RU2383578C2 - Проппант, способ его получения и способ гидравлического разрыва пласта с использованием полученного проппанта - Google Patents

Проппант, способ его получения и способ гидравлического разрыва пласта с использованием полученного проппанта Download PDF

Info

Publication number
RU2383578C2
RU2383578C2 RU2008115420/03A RU2008115420A RU2383578C2 RU 2383578 C2 RU2383578 C2 RU 2383578C2 RU 2008115420/03 A RU2008115420/03 A RU 2008115420/03A RU 2008115420 A RU2008115420 A RU 2008115420A RU 2383578 C2 RU2383578 C2 RU 2383578C2
Authority
RU
Russia
Prior art keywords
proppant
slag
slags
production
bauxite
Prior art date
Application number
RU2008115420/03A
Other languages
English (en)
Other versions
RU2008115420A (ru
Inventor
Рафаэль Ферреро Силва Хосе (VE)
Рафаэль Ферреро Силва Хосе
Елена Михайловна Першикова (RU)
Елена Михайловна Першикова
Original Assignee
Шлюмберже Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмберже Текнолоджи Б.В. filed Critical Шлюмберже Текнолоджи Б.В.
Publication of RU2008115420A publication Critical patent/RU2008115420A/ru
Application granted granted Critical
Publication of RU2383578C2 publication Critical patent/RU2383578C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/138Waste materials; Refuse; Residues from metallurgical processes, e.g. slag, furnace dust, galvanic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/726Sulfur content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/727Phosphorus or phosphorus compound content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - получение частиц проппанта с высокими эксплуатационными характеристиками и низкой себестоимостью. В способе производства проппанта, частицы которого имеют плотность 1,5-4,0 г/см3 и твердость не менее 4, используют, по меньшей мере, два различных шлака промышленных производств, указанные шлаки измельчают до или после их смешивания, полученную смесь шлаковых порошков смешивают с измельченным бокситом или измельченным глиноземом в соотношении смесь шлаковых порошков : измельченный боксит или измельченный глинозем 7:3 по массе, гранулируют и обжигают до спекания при температуре от 1300°С до 1600°С. В способе гидравлического разрыва пласта при вызывающих смыкание трещин напряжениях до 15000 psi используют проппант, полученный указанным способом. Изобретение развито в зависимых пунктах. 3 н. и 9 з.п. ф-лы, 2 табл.

