RU2406861C2 - Ракетный двигатель (варианты) и способ увеличения удельного импульса тяги ракетного двигателя - Google Patents

Ракетный двигатель (варианты) и способ увеличения удельного импульса тяги ракетного двигателя Download PDF

Info

Publication number
RU2406861C2
RU2406861C2 RU2007127462/06A RU2007127462A RU2406861C2 RU 2406861 C2 RU2406861 C2 RU 2406861C2 RU 2007127462/06 A RU2007127462/06 A RU 2007127462/06A RU 2007127462 A RU2007127462 A RU 2007127462A RU 2406861 C2 RU2406861 C2 RU 2406861C2
Authority
RU
Russia
Prior art keywords
fuel
engine
working chamber
wall
cooled
Prior art date
Application number
RU2007127462/06A
Other languages
English (en)
Other versions
RU2007127462A (ru
Inventor
Луис Дж. СПАДАЧЧИНИ (US)
Луис Дж. СПАДАЧЧИНИ
Original Assignee
Юнайтид Текнолоджиз Копэрейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юнайтид Текнолоджиз Копэрейшн filed Critical Юнайтид Текнолоджиз Копэрейшн
Publication of RU2007127462A publication Critical patent/RU2007127462A/ru
Application granted granted Critical
Publication of RU2406861C2 publication Critical patent/RU2406861C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/64Reversing fan flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/44Feeding propellants
    • F02K9/46Feeding propellants using pumps
    • F02K9/48Feeding propellants using pumps driven by a gas turbine fed by propellant combustion gases or fed by vaporized propellants or other gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/97Rocket nozzles
    • F02K9/972Fluid cooling arrangements for nozzles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Supercharger (AREA)

