцинирование проводится после удаления части активного компонента. Обычно кальцинирование осуществляется после начальной стадии дробления. Кальцинирование обычно проводится на воздухе при температурах от 200 до 800°С, преимущественно от 300 до 650°С, в течение от 0,5 до 18 часов.
Отработанный материал-носитель катализатора предпочтительно дробится до достижения требуемого среднего размера частиц. Дробление предпочтительно проводится после кальцинирования. Предпочтительно средний размер частиц после дробления составляет менее 1 мкм.
Дробление можно осуществлять таким образом, чтобы скорее разрушались агломерированные частицы на единичные частицы, чем отдельные частицы, поскольку для дробления отдельной частицы требуется непропорционально более высокое количество энергии, чем для дробления агломератов единичных частиц.
Предпочтительно способ настоящего изобретения включает также стадию смешивания раздробленного отработанного материала-носителя катализатора с новым материалом-носителем катализатора перед его повторным использованием.
Термин "новый материал-носитель катализатора" в контексте настоящего описания включает материалы-носители катализатора, которые являются свежеизготовленными, не отработанными и не использовались ранее в качестве материала-носителя катализатора.
Обычно раздробленный отработанный материал-носитель катализатора имеет средний размер частиц 1000 нм, которые образовались из агломерированных первичных частиц размером около 40-50 нм. Предпочтительно новый материал-носитель катализатора имеет средний размер первичных частиц 30 нм, что позволяет получить комбинированный (отработанный + новый) материал-носитель катализатора со средним размером кристаллов третьего, заданного размера, например, около 35 нм.
Первичные частицы - это те частицы, которые можно увидеть под трансмиссионным электронным микроскопом (ТЕМ), или средний размер которых рассчитывается исходя из площади поверхности.
В случае кристаллических материалов первичные частицы представляют собой кристаллы.
Предпочтительно, по меньшей мере, 5% комбинированного катализатора составляет отработанный катализатор, более предпочтительно, по меньшей мере, 10% комбинированного катализатора составляет отработанный катализатор. В определенных вариантах осуществления изобретения новый и отработанный материалы-носители катализатора смешиваются в отношении 1:1.
Обычно отработанный материал-носитель катализатора можно использовать вторично, предпочтительно в качестве материала-носителя катализатора.
Повторно используемый материал-носитель катализатора можно комбинировать с активным компонентом путем предварительного смешивания и экструзии, распылительной сушки, пропитки или любым другим традиционным способом.
Предпочтительно содержание активного компонента, который остается на отработанном материале-носителе катализатора (или та часть активного компонента, оставшаяся после удаления некоторого его количества), определяют перед добавлением дополнительного активного компонента к комбинированному материалу-носителю катализатора перед его повторным применением. Типичными активными компонентами являются кобальт, железо или рутений либо их комбинации.
Предпочтительно, чтобы остаточное содержание любого промотора на отработанном материале-носителе катализатора определялось еще до добавления дополнительного промотора к комбинированному материалу-носителю катализатора. Типичные промоторы включают марганец, рутений, платину, рений, цирконий, ванадий и др. На практике примерно 80% мас. промотора (от массы только металла) может оставаться как остаточное содержание на материале-носителе катализатора. Предпочтительно, по меньшей мере, 40% мас. первоначального промотора (от массы только металла) остается на носителе, более предпочтительно - 60% мас., наиболее предпочтительно - 80% мас. Следует иметь в виду, что термин "каталитические компоненты" относится к каталитически активным металлсодержащим компонентам (например, кобальту, железу, никелю и др.) и не включает соединения-промоторы (например, рений, платину, марганец, ванадий и др.).
Соотношение кристаллических форм материала-носителя, например, диоксида титана, можно также сбалансировать, если определить содержание кристаллических форм в отработанном катализаторе и учесть его при комбинировании с новым катализатором. Например, в случае повторного использования диоксида титана заданное пропорциональное отношение анатаз:рутил может составлять 80%:20%. Если же количество анатаза в отработанном материале-носителе катализатора ниже, например, 70%, а количество рутила выше, например, 30%, то смешивание с новым диоксидом титана можно проводить при пропорционально более высоком количестве анатаза, к примеру, 90% и при более низком количестве рутила, к примеру, 10%. Это обеспечит общее содержание анатаза/рутила в комбинации из отработанного и нового диоксида титана, соответствующее указанному выше, заданному соотношению - 80% анатаза и 20% рутила.