Description

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для повышения производительности промысловых скважин путем предотвращения смыкания трещин с применением расклинивающих гранул - проппантов при проведении гидравлического разрыва продуктивных нефтяных пластов.
Гидравлический разрыв пласта - в настоящее время один из наиболее перспективных способов добычи нефти и газа, позволяющий при правильном его использовании значительно увеличить производительность скважин. Сущность метода гидравлического разрыва пласта состоит в закачивании под большим давлением вязкой жидкости в нефте- и газоносные пласты, что приводит к образованию в пласте трещин, в которые проникает жидкость. Для сохранения трещин в разомкнутом состоянии в них вводят механически прочные, не взаимодействующие со скважинной жидкостью, сфероподобные гранулы (проппанты), которые, проникая с жидкостью в трещину и, по меньшей мере, частично заполняя ее, создают прочный расклинивающий каркас, проницаемый для нефти и газа, выделяемых из пласта. Проппанты - искусственно созданные гранулы должны противостоять не только высокому пластовому давлению, стремящемуся деформировать частицы проппанта, что приводит к неизбежному смыканию трещины, но и выдерживанию действия агрессивной скважинной среды (влага, кислые газы, солевые растворы) при высоких температурах. При разрушении частиц проппанта под действием скважинной среды также происходит смыкание трещины с неизбежным уменьшением дебета скважины. Промышленно проплаты получают путем переработки исходного сырья, в качестве которого могут быть использованы кварцевый песок, бокситы, каолины, оксиды алюминия, различные алюмосиликатные виды сырья.
Настоящее изобретение характеризует новый проппант, используемый в гидравлическом разрыве пласта при давлениях закрытия трещин в пластах до 15000 psi (фунтов/кв. дюйм). Проппант представляет собой сферические неорганические зерна различных размеров, используемые для удержания стенок гидравлических разломов открытыми после выполнения операции гидравлического разрыва пласта, с тем, чтобы обеспечить пути истечения углеводородной жидкости из пласта. Такие проппанты производят на основе различных железных шлаков, то есть шлаков, образующихся при выплавке железа, чугуна и стали, или нежелезистых металлургических и неметаллургических шлаков, то есть медных, никелевых, фосфорных, свинцовых, свинцово-цинковых, цинковых, алюминиевых и титановых шлаков.
Американское общество испытаний и материалов (ASTM) (1999) определяет шлак шахтных печей как «неметаллический продукт, состоящий, главным образом, из силикатов кальция и других оснований, которые образуются в условиях выплавки железа в шахтных печах».
В производстве железа доменную печь загружают железной рудой, флюсовой добавкой (обычно известняком или доломитом) и коксом в качестве горючего и восстановительного агента. Железная руда представляет собой смесь оксидов железа, кремния и алюминия. Из них и добавленного флюса - карбонатов щелочно-земельных металлов, образуется плавильный шлак и железо. Кислород предварительно нагретого воздуха, закачиваемого в печь, взаимодействует с углеродом кокса, образуя необходимое тепло и окись углерода. В это же время железная руда восстанавливается до железа, главным образом, по реакции окиси углерода с окислом железа с образованием двуокиси углерода (CO2) и металлического железа. Флюсовая добавка распадается на оксиды кальция и магния и двуокись углерода, оксиды кальция и магния взаимодействуют с оксидами кремния и алюминия и образуют шлак. Шлак транспортируют в охладительный колодец, непосредственно или с использованием железных ковшей, в зависимости от расстояния между колодцем и печью.
В зависимости от метода охлаждения могут быть получены три типа шлака - воздушно-охлажденный, вспученный и гранулированный. Воздушно-охлажденный шлак получают, медленно охлаждая шлак на воздухе в открытом колодце. В случае, если шлак отвердевает в условиях медленного охлаждения, выделяющиеся газы оставляют после себя пористый агрегат низкой плотности. Шлак, отвердевающий при контролируемом быстром охлаждении на воздухе (так называемом, гашении), в основной массе твердый и плотный. Вспученный шлак образуется при контролируемом быстром охлаждении расплавленного шлака в воде (или в воде в сочетании с действием пар и сжатого воздуха). Пар и другие газы повышают пористость и ячеистую структуру шлака, что приводит к образованию легких агрегатов. Гранулированный шлак получают гашением (быстрым охлаждением) расплавленного шлака, переводя его в стеклообразное состояние с использованием водных форсунок высокого давления. Гашение предотвращает кристаллизацию минералов, входящих в состав шлака, и таким образом получают стеклообразные агрегаты в форме гранул.
Главными компонентами шлаков производства железа и стали являются оксид кремния (SiO2), оксид алюминия (Al2O3), оксид кальция (СаО) и оксид магния (MgO), содержание которых в составе этих шлаков достигает 95%. К неосновным компонентам состава этих шлаков относятся оксиды марганца и железа, соединения серы с металлами, а также следовые количества некоторых других веществ. Физические свойства, такие как плотность, пористость и размеры частиц зависят от скорости охлаждения шлака и его химического состава.