Abstract

Изобретение обносится к топливной системе ракетного двигателя. Стенка камеры сгорания ракетного двигателя работает как секция теплообменника, в которой происходит подогрев проходящего топлива. Ракетный двигатель содержит устройство дезоксигенирования топлива и охлаждаемую топливом стенку рабочей камеры двигателя, сообщающуюся с указанным устройством дезоксигенирования. Способ увеличения удельного импульса тяги ракетного двигателя заключается в том, что осуществляют дезоксигенирование топлива, передают дезоксигенированное топливо через охлаждаемую топливом стенку рабочей камеры сгорания, затем передают его от охлаждаемой топливом стенки рабочей камеры в узел рабочей камеры двигателя. Изобретение обеспечивает увеличение удельного импульса ракетного двигателя. 3 н. и 7 з.п. ф-лы, 4 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к топливной системе ракетного двигателя и, в частности, к топливной системе, снабженной устройством дезоксигенирования, в котором селективно удаляется кислород, так что полезная теплопоглощающая способность топлива существенно возрастает, что в итоге дает увеличение удельного импульса ракетного двигателя.
В связи с возрастающей потребностью в системах с ракетным топливом, пригодным для длительного хранения, все большее распространение получают ракетные двигателя многократного использования с циклом расширения охладителя, использующие в качестве топлива керосин.
Уровень техники
Ракетные двигатели на керосиновом топливе с циклом расширения охладителя работают при больших давлениях горения (что увеличивает тягу и удельный импульс, а также снижает вес) и нуждаются в топливе с более высокой теплопоглощающей способностью, чтобы скомпенсировать возросшее при этом выделение тепла.
Тепло, возникающее в процессе горения в ракетном двигателе, заключено в выходных газах. Большая часть этого тепла выбрасывается наружу с газом, который это тепло содержит, однако значительная часть его все же передается через стенки рабочей камеры двигателя. В охлаждаемой топливом рубашке, охватывающей рабочую камеру двигателя, состоящую из камеры сгорания, камеры сопла и горловины между ними, для охлаждения камеры сгорания используют теплопоглощающую способность топлива и его испарение в регенеративном цикле охлаждения. Пары топлива пропускают через турбину, мощность которой идет на приведение в действие насосов, перекачивающих ракетное топливо в камеру сгорания, и затем инжектируют в основную камеру сгорания для сжигания с окислителем. Подобную схему обычно используют для такого легко испаряющегося топлива, как водород или метан, имеющих низкую точку кипения. Ракетное топливо сжигают в камере сгорания при оптимальном соотношении компонентов, и обычно выброс его наружу отсутствует, причем теплопередача топливу ограничивает достижимую мощность турбины, что накладывает ограничения на цикл расширения охладителя в двигателях малого и среднего размера. Вариантом такой системы является открытый цикл или цикл с выбросом топлива, в котором для вращения турбины используют только часть топлива. В этом варианте выхлопные газы турбины выбрасываются наружу в окружающую среду для увеличения перепада давления на турбине и ее выходной мощности. При этом можно достичь более высокого давления в камере, чем в закрытом цикле, хотя и проиграв при этом в эффективности из-за выводимого наружу потока.
Регенеративное охлаждение камеры сгорания ракеты, в которой используется топливо типа RP-1 (аналог топлива JP-7), осуществимо до точки, в которой температура охладителя достигает предела, при котором образуется некоторая осажденная формация (нагар). Нагар, осажденный на стенках охлаждающих каналов в жаровой части камеры сгорания и сопле, перекрывает поток топлива и снижает теплопередачу, что приводит к постепенному повышению температуры стенки и возможному ее разрушению. В рабочей камере двигателя для формирования каналов регенеративного охлаждения часто используют медь из-за ее очень высокой теплопроводности. Однако, как известно, медь является катализатором, ускоряющим термическое окисление жидких углеводородов, что увеличивает образование нагарных формаций и снижает максимальное значение теплового потока, который может быть поглощен.
Различные попытки подавления термического окисления и осаждения нагара предпринимались, но оказалось, что они, в основном, безуспешны или практически нецелесообразны. Использование присадок к топливу приносило некоторый успех и давало небольшое (<100°F или 38°С) увеличение допустимой температуры ракетного топлива, но их эффективность для топлива типа RP-1 и медных охлаждающих каналов неизвестна. Керамические покрытия, предлагаемые для нанесения на химически активные медные стенки, могут немного сдвинуть осаждение нагара в сторону более высоких температур, но они не останавливают реакцию термического окисления в глубине потока, а также вводят дополнительное термическое сопротивление. Использование бортовых генераторов инертного газа для снижения концентрации кислорода в баках топлива ниже порога воспламенения (~9 об.%) недостаточно для подавления образования нагара, а попытки дезоксигенирования топлива путем барботирования азотом оказались дорогостоящими и трудоемкими.
Соответственно, желательно произвести дезоксигенирование углеводородного топлива в эффективном с точки зрения размеров и веса устройстве с целью увеличения теплопоглощающей способности топлива, что даст увеличение достижимой мощности турбины и, следовательно, увеличение удельного импульса ракетного двигателя.
Раскрытие изобретения
Настоящее изобретение направлено на подавление образования нагара в ракетах на жидком углеводородном топливе с целью увеличения потока тепла, который может быть поглощен, и обеспечения работы при более высоких давлениях в камере сгорания. Для дезоксигенирования топлива в потоке перед его использованием в качестве охладителя служит узел подготовки топлива. Удаление кислорода, растворенного в топливе (при его предшествующих контактах с воздухом), в узле подготовки топлива дает возможность существенно больше нагревать топливо прежде, чем начнется его термическое разложение, что увеличивает охлаждающую способность, достижимую без образования нагара.