Долю такой кристаллической формы диоксида титана, как брукит, также можно увеличить таким путем. Некоторые материалы-носители катализатора могут содержать, например, 70% брукита и 30% рутила. В таком случае нет необходимости смешивать отработанный материал-носитель катализатора с новым материалом-носителем катализатора для достижения той доли материала или кристаллической фазы, какая использовалась ранее, поскольку можно применять другие пропорции или смеси. Например, новый брукит можно добавить к отработанному материалу-носителю катализатора, который ранее был приготовлен, в основном, из анатаза и рутила без брукита.
В случае рециркуляции оксида алюминия отношение кристаллических форм оксида алюминия (альфа, гамма и тэта) можно также регулировать путем соответствующего подбора пропорциональных количеств различных кристаллических форм в новом материале-носителе катализатора с тем, чтобы обеспечить заданное отношение различных кристаллических форм в комбинированном материале-носителе катализатора.
Следующее преимущество определенных вариантов осуществления изобретения заключается в пропорции между новым рутилом и анатазом, требуемой для достижения заданного отношения при смешивании с отработанным диоксидом титана: эту новую пропорцию легче обеспечить в промышленном масштабе, чем заданное отношение, и, благодаря этому, повторное применение отработанного диоксида титана и смешивание его с новым диоксидом титана может позволить использовать менее дорогостоящий новый диоксид титана.
Варианты осуществления изобретения обеспечивают преимущество тем, что они требуют меньшего количества промотора и/или активного компонента, поскольку отработанный носитель катализатора может иметь остаточное содержание этого материала. Это особенно справедливо в случае марганца, который используется в катализаторах, в основном, в комбинации с кобальтом. По всей видимости, на пористых огнеупорных оксидах, преимущественно диоксиде титана, такой марганецсодержащий слой формируется на поверхности. Это означает, что при повторном применении отработанного носителя катализатора можно использовать значительно меньшее количество промотора, поскольку не весь, а только небольшая часть марганца в качестве промотора вымывается из носителя.
Варианты осуществления изобретения обеспечивают преимущество тем, что рециркулируемый материал-носитель катализатора не стремится абсорбировать часть вновь добавляемого активного компонента, а скорее активный компонент остается на его поверхности, облегчая, тем самым, течение реакции, которую он катализирует. Это можно объяснить тем, что рециркулируемый материал-носитель катализатора все еще содержит остаточное количество абсорбированного на нем активного компонента, даже если основная часть первоначального активного компонента была удалена, например, выщелачиванием.
Следовательно, в случае повторного применения материала-носителя катализатора может потребоваться более низкое количество активного компонента.
Варианты осуществления изобретения обеспечивают преимущество тем, что комбинированный материал-носитель катализатора, включающий отработанный и новый материалы-носители катализатора, может содержать какую-то долю частиц большего размера, чем новый материал-носитель. Комбинация частиц различного размера добавляет прочности катализатору. Например, при повторном применении диоксида титана использованные частицы рутила будут иметь больший размер, чем новые частицы рутила, что приводит к получению комбинированного носителя (из нового и отработанного носителей) большей прочности по сравнению с полностью новым носителем традиционного изготовления.
Для вариантов осуществления настоящего изобретения установлено также, что старение материала-носителя катализатора происходит медленнее в случае использования рециркулируемого материала.
Традиционный способ удаления активного компонента из материала-носителя очень жесткий из-за высокой стоимости активного компонента. В определенных вариантах осуществления настоящего изобретения способ удаления активного компонента может быть менее жестким и за счет этого значительно менее дорогостоящим, поскольку активный компонент может оставаться на материале-носителе катализатора и таким путем использоваться повторно.