Нежелезистые шлаки образуются при извлечении и переработке других металлов из их природных руд. Эти шлаки являются расплавленным побочным продуктом высокотемпературного процесса, используемого, прежде всего, для отделения металла от неметаллических составляющих, содержащихся в рудной массе. После охлаждения расплавленный шлак превращается в материал в форме щебня или гранул.
Переработка большинства руд состоит из ряда стандартных операций. Сначала добытую рудную массу обрабатывают для удаления из нее пустой породы (сопутствующих пород и минералов). Эта обработка обычно состоит из измельчения до состояния относительно тонкого порошка и последующей гравитационной сепарации в какой-нибудь из ее форм для отделения металлической руды от породы. Для этого используют разные устройства - циклонные сепараторы, наклонные вибрационные столы, флотационные резервуары. Обогащенную руду затем термически перерабатывают для отделения металла от неметаллических составляющих с последующим восстановлением свободного металла. Поскольку большинство этих металлов не используют в чистом виде, их затем смешивают с другими элементами и соединениями с образованием сплавов, обладающих желаемыми свойствами.
В процессе подготовки к восстановлению металла, целью которого является отделение металла от неметаллических составляющих, некоторые неоксидные минералы превращаются в оксиды вследствие нагревания на воздухе при температурах ниже температуры их плавления («обжиг руды»). В этом процессе сульфиды металлов, присутствующие в медной и никелевой руде, переходят в оксиды. Восстановление ионов металла в свободный металл обычно завершается в процессе, называемом выплавкой. В этом процессе восстановительный агент, такой как кокс (углерод с примесями), вместе с оксидом углерода и водородом взаимодействуют с обожженным продуктом, переходя в кремнистый флюс. Затем металл гравиметрически отделяют от флюса смешанного состава, оставляя шлак.
В табл.1 приведены типичные физические свойства нежелезистых шлаков. Свинцовый, свинцово-цинковый и цинковый шлаки составляют единую группу вследствие того, что их свойства подобны.
Что касается химических свойств, свинцовый, свинцово-дуинковый и цинковый шлаки представляют собой, главным образом, железистые силикаты, а фосфорный шлак и никелевый шлак - прежде всего, кальциево-магниевые силикаты. В таблице 2 приведен пипичный химический состав этих шлаков, где типичные физические свойства определены в соответствии с рекомендуемыми нормами - 60 Американского нефтяного института (API).
Известен (US, патент 4713203) проппант на основе бокситов и способ его получения. Известный проппант представляет собой сферические частицы размером от 2 до 0,3 мм и пригоден для использования при давлениях до 20,000 psi. Известный проппант состоит из природного боксита, содержащего мелкодисперсную фракцию некальцинированного природного боксита, состоящую, главным образом, из частиц гиббсита, бемита и каолинита, причем каолинита содержится не более 25% от всех указанных частиц. Площадь поверхности мелкодисперсной фракции составляет около 30 квадратных метров на грамм. Бокситная фракция содержит 30-50% гиббсита, 22-45% бемита и 16-24% каолинита, то есть упомянутая некальцинированная бокситная фракция содержит 57-63% глинозема или бокситная фракция содержит 7-11% кремнезема. Проппант производят путем отделения мелкодисперсной фракции, гранулирования, удаления воды и спекания при 1350 - 1500°С. Плотность конечного продукта меньше 3,4.
Известны также (US, патент 4921820 и WO/9604464) легкие проппанты, а также способы их изготовления и применения. Известные проппанты представляют собой спеченные керамические гранулы, шихта которых, в основном, содержит смесь каолиновой глины и аморфного или мелкокристаллического кремнезема. Каолиновая глина практически не содержит кварца (меньше 1%) и перед спеканием она не должна подвергаться действию тепла, чтобы не происходило фазового перехода глины в муллит и кристобалит. Гранулы имеют удельный вес менее 2,7; такой проппант обладает проницаемостью не менее 3000 мД-ф (милидарси-фут) после 50 часов при давлении 8000 psi и температуре 275 F в присутствии 2%-го раствора KCl.
Известен также (US, патент 4668645) спеченный проппант низкой плотности для газовых и нефтяных скважин. В патенте раскрыт состав гранулированного расклинивающего агента с числом Крумбейна 0,8 или больше и диаметром частиц от 0,2 до 1,77 мм. Гранулы изготовлены из природной бокситовой глины, которая имеет следующий состав (в расчете на безводное состояние): 16-19% кремнезема, 79-80% глинозема и меньше 0,35% окислов щелочных и щелочно-земельных металлов. Гранулы прокаливают при температуре 1400-1500°C, при этом образуется расклинивающий материал, содержащий муллит в качестве основной фазы и альфа-глинозем в качестве дополнительной фазы. Приведен также способ изготовления проппанта.