Поэтому в настоящем изобретении предусмотрено дезоксигенирование углеводородного топлива в эффективном с точки зрения размеров и веса устройстве для увеличения теплопоглощающей способности топлива, что приводит к росту удельного импульса ракетного двигателя.
Вышеуказанная задача в ракетном двигателе согласно изобретению решается его конструкцией, содержащей устройство дезоксигенирования топлива и охлаждаемую топливом стенку рабочей камеры двигателя, сообщающуюся с указанным устройством дезоксигенирования.
Указанная охлаждаемая топливом стенка камеры сгорания может образовывать камеру сопла, камеру сгорания, находящуюся выше по направлению газового потока камеры сопла, и горловину камеры сгорания, находящуюся между ними.
Двигатель может дополнительно содержать турбину, сообщающуюся с топливным устройством через указанную охлаждаемую топливом стенку рабочей камеры двигателя.
Двигатель может также содержать узел рабочей камеры двигателя, имеющий охлаждаемую топливом стенку рабочей камеры, топливное устройство, связанное с указанным узлом камеры двигателя через указанную охлаждаемую топливом стенку рабочей камеры, систему окислителя, связанную с указанным узлом рабочей камеры, и устройство дезоксигенирования, сообщающееся с указанной охлаждаемой топливом стенкой рабочей камеры двигателя.
Стенка указанной рабочей камеры формирует камеру сопла, камеру сгорания, находящуюся выше по направлению газового потока камеры сопла, и горловину камеры сгорания, находящуюся между ними.
Указанное устройство дезоксигенирования находится выше по направлению потока указанной охлаждаемой топливом стенки рабочей камеры двигателя.
Настоящее изобретение преждлагает также способ увеличения удельного импульса тяги ракетного двигателя, в котором осуществляют дезоксигенирование топлива, передают дезоксигенированное топливо через охлаждаемую топливом стенку рабочей камеры двигателя, затем передают его от охлаждаемой топливом стенки рабочей камеры в непосредственно в рабочую камеру.
Перед передачей дезоксигенированного топлива в рабочую камеру двигателя топливо могут подавать от охлаждаемой топливом стенки рабочей камеры сгорания в турбину.
При передаче дезоксигенированного топлива от охлаждаемой топливом рабочей стенки камеры в рабочую камеру могут частично осуществлять частичное испарение дезоксигенированного топлива в охлаждаемой топливом стенке рабочей камеры двигателя, затем передавать частично испаренное дезоксигенированное топливо в турбину, после чего его подавать в рабочую камеру двигателя.
При передаче дезоксигенированного топлива от охлаждаемой топливом стенки рабочей камеры в рабочую камеру можно осуществлять перегрев дезоксигенированного топлива в охлаждаемой топливом стенке рабочей камеры, затем подавать перегретое дезоксигенированное топливо в турбину, после чего передавать его в рабочую камеру двигателя.
Различные признаки и преимущества настоящего изобретения специалисту в данной области техники станут ясны из нижеследующего подробного описания предпочтительного на данный момент варианта выполнения.
Краткое описание чертежей
Чертежи, прилагаемые к подробному описанию, могут быть вкратце представлены следующим образом.
На фиг.1 схематически показан вариант выполнения ракетного двигателя, в котором использовано настоящее изобретение.
На фиг.2 схематически показана топливная система ракетного двигателя с устройством дезоксигенирования.
На фиг.3 показан увеличенный вид в перспективе устройства дезоксигенирования.
На фиг.4 в увеличенном виде представлено сечение в плоскости, на которой показан топливный канал и приемный вакуумный или продувочного газа канал.
Осуществление изобретения
На фиг.1 схематически изображен ракетный двигатель 10. В ракетный двигатель 10 входят сопловое устройство 12, топливная система 14, система 16 окислителя и устройство 18 воспламенения. Топливная система 14 и система 16 окислителя в предпочтительном варианте составляют систему газообразного топлива ракетного двигателя 10, однако настоящее изобретение может быть использовано и в других топливных системах, использующих, например, жидкое топливо. Далее должно стать ясным, что, хотя в представленном варианте выполнения рассмотрен ракетный двигатель с циклом расширения охладителя, выгоду от использования настоящего изобретения можно получить и при других схемах двигателя, включающих, но не ограничивающихся этим, схему с газогенератором, схему с предварительным сжиганием охладителя, схему с принудительным вытеснением компонентов топлива.
Стенка 20 рабочей камеры двигателя, расположенная вокруг оси А тяги, формирует сопловое устройство 12. Стенка 20 рабочей камеры сгорания образует камеру 22 сопла, камеру сгорания 24, находящуюся выше по направлению газового потока камеры 22 сопла, и находящуюся между ними горловину 26. Камера сгорания 24 содержит внутреннюю поверхность 28 распылительной головки с многочисленными элементами 30 впрыскивания топлива/окислителя (показаны схематически), в которые поступают топливо, которое проходит сначала через стенку 20 рабочей камеры, охлаждаемую топливом, поступающим по подающей магистрали 14а топливной системы 14, и окислитель, такой как газообразный кислород (GOx), поступающий по подающей магистрали 16а системы 16 окислителя.
Тепло стенки 20 охлаждаемой топливом рабочей камеры дает перегрев и/или по меньшей мере частичное испарение топлива. Пары топлива затем проходят через турбину 32 и вбрасываются в камеру сгорания 24, где сгорают, что общеизвестно, вместе с окислителем. В предпочтительном варианте в камере сгорания 24 все ракетное топливо сгорает при оптимальном соотношении компонентов, и обычно выбросов наружу не происходит, однако теплопередача топливу обычно является фактором, ограничивающим достижимую мощность турбины 32.