Еще одним преимуществом такого варианта осуществления изобретения является то, что следовые количества примесей, обычно обнаруживаемые в новых материалах-носителях, например, TiOCl2, являющегося примесью в некоторых видах диоксида титана, намного ниже в рециркулируемом материале, поскольку они вымываются из диоксида титана с помощью HCl еще в процессе его предшествующего применения. Эти примеси снижают активность катализатора, могут нанести вред оборудованию и могут комбинироваться с углеводородами с образованием нежелательных хлоро-углеводородных примесей, а за счет рециркуляции материала-носителя их количество предпочтительно минимизируется.
Таким образом, варианты осуществления настоящего изобретения обеспечивают преимущество тем, что в них количество указанных примесей, подлежащих удалению, намного меньше.
Рециркулируемый материал может использоваться повторно и после этого рециркулировать еще много раз.
Следовательно, изобретение обеспечивает также применение носителя катализатора, изготовленного, по меньшей мере, частично, путем дробления отработанного материала-носителя катализатора.
В предпочтительном варианте осуществления отработанный носитель катализатора может быть диоксидом кремния, диоксидом титана или оксидом алюминия, предпочтительно диоксидом титана или оксидом алюминия, а металлсодержащий компонент может быть железо- или кобальтсодержащим компонентом, предпочтительно кобальтсодержащим компонентом; в то же время может присутствовать еще второй металлсодержащий компонент, выбираемый из рения, платины, циркония, ванадия или марганца, предпочтительно марганца.
В следующем предпочтительном варианте осуществления отработанный материал-носитель катализатора получают путем выщелачивания, по меньшей мере, 50% мас. металлсодержащих компонентов из отработанного катализатора; предпочтительно - 80% мас. металлсодержащих компонентов; более предпочтительно - 90% мас., причем металлсодержащими компонентами предпочтительно являются металлы VIII группы, более предпочтительно - железо-, кобальт- или никельсодержащие компоненты, наиболее предпочтительно - кобальтсодержащие компоненты.
Изобретение обеспечивает также материал-носитель катализатора, изготовленный способом согласно первому аспекту изобретения.
Изобретение обеспечивает также катализатор, содержащий материал-носитель катализатора, изготовленный способом согласно первому аспекту изобретения, и каталитически активный материал.
Для изготовления нового материала-носителя катализатора вовсе не обязательно брать для повторного использования материал от отработанного катализатора, а можно использовать другие отработанные материалы, например, материалы, используемые в нанотехнологиях, солнечных батареях, медицине и др.
Поэтому изобретение обеспечивает также способ приготовления катализатора, включающий:
- получение отработанного кристаллического материала;
- добавление активного компонента к указанному кристаллическому материалу с образованием катализатора;
преимущественно включающий специфические и предпочтительные варианты, описанные выше.
Обычно используемый кристаллический материал дробится перед добавлением к нему активного компонента.
Обычно с отработанным кристаллическим материалом могут осуществляться также другие стадии, аналогичные стадиям, выполняемым с отработанным материалом-носителем катализатора.
Настоящее изобретение пригодно, в частности, для применения для рециркуляции диоксида титана, независимо от его использования, либо в качестве носителя катализатора или в другом качестве, более предпочтительно для рециркуляции диоксида титана, использовавшегося в реакторах Фишера-Тропша, преимущественно в соответствии со специфическими и предпочтительными вариантами осуществления, описанными выше.
Продукты синтеза по Фищеру-Тропшу могут варьировать от метана до тяжелых парафиновых восков. Предпочтительно образование метана минимизируется, а значительная часть образующихся углеводородов содержит углеродную цепочку, по меньшей мере, из 5 атомов углерода. Предпочтительно количество С5+ углеводородов составляет, по меньшей мере, 60% мас. общего продукта; более предпочтительно, по меньшей мере, 70% мас.; еще более предпочтительно, по меньшей мере, 80% мас.; наиболее предпочтительно, по меньшей мере, 85% мас. Продукты реакции, которые представляют собой жидкую фазу в условиях реакции, можно отделить и удалить с помощью соответствующих средств, таких как один или более фильтров. Для этого можно использовать внутренние или наружные фильтры либо их комбинацию. Продукты в виде газовой фазы, такие как легкие углеводороды и вода, можно удалять с помощью соответствующих средств, известных квалифицированному в данной области техники специалисту.