Известен также (US, патент 6753299, заявка WO 03/042497) состав кремнеземного проппанта. Состав проппанта включает равные по весу количества некальцинированного боксита, некальцинированного сланца и кварца со связующим, образованным из волластонита и талька в количествах менее 10% от веса композиции. В составе композиции проппанта меньше 25 весовых процента глинозема и свыше 45 весовых процента кремнезема.
Известна публикация № WO 2004085490 А2 «Средство очистки из двуокиси титана и способ его получения». Указанная публикация характеризует средство очистки, представляющего собой частицы двуокиси титана округлой или сферической формы, и способа получения этого средства. Средство очистки эффективно при удалении отложений двуокиси титана на стенках реакционного сосуда из двуокиси титана. Способ состоит в формировании сырых гранул из двуокиси титана в высокопроизводительной мешалке при перемешивании коммерчески доступного порошка двуокиси титана и воды. Получающиеся гранулы двуокиси титана обладают округлой и сферической формой и плотностью от 1,38 г/см3 до 2,46 г/см3. Методом испытания прочности проппантов Американского нефтяного института показано, что для гранул характерно разрушение менее 40% при давлении 4000 psi. Продукт спекают при температуре от приблизительно 550°C до приблизительно 1050°С.
Известен расклинивающий проппант (US, патент 5188175), представляющий собой керамические гранулы сферической формы из спеченной каолиновой глины, содержащей оксиды алюминия, кремния, железа и титана, причем оксиды в данных гранулах присутствуют в следующих соотношениях, мас.%: оксида алюминия - 25-40, оксида кремния - 50-65, оксида железа - 1,6 и оксида титана - 2,6. Сферичность гранул составляет 0,7. Данный расклинивающий проппант наиболее эффективен при разработке нефтяных или газовых пластов, залегающих на небольших и средних глубинах.
Существенным недостатком известных проппантов следует признать сложность состава исходной шихты, а также сложность технологии получения частиц проппанта. Это, в свою очередь, увеличивает затраты на производство проппанта, увеличивая тем самым его себестоимость.
Известны (US, патент 4668645) проппанты из кальцинированного при 1000°C боксита, что улучшает соотношение Al2O3/SiO2 и, соответственно, прочностные характеристики, но еще более увеличивает себестоимость проппанта.
Известны также (US, патент 4879181) пропанты на основе смеси боксита и каолина, что придает исходной массе пластичность и, следовательно, сферичность и округлость полученных проппантов при одновременном повышении себестоимости.
Известны также (US, патент 4944905) двухслойные проппанты, внутренняя часть которых состоит из алюмосиликатного вещества, отличающегося достаточно низкой температурой плавления, а периферийная часть с высокой концентрацией оксида алюминия содержит глинозем. В качестве вещества с низкой температурой плавления и способного образовывать при охлаждении стеклофазу предложено использовать нефелиновые сиениты. При получении указанных проппантов вначале проводят грануляцию смеси предварительно обожженного нефелинового сиенита и мелкодисперсного глинозема при добавлении воды и связующего компонента. После сушки полученные гранулы перемешивают с мелкодисперсным глиноземом для предотвращения при последующем обжиге спекания гранул между собой и припекания к стенкам обжиговой печи. Обжиг во вращающейся печи проводят при температуре, близкой к температуре плавления нефелинового сиенита. После данного обжига гранулы обдувают в потоке воздуха для удаления неспекшегося глинозема. Затем проводят повторный обжиг во вращающейся печи при более высокой температуре при повторном добавлении глинозема. Во время этого повторного обжига образуется более толстый поверхностный слой глинозема, который должен обеспечить достаточную прочность полученных проппантов.
Недостатком известного технического решения следует признать достаточно сложную многоступенчатую технологию производства проппантов с двумя энергоемкими процессами обжига гранул во вращающейся печи, что значительно увеличивает себестоимость готового проппанта.
Известен также (US, патент 3929191) проппант, используемый при добыче нефти методом гидравлического разрыва пласта, полученный на основе спеченного алюмосиликатного сырья или на основе минералов, или из железа, стали в виде гранул с размерами 6-100, предпочтительно 10-40 меш, со сферичностью и округлостью по Крумбейну не менее 0,8, плотностью 2,6 г/см3 с покрытием из плавкой фенольной смолы.
Недостатком известного технического решения следует также признать высокую себестоимость получаемого продукта.
Технический результат, получаемый при реализации разработанного проппанта, состоит в получении частиц проппанта с высокими эксплуатационными характеристиками и низкой себестоимостью, использование которого приводит к уменьшению себестоимости добываемого флюида.
Для получения указанного технического результата предложено использовать в качестве частиц проппанта гранулы шлака воздушного охлаждения вспученных и гранулированных шлаков, при этом используемые гранулы шлака отвечают следующим требованиям:
- плотность от 1,5-4 г/см3
- твердость (по шкале Мооса) не менее 4.
В качестве проппанта может быть выбран, по меньшей мере, один из следующих шлаков: шлаки черной металлургии (образующиеся при выплавке железа, чугуна и стали) и/или шлаки цветной металлургии (титановые, алюминиевые, никелевые, медные, свинцовые, цинковые, свинцово-цинковые, магниевые, марганцевые), а также шлаки производства фосфора. Размер частиц низкой плотности может варьировать в пределах от 1 до 500 мкм.
При производстве разработанного проппанта, по меньшей мере, один из вышеупомянутых шлаков может быть измельчен, размолот, гранулирован и спечен при температурах от 400 до 1600°C. В одном из вариантов получения указанного проппанта используют, по меньшей мере, два различных шлака, которые могут быть вместе или по отдельности измельчены (размолоты), смешаны (если они не были смешаны на предыдущих этапах), гранулированы и спечены при температурах от 400 до 1600°C. Во время процессов смешивания, размола и/или гранулирования может быть дополнительно добавлен пластифицирующий агент для гранулирования. Пластифицирующий агент может быть органическим или неорганическим веществом. Шлаковый порошок может быть дополнительно смешан с измельченными бокситом или глиноземом, и/или с порошками глин и затем может быть подвергнут обработке, этапы которой описаны ранее. На частицы проппанта может быть дополнительно нанесено органическое или неорганическое покрытие с целью упрочнения поверхности гранулы и повышения проводимости упаковки, создаваемой с помощью данного шлака.
С использованием охарактеризованного ранее проппанта осуществляют гидравлической разрыв пласта (с использованием шлаков воздушного охлаждения, вспученных и гранулированных шлаков в качестве проппанта) при вызывающих смыкание трещин напряжениях до 15000 psi.
Разработанное техническое решение было реализовано следующим образом. Частицы шлака медного производства со средним размером частиц 0,6 мм и плотностью 3,2 г/см3 использовали в качестве расклинивающего наполнителя при проведении гидроразрыва в районе Западной Сибири на глубине 3500 м, что позволило снизить затраты на проведение работы на 40% по сравнению с работой ГРП, поводимой в аналогичных условиях, но с применением керамического проппанта с плотностью 3,2 г/см3 за счет более низкой себестоимости шлаковых частиц. При этом производительность скважины в день в обоих случаях составила 160 м3/день.
Другой способ реализации данного изобретения может быть описан следующим примером. Частицы вспученных никелевых и фосфорных шлаков измельчали до остатка на сите 63 мкм 3 мас.% сухим способом, смешивали в соотношении 3:2 по массе и затем к полученной смеси добавляли порошок бокситовой руды, измельченной до прохода через сито 40 мкм 0,5 мас.%. Соотношение шлаковая смесь : боксит составляет 7:3 по массе. Затем около 4 кг полученной смеси поместили в гранулятор R02 типа Eirich. Перемешивание начинали на скорости вращения лопастной мешалки, обеспечивающей зародышеобразование в смеси, при этом в материал дополнительно вводили 600 г водного раствора карбоксиметилцеллюлозы (концентрация 3%). Перемешивание на указанной скорости составляло 4 минуты. Затем скорость вращения изменили и в гранулятор ввели 200 г исходной смеси измельченных карбида кремния и термообработанной бокситовой руды. Время дополнительного перемешивания на скорости, обеспечивающей формирование гранул, с образованием гранул желательного размера (0,15 - 5,0 мм) составляло 2 мин. Подготовленные таким образом гранулы высушивали и рассеивали до получения более 90% процентов между ситами -16 меш/+30 меш. Обжиг проводили при температуре 1300 - 1500°C. После обжига кажущаяся плотность материала составляла 3,52 г/см3. Лучшие значения прочности наблюдали при температуре 1450°C, при этом процент разрушения при давлении 10000 пси (69 МПа), определенный в соответствии с API recommended Practice 60, составлял 3 мас.%.
Себестоимость полученного подобным образом проппанта составляет не более 80% от себестоимости проппанта, полученного традиционным способом.
Табл.1.
Свойства Никелевый шлак Медный шлак Фосфорный шлак Свинцовый, свинцово-цинковый и цинковый шлаки
Внешний вид Красновато-бурый или коричнево-черный, угловатых форм с аморфной текстурой Черный, стеклообразный, когда гранулирован - более ячеистый Темно-серый до черного, воздушно-охлажденный - плоский и удлиненный; гранулированный - однородный, угловатых форм Красный или черный, стеклообразный, частицы остроугольной (кубической) формы
Удельный вес, кг/м3 3500 2800-3800 Воздушно-охлажденный: 1360-1440 вспученный: 880-100 <2500-3600
Абсорбция (%) 0,37 0,13 1,0-1,5 5,0
Табл.2.
Элемент Медный шлак отражательных печей Никелевый шлак Фосфорный шлак Свинцовый шлак Свинцовоцинковый шлак
SiO2 36,6 29,0 41,3 35,0 17,6
Al2O3 8,1 следы 8,8 - 6,1
Fe2O3 - 53,06 - - -
СаО 2,0 3,96 44,1 22,2 19,5
MgO - 1,56 - - 1,3
FeO 35,3 - - 28,7 -
K2O - - 1,2 - -
F - - 2,8 - -
MnO - следы - - 2,0-3,0
P2O5 - - 1,3 - -
Cu 0,37 - - -
ВаО - - - 2,0
SO3 - 0,36 - - -
Свободный СаО - - - - -
S 0,7 - - 1,1 2,8
PbO - - - - 0,8