При рассмотрении фиг.2 можно видеть, что в ракетном двигателе 10, выполненном в соответствии с настоящим изобретением, используется устройство 34 дезоксигенирования, установленное в топливной системе 14 выше по направлению потока охлаждаемой топливом стенки 20 рабочей камеры. Стенка 20 рабочей камеры работает как секция теплообменника, в которой происходит подогрев проходящего топлива. Сначала при прохождении всего или части топлива через устройство 34 дезоксигенирования селективно удаляется кислород, так что теплопоглощающая способность топлива возрастает, что дает увеличение достижимой мощности турбины 32 и, следовательно, увеличение удельного импульса ракетного двигателя 10. Обычно снижение концентрации кислорода до 5 ppm (частей на тысячу) достаточно для преодоления проблемы образования нагара и позволяет, например, в процессе теплообмена нагревать топливо до примерно 650°F (344°С). Должно быть понятно, что даже относительно небольшое уменьшение концентрации кислорода дает существенное увеличение срока службы камеры ракетного двигателя при использовании дезоксигенированного топлива прежде всего для охлаждения горловины сопла и областей, в которых в противном случае перепады температуры и осаждение нагара были бы относительно велики.
При прохождении топлива через устройство 34 дезоксигенирования кислород селективно выводится в вакуумное устройство 36 или устройство 36 продувочного газа. В качестве продувочного газа может выступать любой газ, практически свободный от кислорода. Дезоксигенированное топливо проходит от выхода топлива из устройства 34 дезоксигенирования через магистраль дезоксигенированного топлива к охлаждаемой стенке 20 рабочей камеры двигателя. Должно быть понятно, что, хотя в раскрытом варианте выполнения описано конкретное размещение компонентов, настоящее изобретение может быть с успехом использовано и в других компоновках.
Из фиг.3 видно, что устройство дезоксигенирования 14 предпочтительно содержит группу канальных узлов 38 для пропускания газа/топлива (фиг.4). Узлы 38 содержат проницаемую для кислорода мембрану 40, помещенную между топливным каналом 44 и вакуумным или каналом 42 продувочного газа, в который поступает кислород и который может быть выполнен в виде несущей сетки, пропускающей поток азота и/или другого не содержащего кислорода газа. Должно быть понятно, что каналы могут быть различной формы и расположения, при которых создается разница парциального давления, создающая перепад концентрации кислорода на мембране, обеспечивающий дезоксигенирование топлива.
Проницаемая для кислорода мембрана 40 допускает диффузию растворенного кислорода (и других газов) через поры ангстремного размера, но препятствует проникновению молекул топлива, имеющих больший размер. Альтернативно или вместе с порами в проницаемой для кислорода мембране 40 может быть использован механизм растворения-диффузии для проникновения кислорода (и/или других газов) через мембрану при одновременной задержке топлива. Показано, что эффективные результаты с точки зрения дезоксигенирования топлива дает применение группы материалов Teflon AF, представляющих собой аморфные сополимеры перфтор-2,2-диметил-1,3-диоксол (FDD) и обозначаемых торговой маркой "Teflon AF", зарегистрированной на EI DuPont de Nemours of Wilmington, Del., USA, а также группы материалов Hyflon AD, представляющих собой сополимеры 2,2,4-трифтор-5-трифторметаксил-1,3-диоксид (TDD) и зарегистрированных на Solvay Solexis, Milan, Italy.
Топливо, проходящее по топливному каналу 44, находится в контакте с проницаемой для кислорода мембраной 40. За счет вакуума создается разница парциального давления кислорода между внутренними стенками топливного канала 44 и проницаемой для кислорода мембраной 40, через которую происходит диффузия растворенного в топливе кислорода, мигрирующего через пористую основу 46, на которой закреплена мембрана 40, и далее выходящего из устройства 34 дезоксигенирования через собирающий канал 42.
Конкретное число узлов 38 определяется конкретными условиями использования, такими как тип топлива, температура топлива и величина массового расхода, необходимого для работы двигателя. Кроме того, различные виды топлива, содержащие различное количество растворенного кислорода, могут нуждаться в различной степени дезоксигенирования для удаления нужного количества растворенного кислорода. Для дальнейшего понимания других аспектов использования устройства дезоксигенирования, построенного на основе одной мембраны, а также связанных с ним компонентов, которые способны обеспечить высокие параметры ракетного двигателя по расходу топлива при компактной конструкции и низком весе, следует обратиться к Патенту US №6939392 "Устройство и способ теплового регулирования" и к Патенту US №6709492 "Устройство дезоксигенирования на плоской мембране", права на которые переданы правопреемнику настоящего изобретения, который тем самым введен в права обладания.
Должно быть понятно, что термины относительного положения, такие как "передний", "задний", "верхний", "нижний", "над", "под" и т.п. используются в предположении нормальной ориентации летательного аппарата в пространстве и не должны рассматриваться как ограничительные.
Должно быть понятно, что, хотя в раскрытом варианте выполнения описано конкретное размещение компонентов, настоящее изобретение может быть с успехом использовано и в других компоновках.
Для дальнейшего понимания других аспектов сетей распределения воздушного потока и связанных с этим компонентов следует обратиться к Патенту US №5327744, права на который переданы правопреемнику настоящего изобретения, который тем самым введен в права обладания.
Хотя представлена, описана и заявлена определенная последовательность операций способа, должно быть понятно, что операции можно выполнять в отличном от представленного порядке, по отдельности или в сочетании друг с другом при сохранении при этом преимуществ настоящего изобретения.
Предшествующее описание служит скорее примером выполнения, а не определением ограничительных признаков. На основе представленных материалов возможны различные модификации и вариации настоящего изобретения. Хотя описан предпочтительный вариант выполнения настоящего изобретения, специалист в данной области средней квалификации может видеть, что, не выходя за рамки изобретения, в него могут быть внесены некоторые усовершенствования. Поэтому следует понимать, что, не выходя за рамки приложенной формулы, изобретение может быть реализовано иначе, чем в приведенном конкретном описании. По этой причине для установления действительных рамок и сути настоящего изобретения должна быть рассмотрена нижеследующая формула изобретения.