Катализаторы процесса Фишера-Тропша известны из уровня техники и обычно включают компонент, содержащий металл VIII группы, предпочтительно кобальт, железо и/или рутений, более предпочтительно - кобальт. Обычно катализаторы содержат носитель катализатора.
Носитель катализатора предпочтительно является пористым, таким как пористый неорганический огнеупорный оксид, более предпочтительно, таким как оксид алюминия, диоксид кремния, диоксид титана, диоксид циркония или их смеси. Оптимальное количество каталитически активного металла, присутствующего на носителе, зависит, помимо прочего, от специфической активности каталитически активного металла. Обычно количество кобальта, присутствующего в катализаторе, может варьировать от 1 до 100 мас. частей на 100 мас. частей материала-носителя; предпочтительно - от 10 до 50 мас. частей на 100 мас. частей материала-носителя.
Каталитически активный металл может присутствовать в катализаторе вместе с одним либо более металлов-промоторов, или со-катализаторов. Промоторы могут присутствовать в форме металлов или оксидов металлов, в зависимости от конкретного вида промотора. Пригодные для данной цели промоторы включают оксиды металлов групп IIА, IIIB, IVB, VB, VIB и/или VIIB Периодической таблицы; оксиды лантанидов и/или актинидов. Предпочтительно катализатор содержит, по меньшей мере, один из элементов группы IVB, VB и/или VIIB Периодической таблицы, в частности, титан, цирконий, марганец и/или ванадий. В качестве альтернативы или в дополнение к промотору в форме оксида металла катализатор может содержать металл-промотор, выбираемый из групп VIIB и/или VIII Периодической таблицы. Предпочтительные металлы-промоторы включают рений, платину и палладий.
Наиболее пригодный катализатор содержит кобальт в качестве каталитически активного металла и цирконий в качестве промотора. Другой наиболее пригодный катализатор содержит кобальт в качестве каталитически активного металла и марганец и/или ванадий в качестве промотора. Предпочтительно катализатор является экструдированным катализатором, пригодным для применения в многотрубчатых реакторах с неподвижным слоем катализатора.
Промотор, если таковой присутствует в катализаторе, обычно содержится в количестве от 0,1 до 60 мас. частей на 100 мас. частей материала-носителя. Однако желательно, чтобы оптимальное количество промотора могло изменяться в случае каждого из соответствующих элементов, действующих как промотор. Если катализатор содержит кобальт в качестве каталитически активного металла и марганец и/или ванадий в качестве промотора, то атомное отношение кобальт к (марганец+ванадий) предпочтительно будет составлять, по меньшей мере, 12:1.
Синтез по Фишеру-Тропшу предпочтительно проводится при температуре от 125 до 350°С, более предпочтительно - от 175 до 275°С, наиболее предпочтительно от 200 до 260°С. Давление предпочтительно колеблется от 5 до 150 абс. бар., более предпочтительно от 5 до 80 абс. бар.
Водород и монооксид углерода (синтез-газ) обычно поступает в трехфазный суспензионный реактор молярном соотношении от 0,4 до 2,5. Предпочтительно молярное отношение водорода к монооксиду углерода составляет от 1,0 до 2,5.
Среднечасовая объемная скорость подачи газообразной фазы может варьировать в широких пределах: обычно от 1500 до 10000 нл/л/ч, предпочтительно от 2500 до 7500 нл/л/ч.
Само собой разумеется, что квалифицированный в данной области техники специалист может самостоятельно подобрать наиболее приемлемые условия в зависимости от специфики конфигурации и режима работы реактора. Понятно, что предпочтительные условия могут зависеть от предпочтительного режима работы.
Возможны также улучшения и модификации без отклонения от объема настоящего изобретения.