Claims (12)

1. Способ производства проппанта, частицы которого имеют плотность 1,5-4,0 г/см3 и твердость по шкале Мооса не менее 4, в котором используют, по меньшей мере, два различных шлака промышленных производств, указанные шлаки измельчают до или после их смешивания, полученную смесь шлаковых порошков смешивают с измельченным бокситом или измельченным глиноземом в соотношении смесь шлаковых порошков: измельченный боксит или измельченный глинозем 7:3 по массе, гранулируют и обжигают до спекания при температуре от 1300 до 1600°С.
2. Способ по п.1, отличающийся тем, что указанные шлаки сначала по отдельности измельчают, а затем смешивают.
3. Способ по п.1, отличающийся тем, что указанные шлаки смешивают перед измельчением.
4. Способ по п.1, отличающийся тем, что при смешивании, и/или измельчении, и/или гранулировании дополнительно добавляют пластифицирующий агент для гранулирования.
5. Способ по п.4, отличающийся тем, что при смешивании дополнительно добавляют пластифицирующий агент для гранулирования.
6. Способ по п.4, отличающийся тем, что при гранулировании дополнительно добавляют пластифицирующий агент для гранулирования.
7. Способ по п.4, отличающийся тем, что используют органический или неорганический пластифицирующий агент для гранулирования.
8. Способ по п.1, отличающийся тем, что смесь шлаковых порошков дополнительно смешивают с порошками глин.
9. Способ по п.1, отличающийся тем, что на частицы проппанта дополнительно наносят органическое или неорганическое покрытие.
10. Проппант, полученный способом по любому из пп.1-9.
11. Проппант по п.10, отличающийся тем, что размер частиц проппанта варьирован в пределах 0,1-3 мм.
12. Способ гидравлического разрыва пласта при вызывающих смыкание трещин напряжениях до 15000 psi, в котором используют проппант по п.10 или 11.
RU2008115420/03A 2007-09-18 2007-09-18 Проппант, способ его получения и способ гидравлического разрыва пласта с использованием полученного проппанта RU2383578C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2007/000502 WO2009038491A1 (fr) 2007-09-18 2007-09-18 Agent de soutènement, son procédé de fabrication et procédé de fracturation hydraulique utilisant cet agent de soutènement