Claims (10)

1. Ракетный двигатель, отличающийся тем, что он содержит устройство дезоксигенирования топлива и охлаждаемую топливом стенку рабочей камеры двигателя, сообщающуюся с указанным устройством дезоксигенирования.
2. Двигатель по п.1, отличающийся тем, что указанная охлаждаемая топливом стенка рабочей камеры двигателя образует камеру сопла, камеру сгорания, находящуюся выше по направлению газового потока камеры сопла, и горловину камеры сгорания, находящуюся между ними.
3. Двигатель по п.1, отличающийся тем, что он дополнительно содержит турбину, сообщающуюся с топливным устройством через указанную охлаждаемую топливом стенку рабочей камеры.
4. Ракетный двигатель, отличающийся тем, что он содержит узел рабочей камеры двигателя, имеющий охлаждаемую топливом стенку рабочей камеры, топливное устройство, связанное с указанным узлом рабочей камеры двигателя через указанную охлаждаемую топливом стенку рабочей камеры сгорания, систему окислителя, связанную с указанным узлом камеры двигателя, и устройство дезоксигенирования, сообщающееся с указанной охлаждаемой топливом стенкой рабочей камеры.
5. Двигатель по п.4, отличающийся тем, что стенка указанной рабочей камеры двигателя образует камеру сопла, камеру сгорания, находящуюся выше по направлению газового потока камеры сопла, и горловину камеры сгорания, находящуюся между ними.
6. Двигатель по п.4, отличающийся тем, что указанное устройство дезоксигенирования находится выше по направлению потока указанной охлаждаемой топливом стенки рабочей камеры.
7. Способ увеличения удельного импульса тяги ракетного двигателя, отличающийся тем, что осуществляют дезоксигенирования топлива, передают дезоксигенированное топливо через охлаждаемую топливом стенку рабочей камеры сгорания, затем передают его от охлаждаемой топливом стенки рабочей камеры в узел рабочей камеры двигателя.
8. Способ по п.7, отличающийся тем, что перед передачей дезоксигенированного топлива в узел рабочей камеры двигателя его передают от охлаждаемой топливом стенки рабочей камеры в турбину.
9. Способ по п.7, отличающийся тем, что при передаче дезоксигенированного топлива от охлаждаемой топливом стенки рабочей камеры в узел рабочей камеры двигателя осуществляют частичное испарение дезоксигенирования топлива в охлаждаемой топливом стенке рабочей камеры, затем передают частично испаренное дезоксигенированное топливо в турбину, после чего его передают в узел рабочей камеры двигателя.
10. Способ по п.7, отличающийся тем, что при передаче дезоксигенирования топлива от охлаждаемой топливом стенки рабочей камеры в узел рабочей камеры двигателя осуществляют перегрев дезоксигенирования топлива в охлаждаемой топливом стенке рабочей камеры, затем передают перегретое дезоксигенированное топливо в турбину, после чего передают его в узел рабочей камеры двигателя.
RU2007127462/06A 2006-07-18 2007-07-18 Ракетный двигатель (варианты) и способ увеличения удельного импульса тяги ракетного двигателя RU2406861C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/488,393 2006-07-18
US11/488,393 US20080016846A1 (en) 2006-07-18 2006-07-18 System and method for cooling hydrocarbon-fueled rocket engines