Изобретение включает также способ получения углеводородов из синтез-газа с использованием рециркулируемого материала-носителя, как описывалось ранее, в качестве материала-носителя для изготовления катализаторов процесса Фишера-Тропша, как описано выше. Изобретение касается также углеводородов, полученных в указанном процессе, необязательно после гидроконверсии. Эти продукты включают фракции нефти - лигроин, керосин, газойль и базовые масла.
Пример 1
Отработанный катализатор Фишера-Тропша (экструдаты кобальта-марганца-диоксида титана (Р25)) обрабатывали (после дробления) азотной кислотой с целью выщелачивания содержащегося в нем кобальта. Полученный материал-носитель содержал около 0,1% мас. кобальта и 0,1% мас. марганца (в пересчете на общую массу носителя). После последующего дробления части материала-носителя средний размер кристаллов составил примерно 45 нм. Этот материал-носитель использовали для изготовления нового катализатора, имеющего такой же состав, что и первоначальный (новый) катализатор. После активирования катализатор показал примерно такую же активность в процессе Фишера-Тропша, что и первоначальный (новый) катализатор. Таким образом, регенерированный носитель на основе диоксида титана можно использовать взамен нового (т.е. не использовавшегося ранее) носителя на основе диоксида титана.
Пример 2
Получают отработанный катализатор Фишера-Тропша (кобальт-марганец на диоксиде титана в виде экструдата Р25). Количество кобальта в отработанном катализаторе (до выщелачивания) составляет около 20 мас.% в расчете на общий вес катализатора. Отношение анатаз:рутил в диоксиде титана в отработанном материале составляет 75:25 (первое отношение).
Отработанный катализатор Фишера-Тропша дробили до среднего размера частиц около 1000 нм и выщелачивали азотной кислотой для удаления кобальта из катализатора.
Получали материал-носитель, содержащий около 0,1 мас.% кобальта и 0,1 мас.% марганца в расчете на общий вес носителя. Таким образом, более 50 мас.% кобальта было выщелочено.
После дальнейшего дробления материала-носителя средний размер частиц составил 45 нм (первый средний размер). Этот материал был использован для получения нового катализатора, имеющего тот же состав, что и исходный, свежий катализатор.
Выщелоченный и измельченный материал отработанного катализатора комбинировали со свежим диоксидом титана (Р25) в эквивалентных количествах. Средний размер частиц диоксида титана составлял около 30 нм (второй средний размер). Отношение анатаз:рутил составило 84:16 (второе отношение).
В результате комбинирования получили комбинированный материал, имеющий средний размер частиц около 40 нм (третий средний размер). Отношение анатаз:рутил в комбинированном материале составило 80:20 (третье отношение).
К катализатору добавили кобальт, чтобы новый катализатор содержал около 20 мас.% кобальта в расчете на общий вес катализатора.
Материал экструдировали и кальцинировали, т.е. прокаливали при 550°С.
После активации катализатор показал такую же активность, что и свежий катализатор Фишера-Тропша.
Таким образом, можно повторно использовать носитель из диоксида титана вместо нового, т.е. не использовавшегося ранее, диоксида титана.

Claims (12)

1. Способ изготовления материала-носителя катализатора из отработанного катализатора Фишера-Тропша на носителе, содержащего диоксид титана и кобальт, который включает:
дробление отработанного катализатора на носителе;
выщелачивание, по меньшей мере, 50 мас.% кобальта из дробленного отработанного катализатора и
дополнительное дробление полученного материала-носителя.
2. Способ по п.1, дополнительно включающий стадию смешивания части или всего дополнительно дробленного материала-носителя с новым диоксидом титана, используемым в качестве материала-носителя катализатора.
3. Способ по п.2, в котором дополнительно дробленный материал-носитель имеет первый средний размер частиц, новый материал-носитель имеет второй средний размер частиц и комбинированный материал-носитель имеет третий размер частиц.
4. Способ по п.2, в котором дополнительно дробленный материал-носитель имеет первое отношение анатаз:рутил в диоксиде титана, новый материал-носитель имеет второе отношение анатаз:рутил в диоксиде титана, и комбинированный материал-носитель имеет третье отношение анатаз:рутил в диоксиде титана.