Publications (2)

Publication Number Publication Date
RU2008115420A RU2008115420A (ru) 2010-01-20
RU2383578C2 true RU2383578C2 (ru) 2010-03-10

Family

ID=40468123

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008115420/03A RU2383578C2 (ru) 2007-09-18 2007-09-18 Проппант, способ его получения и способ гидравлического разрыва пласта с использованием полученного проппанта

Country Status (3)

Country Link
US (1) US8496057B2 (ru)
RU (1) RU2383578C2 (ru)
WO (1) WO2009038491A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2518618C1 (ru) * 2012-12-25 2014-06-10 Открытое акционерное общество "Боровичский комбинат огнеупоров" Способ получения проппанта и проппант
RU2640057C2 (ru) * 2012-12-28 2017-12-26 Сен-Гобен Серэмикс Энд Пластикс, Инк. Керамические частицы и способ их получения
RU2696908C2 (ru) * 2014-04-23 2019-08-07 ХУВАКИ, ЭлЭлСи Проппант для жидкости гидроразрыва
RU2787859C1 (ru) * 2020-08-05 2023-01-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Вятский государственный университет" Способ приготовления огнестойкого материала из титаната алюминия с использованием промышленного алюминиевого шлака и титанового шлака

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094613A (zh) * 2010-12-29 2011-06-15 西安通源石油科技股份有限公司 携带支撑剂的复合射孔方法及装置
CN103764948B (zh) 2011-08-31 2018-05-18 自悬浮支撑有限公司 用于水力破碎的自-悬浮支撑剂
US9297244B2 (en) * 2011-08-31 2016-03-29 Self-Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing comprising a coating of hydrogel-forming polymer
US8424784B1 (en) * 2012-07-27 2013-04-23 MBJ Water Partners Fracture water treatment method and system
MX2015001526A (es) 2012-08-01 2015-04-08 Oxane Materials Inc Agentes de sosten sinteticos y agentes de sosten monodispersos y metodos para la elaboracion de los mismos.
US10301536B2 (en) * 2014-12-16 2019-05-28 Carbo Ceramics Inc. Electrically-conductive proppant and methods for making and using same
CN103159464B (zh) * 2013-04-16 2014-04-30 金刚新材料股份有限公司 一种利用炉渣制备页岩气开采用压裂支撑剂的方法
CA2849415C (en) 2013-04-24 2017-02-28 Robert D. Skala Methods for fracturing subterranean formations
US10017687B2 (en) 2014-05-14 2018-07-10 California Institute Of Technology Ultra-light ultra-strong proppants
KR20170044634A (ko) 2014-06-03 2017-04-25 해치 리미티드 입상 슬래그 생성물 및 그의 제조방법
US10190041B2 (en) 2016-08-02 2019-01-29 University Of Utah Research Foundation Encapsulated porous proppant
WO2020106655A1 (en) 2018-11-21 2020-05-28 Self-Suspending Proppant Llc Salt-tolerant self-suspending proppants made without extrusion
CN111470850A (zh) * 2020-04-30 2020-07-31 西安建筑科技大学 一种工业废弃物铜冶炼渣制备的陶粒支撑剂及制备工艺
CN112521928B (zh) * 2020-12-04 2023-01-06 新疆瑞克沃新材料有限公司 一种以电厂废固为原料的压裂支撑剂及其制备方法
CN112919889B (zh) * 2021-04-08 2023-06-02 贵州大学 添加预处理电解锰渣低密度陶粒支撑剂的制备方法及应用
CN114735967A (zh) * 2022-04-29 2022-07-12 河南机电职业学院 一种铝灰镁渣树脂结合石油压裂支撑剂及制取方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3245866A (en) * 1961-11-24 1966-04-12 Charles W Schott Vitreous spheres of slag and slag-like materials and underground propplants
GB1089213A (en) 1964-10-06 1967-11-01 Union Carbide Corp Glassy spheres and underground proppants
US3929191A (en) 1974-08-15 1975-12-30 Exxon Production Research Co Method for treating subterranean formations
US4879181B1 (en) 1982-02-09 1994-01-11 Carbo Ceramics Inc. Sintered spherical pellets containing clay as a major component useful for gas and oil well proppants
US4944905A (en) 1984-01-18 1990-07-31 Minnesota Mining And Manufacturing Company Particulate ceramic useful as a proppant
US4668645A (en) 1984-07-05 1987-05-26 Arup Khaund Sintered low density gas and oil well proppants from a low cost unblended clay material of selected composition
US4713203A (en) 1985-05-23 1987-12-15 Comalco Aluminium Limited Bauxite proppant
US4921820A (en) 1989-01-17 1990-05-01 Norton-Alcoa Proppants Lightweight proppant for oil and gas wells and methods for making and using same
US5188175A (en) 1989-08-14 1993-02-23 Carbo Ceramics Inc. Method of fracturing a subterranean formation with a lightweight propping agent
US5531274A (en) 1994-07-29 1996-07-02 Bienvenu, Jr.; Raymond L. Lightweight proppants and their use in hydraulic fracturing
US6753299B2 (en) 2001-11-09 2004-06-22 Badger Mining Corporation Composite silica proppant material
US7036591B2 (en) * 2002-10-10 2006-05-02 Carbo Ceramics Inc. Low density proppant
US7255815B2 (en) 2003-03-24 2007-08-14 Carbo Ceramics Inc. Titanium dioxide scouring media and method of production
CA2540429C (en) * 2003-11-04 2007-01-30 Global Synfrac Inc. Proppants and their manufacture
US20060016598A1 (en) * 2004-07-21 2006-01-26 Urbanek Thomas W Lightweight proppant and method of making same
US20060162929A1 (en) * 2005-01-26 2006-07-27 Global Synfrac Inc. Lightweight proppant and method of making same
CA2494051A1 (en) * 2005-01-26 2006-07-26 Global Synfrac Inc. Lightweight proppant and method of making same
CN1325423C (zh) * 2005-07-13 2007-07-11 攀枝花环业冶金渣开发有限责任公司 高钛型石油压裂支撑剂及其生产方法
DE102005045180B4 (de) * 2005-09-21 2007-11-15 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Kugelförmige Korundkörner auf Basis von geschmolzenem Aluminiumoxid sowie ein Verfahren zu ihrer Herstellung
US7624802B2 (en) * 2007-03-22 2009-12-01 Hexion Specialty Chemicals, Inc. Low temperature coated particles for use as proppants or in gravel packs, methods for making and using the same
US7737091B2 (en) * 2007-08-28 2010-06-15 Imerys Proppants and anti-flowback additives made from sillimanite minerals, methods of manufacture, and methods of use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ПАНФИЛОВ М.И. и др. Переработка шлаков и безотходная технология в металлургии. - М.: Металлургия, 1987, с.5, 50, 63, 64, 90, 97. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2518618C1 (ru) * 2012-12-25 2014-06-10 Открытое акционерное общество "Боровичский комбинат огнеупоров" Способ получения проппанта и проппант
RU2640057C2 (ru) * 2012-12-28 2017-12-26 Сен-Гобен Серэмикс Энд Пластикс, Инк. Керамические частицы и способ их получения
RU2696908C2 (ru) * 2014-04-23 2019-08-07 ХУВАКИ, ЭлЭлСи Проппант для жидкости гидроразрыва
RU2787859C1 (ru) * 2020-08-05 2023-01-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Вятский государственный университет" Способ приготовления огнестойкого материала из титаната алюминия с использованием промышленного алюминиевого шлака и титанового шлака