Publications (2)

Publication Number Publication Date
RU2007127462A RU2007127462A (ru) 2009-01-27
RU2406861C2 true RU2406861C2 (ru) 2010-12-20

Family

ID=38970118

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007127462/06A RU2406861C2 (ru) 2006-07-18 2007-07-18 Ракетный двигатель (варианты) и способ увеличения удельного импульса тяги ракетного двигателя

Country Status (2)

Country Link
US (1) US20080016846A1 (ru)
RU (1) RU2406861C2 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8720181B1 (en) 2010-08-26 2014-05-13 The Boeing Company Rocket engine ignition flame reduction system
US8572948B1 (en) * 2010-10-15 2013-11-05 Florida Turbine Technologies, Inc. Rocket engine propulsion system
GB2519150A (en) * 2013-10-11 2015-04-15 Reaction Engines Ltd Rotational machine
US10605203B2 (en) 2014-09-25 2020-03-31 Patched Conics, LLC. Device, system, and method for pressurizing and supplying fluid
JP6416015B2 (ja) * 2015-02-26 2018-10-31 三菱重工業株式会社 ロケットエンジン、および、点火システム
GB2595743B (en) * 2020-06-01 2022-11-16 Desmond Lewis Stephen Increased power pressure fed rocket engine
AU2021211979A1 (en) * 2020-08-06 2022-02-24 Dawn Aerospace Limited Rocket motor and components thereof
US11674446B2 (en) * 2021-08-30 2023-06-13 Collins Engine Nozzles, Inc. Cooling for surface ignitors in torch ignition devices