5. Способ по любому из пп.1-4, в котором отработанный катализатор Фишера-Тропша на носителе дополнительно содержит марганец.
6. Способ по любому из пп.1-4, в котором материал-носитель катализатора, полученный после стадии выщелачивания, кальцинируют.
7. Способ по любому из пп.1-4, в котором материал-носитель отработанного катализатора используют повторно в качестве материала-носителя катализатора.
8. Способ по любому из пп.1-4, в котором по меньшей мере 80 мас.% кобальта выщелачивают из измельченного отработанного катализатора.
9. Материал-носитель катализатора, изготовленный способом по любому из предшествующих пп.1-8.
10. Применение материала-носителя катализатора по п.9 в процессе Фишера-Тропша.
11. Катализатор, содержащий материал-носитель катализатора по п.9 и кобальт.
12. Способ получения углеводородов с применением катализатора по п.11.
RU2007127923/04A 2004-12-23 2005-12-21 Способ изготовления носителя катализатора из отработанного катализатора RU2409421C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04106937 2004-12-23
EP04106937.8 2004-12-23

Publications (2)

Publication Number Publication Date
RU2007127923A RU2007127923A (ru) 2009-01-27
RU2409421C2 true RU2409421C2 (ru) 2011-01-20

Family

ID=34930146

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007127923/04A RU2409421C2 (ru) 2004-12-23 2005-12-21 Способ изготовления носителя катализатора из отработанного катализатора

Country Status (11)

Country Link
US (1) US7811967B2 (ru)
EP (1) EP1827685A1 (ru)
JP (1) JP2008525171A (ru)
KR (1) KR20070086102A (ru)
CN (1) CN100586562C (ru)
AU (1) AU2005318130B2 (ru)
CA (1) CA2591795A1 (ru)
MY (1) MY140315A (ru)
RU (1) RU2409421C2 (ru)
WO (1) WO2006067169A1 (ru)
ZA (1) ZA200704680B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2705574C1 (ru) * 2018-02-27 2019-11-08 Индийская Нефтяная Корпорация Лимитэд Каталитическая композиция для превращения алканов в алкены и способ ее получения

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003837B2 (en) 2005-07-22 2011-08-23 Basf Se Catalysts for dehydrogenation and/or hydrogenation of hydrocarbons, processes for preparing the same, and uses therefor
US9018128B2 (en) 2007-09-14 2015-04-28 Res Usa Llc Promoted, attrition resistant, silica supported precipitated iron catalyst
US8343887B2 (en) 2007-10-31 2013-01-01 Chevron U.S.A. Inc. Hydroconversion processes employing multi-metallic catalysts and method for making thereof
CN101543783B (zh) * 2008-03-27 2011-03-30 中国石油化工股份有限公司石油化工科学研究院 一种悬浮床加氢裂化催化剂及其制备方法和应用
US20090271306A1 (en) * 2008-04-29 2009-10-29 Iovation Inc. System and Method to Facilitate Secure Payment of Digital Transactions
US7964526B2 (en) * 2009-04-29 2011-06-21 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
US8383543B2 (en) 2009-04-29 2013-02-26 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
US7931799B2 (en) * 2009-04-29 2011-04-26 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
US7964525B2 (en) * 2009-04-29 2011-06-21 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
US8080492B2 (en) * 2009-04-29 2011-12-20 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
US8058203B2 (en) * 2009-04-29 2011-11-15 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