Also Published As

Publication number Publication date
US8496057B2 (en) 2013-07-30
RU2008115420A (ru) 2010-01-20
US20100252263A1 (en) 2010-10-07
WO2009038491A1 (fr) 2009-03-26

Similar Documents

Publication Publication Date Title
RU2383578C2 (ru) Проппант, способ его получения и способ гидравлического разрыва пласта с использованием полученного проппанта
RU2344155C2 (ru) Проппант на основе алюмосиликатов, способ его получения и способ его применения
CN101617018B (zh) 支撑剂、支撑剂制备方法以及支撑剂的用途
RU2694363C1 (ru) Керамический расклинивающий агент и его способ получения
US8785356B2 (en) Method for the production of a lightweight magnesium silicate proppant and a proppant
CN101914374B (zh) 高强度陶粒支撑剂及其生产方法
EA009639B1 (ru) Керамические расклинивающие наполнители с малой плотностью
EA012824B1 (ru) Расклинивающий агент для газовых и нефтяных скважин и способ трещинообразования подземной формации
US10017687B2 (en) Ultra-light ultra-strong proppants
CA2678059C (en) Proppant and method for higher production of a well
CN101701149B (zh) 低密度陶粒支撑剂
CN101270280A (zh) 一种油气井用压裂支撑剂及其制备方法
CN103820101B (zh) 一种耐酸的石油压裂支撑剂及其制造方法
RU2739180C1 (ru) Способ получения магнийсиликатного проппанта и проппант
CN109652055B (zh) 含假蓝宝石晶体的复相陶粒石油压裂支撑剂及其制备方法
RU2521989C1 (ru) Способ изготовления высокопрочного магнийсиликатного проппанта
CN107216868A (zh) 一种超高密度超高强度陶粒支撑剂及其制备方法
CN106947458A (zh) 镁橄榄石支撑剂及其制备方法
WO2014011066A1 (en) Light ceramic proppants and a method of manufacturing of light ceramic proppants
RU2559266C1 (ru) Проппант и способ получения проппанта
CN106967409A (zh) 压裂支撑剂及其制备方法
RU2814893C1 (ru) Способ изготовления магнийсиликатного проппанта
CN116554854A (zh) 一种利用钒钛冶炼废渣为原料的压裂用支撑剂及其制备方法
CN116836696A (zh) 一种以固废陶粒砂为原料的压裂支撑剂及其制备方法
CN110564399A (zh) 一种以高钙固硫灰为原料制备陶粒支撑剂的方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170919