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831818A (en) * 1988-03-09 1989-05-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Dual-fuel, dual-mode rocket engine
RU2146334C1 (ru) * 1998-07-28 2000-03-10 ОАО "НПО Энергомаш им.акад.В.П.Глушко" Способ повышения удельного импульса жидкостного ракетного двигателя и ракетная двигательная установка для осуществления способа
US6315815B1 (en) * 1999-12-16 2001-11-13 United Technologies Corporation Membrane based fuel deoxygenator
US6644015B2 (en) * 2001-10-29 2003-11-11 Hmx, Inc. Turbojet with precompressor injected oxidizer
US6769242B1 (en) * 2001-11-21 2004-08-03 Mse Technology Applications, Inc. Rocket engine
US7216477B1 (en) * 2002-03-15 2007-05-15 United Technologies Corporation Method and apparatus for a rocket engine power cycle
US6799417B2 (en) * 2003-02-05 2004-10-05 Aerojet-General Corporation Diversion of combustion gas within a rocket engine to preheat fuel
US6832471B2 (en) * 2003-03-12 2004-12-21 Aerojet-General Corporation Expander cycle rocket engine with staged combustion and heat exchange
US6939392B2 (en) * 2003-04-04 2005-09-06 United Technologies Corporation System and method for thermal management
US6709492B1 (en) * 2003-04-04 2004-03-23 United Technologies Corporation Planar membrane deoxygenator
US7231769B2 (en) * 2004-01-29 2007-06-19 United Technologies Corporation Gas turbine cooling system
US7377112B2 (en) * 2005-06-22 2008-05-27 United Technologies Corporation Fuel deoxygenation for improved combustion performance
US7615104B2 (en) * 2005-11-03 2009-11-10 United Technologies Corporation Fuel deoxygenation system with multi-layer oxygen permeable membrane
US20070130956A1 (en) * 2005-12-08 2007-06-14 Chen Alexander G Rich catalytic clean burn for liquid fuel with fuel stabilization unit
US7565795B1 (en) * 2006-01-17 2009-07-28 Pratt & Whitney Rocketdyne, Inc. Piezo-resonance igniter and ignition method for propellant liquid rocket engine
US7621119B2 (en) * 2006-06-30 2009-11-24 United Technologies Corporation Heat exchange injector for use in a rocket engine

Also Published As

Publication number Publication date
RU2007127462A (ru) 2009-01-27
US20080016846A1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
RU2406861C2 (ru) Ракетный двигатель (варианты) и способ увеличения удельного импульса тяги ракетного двигателя
US20220056856A1 (en) Zero emission propulsion systems and generator sets using ammonia as fuel
US7882704B2 (en) Flame stability enhancement
US6079373A (en) Gas engine with a gas fuel reforming device
RU2358190C1 (ru) Водородный высокотемпературный парогенератор с комбинированным испарительным охлаждением камеры смешения
CN101042071B (zh) 降低燃气轮机***和内燃机中NOx排放的***和方法
US20060196483A1 (en) Fuel vaporization systems for vaporizing liquid fuel
RU2108477C1 (ru) Способ получения рабочего тела на трехкомпонентном топливе и устройство для его осуществления
CN1892011A (zh) 在催化增强的气体发生器循环中使用气态烃的火箭发动机
JP2007154891A (ja) 燃料転換装置作動方法および液体燃料調整装置
KR101160900B1 (ko) 배기가스 재순환방식에 의한 폐회로 수소연소 시스템 및 방법
JP2008298075A (ja) 燃焼器用点火システム、燃焼器および燃焼器点火方法
JP2007107521A (ja) 燃料システムおよび排気エミッションを減少させる方法
US20100257839A1 (en) Hydrocarbon-fueled rocket engine with endothermic fuel cooling
CN109162831A (zh) 固液动力发动机及应用其的火箭
CN102562310A (zh) 用催化氨分解反应降低燃气涡轮机高温金属件温度的方法
JPH07145742A (ja) タービン駆動用の高温高圧ガス発生装置
US20130029236A1 (en) Device for Providing Hot Exhaust Gases
CN112253335B (zh) 一种用于火箭发动机中驱动涡轮的燃气发生器
JP2019132264A (ja) 再熱型水素・アンモニアガスタービン発電船
JPH03218902A (ja) 水素原料改質装置の始動方法
RU2001107628A (ru) Способ работы жидкостного ракетного двигателя с турбонасосной подачей криогенного топлива на основе кислородного окислителя и углеводородного горючего и жидкостный ракетный двигатель для осуществления способа
FR2886765A1 (fr) Systeme de pile a combustible, et procede associe
US20240117763A1 (en) Gas turbine system
US5092128A (en) Stored energy combustor

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20090407

FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20100405

MM4A The patent is invalid due to non-payment of fees

Effective date: 20150719