US7964524B2 (en) * 2009-04-29 2011-06-21 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
JP5535769B2 (ja) * 2010-06-02 2014-07-02 三菱重工業株式会社 排ガス処理触媒の再生方法及びこの方法を使用した排ガス処理触媒
CN103052445B (zh) * 2010-08-13 2015-09-16 国际壳牌研究有限公司 可用于烃原料加氢处理中的含螯合剂和极性添加剂的组合物及其制造和使用方法
BR112013002989B1 (pt) * 2010-08-13 2019-04-02 Shell Internationale Research Maatschappij B.V. Composição de catalisador de hidroprocessamento e método para produzir uma composição de catalisador de hidroprocessamento
CN102441440B (zh) * 2010-10-13 2014-05-21 中国石油化工股份有限公司 一种由废催化剂制备加氢处理催化剂的方法
CN102861581B (zh) * 2011-07-04 2014-07-23 中国石油化工股份有限公司 一种钴基费托合成催化剂的制备方法
SG188753A1 (en) * 2011-09-30 2013-04-30 Bharat Petroleum Corp Ltd Sulphur reduction catalyst additive composition in fluid catalytic cracking and method of preparation thereof
CN102583580B (zh) * 2012-03-05 2014-03-12 武汉凯迪工程技术研究总院有限公司 利用Co/SiO2废催化剂制备高纯硝酸钴晶体的方法
US9504993B2 (en) 2012-09-05 2016-11-29 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalysts and method for making thereof
KR101464994B1 (ko) * 2014-05-28 2014-11-25 허승주 촉매폐기물을 이용하여 질소산화물 제거용 선택적 환원촉매의 제조를 위한 촉매지지체 및 그 제조방법
CN105709853B (zh) * 2014-12-04 2018-10-12 中国石油化工股份有限公司 一种回收利用废加氢催化剂的方法
CN107949623B (zh) 2015-09-04 2020-11-13 科莱恩公司 可用于费-托方法的催化剂载体材料和催化剂材料
CN106669847B (zh) * 2015-11-09 2019-03-19 中国石油化工股份有限公司 一种氧化铝载体的制备方法
CN107149941B (zh) * 2016-03-03 2020-03-10 许承柱 利用催化废弃物的选择性还原反应的低温脱硝催化剂及其制造方法
WO2019211787A1 (en) * 2018-05-02 2019-11-07 Colorobbia Consulting S.R.L. NITROGEN-DOPED TiO2 NANOPARTICLES AND THE USE THEREOF IN PHOTOCATALYSIS
CN111068665B (zh) * 2018-10-22 2023-08-11 中国石油化工股份有限公司 一种选择加氢催化剂及制备方法
CN111068684B (zh) * 2018-10-22 2023-10-20 中国石油化工股份有限公司 一种粗辛醇液相加氢催化剂及制备方法
CN109516784A (zh) * 2018-12-26 2019-03-26 高化学(江苏)化工新材料有限责任公司 一种处理催化剂生产废水微滤膜的制备方法
CN114573022A (zh) * 2022-03-15 2022-06-03 北京化工大学 资源化利用废弃二氧化钛基催化剂制备高纯纳米二氧化钛的方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE286924C (ru)
US2369956A (en) * 1936-10-06 1945-02-20 Feisst Walter Synthesis of multilink hydrocarbons from hydrogen and carbon monoxide
US3804647A (en) * 1971-12-15 1974-04-16 Corning Glass Works Porous glass supports for automotive emissions control catalysts
US3928236A (en) * 1974-11-25 1975-12-23 Kaiser Aluminium Chem Corp Alumina catalyst carriers and the process for producing them
DD271997A3 (de) * 1982-02-15 1989-09-27 Leuna Werke Veb Gekoppeltes reaktivierungs- und herstellungsverfahren fuer oxydationskatalysatoren
DE4006918A1 (de) 1990-03-06 1991-09-12 Basf Ag Verfahren zum aufarbeiten von katalysatoren
CN1026556C (zh) 1990-12-21 1994-11-16 齐鲁石油化工公司研究院 废旧烃类蒸汽转化催化剂的回收复用方法
US5250483A (en) * 1992-05-22 1993-10-05 Geo-Microbial Technologies, Inc. Method for treatment of catalysts using denitrifying bacteria
DE4237740A1 (de) 1992-11-09 1994-05-11 Basf Ag Verfahren zur Herstellung von Eisen, Kalium und Cer enthaltenden Katalysatoren
DE4419974C2 (de) 1994-06-08 1996-10-17 Huels Chemische Werke Ag Verfahren zur Herstellung eines geformten Katalysators auf der Basis von Titandioxid sowie dessen Verwendung
DE19502747C1 (de) * 1995-01-18 1997-04-24 Mannesmann Ag Katalysator zum oxidativen Dehydrieren oder Cracken von paraffinischen Kohlenwasserstoffen
DK0770426T3 (da) * 1995-10-27 2003-09-08 Akzo Nobel Nv Fremgangsmåde til fremstilling af en hydrogeneringskatalysator ud fra spildkatalysatorer
US6030915A (en) * 1996-03-11 2000-02-29 Akzo Nobel N.V. Process for preparing a large pore hydroprocessing catalyst
US5928980A (en) * 1997-02-06 1999-07-27 Research Triangle Institute Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts
US6562986B2 (en) * 1997-06-30 2003-05-13 Dow Global Technologies, Inc. Process for the direct oxidation of olefins to olefin oxides
US6331574B1 (en) * 1999-10-08 2001-12-18 Exxonmobil Research And Engineering Company Process for the preparation of high activity carbon monoxide hydrogenation catalysts; the catalyst compositions, use of the catalysts for conducting such reactions, and the products of such reactions
EP1240943A1 (en) * 2000-10-21 2002-09-18 Degussa AG Catalyst support
GB0222240D0 (en) * 2002-09-25 2002-10-30 Ici Plc Cobalt catalysts
WO2004043591A1 (en) * 2002-11-07 2004-05-27 Tufts University Catalyst having metal in reduced quantity and reduced cluster size
US7001866B2 (en) * 2002-11-13 2006-02-21 Conocophillips Company Modification of the pore structure of metal oxide and mixed metal oxide supports for catalysts synthesis
US7419928B2 (en) * 2003-04-11 2008-09-02 Exxonmobil Research And Engineering Company Fischer-Tropsch catalyst production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2705574C1 (ru) * 2018-02-27 2019-11-08 Индийская Нефтяная Корпорация Лимитэд Каталитическая композиция для превращения алканов в алкены и способ ее получения

Also Published As

Publication number Publication date
RU2007127923A (ru) 2009-01-27
AU2005318130B2 (en) 2009-04-30
EP1827685A1 (en) 2007-09-05
CN100586562C (zh) 2010-02-03
JP2008525171A (ja) 2008-07-17
ZA200704680B (en) 2008-09-25
WO2006067169A1 (en) 2006-06-29
US7811967B2 (en) 2010-10-12
AU2005318130A1 (en) 2006-06-29
CN101087652A (zh) 2007-12-12
US20080306172A1 (en) 2008-12-11
KR20070086102A (ko) 2007-08-27
CA2591795A1 (en) 2006-06-29
MY140315A (en) 2009-12-31

Similar Documents

Publication Publication Date Title
RU2409421C2 (ru) Способ изготовления носителя катализатора из отработанного катализатора
EP2606104B1 (en) Fischer-tropsch catalyst regeneration
US20080262114A1 (en) Fischer-tropsch catalyst support and catalyst
EP1807198B1 (en) Synthesis of hydrocarbons using titania catalysts
US5300212A (en) Hydroconversion process with slurry hydrotreating
AU2007332615B2 (en) Process for preparing a catalyst
US20030144366A1 (en) Catalyst regeneration
JPS6114289A (ja) 石油の2段階水素化処理方法
US6777451B2 (en) Catalyst enhancement
AU2002358297B2 (en) Regeneration of supported catalysts for carbon monoxide hydrogenation
WO2005102969A2 (en) Process for removing contaminants from fischer-tropsch feed streams
US20090143491A1 (en) Process for stabilising a catalyst
US7615142B2 (en) Expanded bed reactor system and method for hydroprocessing wax produced by Fischer-Tropsch reaction and contaminated with solids
US20030075479A1 (en) Zeolite catalyst carrier and hydrogenation catalyst using same
WO2008003731A1 (en) Process for preparing a catalyst
JP3143672B2 (ja) 非担持硫化タングステン触媒及びその製法、並びに炭化水素の水素化方法
JP2011052150A (ja) 石油系炭化水素の処理方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20111222