RU2372167C2 - Method of receiving of composite material on basis of titanium carbon-silicide - Google Patents

Method of receiving of composite material on basis of titanium carbon-silicide Download PDF

Info

Publication number
RU2372167C2
RU2372167C2 RU2007141270/02A RU2007141270A RU2372167C2 RU 2372167 C2 RU2372167 C2 RU 2372167C2 RU 2007141270/02 A RU2007141270/02 A RU 2007141270/02A RU 2007141270 A RU2007141270 A RU 2007141270A RU 2372167 C2 RU2372167 C2 RU 2372167C2
Authority
RU
Russia
Prior art keywords
titanium
mill
composite material
mixture
mechanosynthesis
Prior art date
Application number
RU2007141270/02A
Other languages
Russian (ru)
Other versions
RU2007141270A (en
Inventor
Владимир Никитович Анциферов (RU)
Владимир Никитович Анциферов
Андрей Алексеевич Сметкин (RU)
Андрей Алексеевич Сметкин
Максим Николаевич Каченюк (RU)
Максим Николаевич Каченюк
Original Assignee
Владимир Никитович Анциферов
Андрей Алексеевич Сметкин
Максим Николаевич Каченюк
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Никитович Анциферов, Андрей Алексеевич Сметкин, Максим Николаевич Каченюк filed Critical Владимир Никитович Анциферов
Priority to RU2007141270/02A priority Critical patent/RU2372167C2/en
Publication of RU2007141270A publication Critical patent/RU2007141270A/en
Application granted granted Critical
Publication of RU2372167C2 publication Critical patent/RU2372167C2/en

Links

Abstract

FIELD: metallurgy.
SUBSTANCE: invention elates to powder metallurgy, particularly to receiving of high-temperature composite material on the basis of titanium carbon-silicide, titanium, silicon, carbon and hot compaction of mixture. Powder mixture, containing titanium, silicon, carbon or its compounds, are subject to mechanosynthesis in vacuum-degassed mill at rotational frequency of drum 260-330 rev/min. Hot compaction is implemented at temperature 1350-1450°C, compacting pressure 10-15 MPa, isolation 0.5-3 hours in vacuum or blanket of inert gas.
EFFECT: invention provides receiving of high-density composite material with high content of carbon-silicide.
2 cl

Description

Изобретение относится к производству высокотемпературных композиционных материалов, работающих в условиях экстремальных температур, повышенных нагрузок и агрессивных, ядовитых и радиоактивных сред, может найти применение в порошковой металлургии, в химической, энергетической, нефтедобывающей и газодобывающей промышленности, в машиностроении.The invention relates to the production of high-temperature composite materials operating in extreme temperatures, high loads and aggressive, toxic and radioactive environments, can find application in powder metallurgy, in the chemical, energy, oil and gas industry, in mechanical engineering.

Известно получение карбосилицида титана при твердофазном синтезе в условиях вакуума и при избытке кремниевой составляющей. На промежуточных стадиях синтеза из материала испарением удаляют избыток элементарного кремния. (П.В.Истомин, А.В.Надуткин, Ю.И.Рябков, Б.А.Голдин «Получение Ti3SiС2» Неорганические материалы. - Изд. Наука, 2006, том 42, №3, с.292-297). Недостатком является сложность регулирования содержания примесных фаз за счет введения в исходную шихту избытка кремниевой составляющей.It is known to obtain titanium carbosilicide by solid-phase synthesis under vacuum and with an excess of silicon component. At intermediate stages of the synthesis, excess elemental silicon is removed from the material by evaporation. (P.V. Istomin, A.V. Nadutkin, Yu.I. Ryabkov, B. A. Goldin “Production of Ti 3 SiC 2 ” Inorganic Materials. - Publishing House of Science, 2006, Volume 42, No. 3, p. 292 -297). The disadvantage is the difficulty of controlling the content of impurity phases due to the introduction of an excess of silicon component into the initial charge.

Для получения материалов на основе карбосилицида титана могут быть использованы методы реакционного горячего прессования (Barsoum M.W., El-Raghy Т. Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2 // J. Am. Ceram. Soc. 1996. V.79. P.1953-1956). Недостатком являются высокие энергозатраты и сложность технологического оборудования.To obtain materials based on titanium carbosilicide, reaction hot pressing methods can be used (Barsoum MW, El-Raghy T. Synthesis and Characterization of a Remarkable Ceramic: Ti 3 SiC 2 // J. Am. Ceram. Soc. 1996. V.79 P.1953-1956). The disadvantage is the high energy consumption and the complexity of the technological equipment.

В качестве ближайшего аналога заявляемому техническому решению выбран синтез 312-фаз и композитов на их основе по патенту США на изобретение №5942455, С01В 35/04, 1999. Процесс получения продукта включает создание смеси из переходного металла, в качестве которого используется титан или гидрит титана, соединения кремния и соединения углерода. Вторым этапом процесса получения продукта на основе карбосилицида титана является реакционное горячее прессование указанной смеси, максимальная температура которого 1800°С, максимальное давление - 200 МПа. Конечный продукт содержит примесей около 5%, имеет плотность, близкую к теоретической плотности. Недостатком являются высокие энергозатраты и сложность технологического оборудования, обеспечивающего данные режимы.As the closest analogue to the claimed technical solution, the synthesis of 312 phases and composites based on them was selected according to US patent for invention No. 5942455, С01В 35/04, 1999. The process of obtaining the product involves the creation of a mixture of transition metal, which is used as titanium or titanium hydrite silicon compounds and carbon compounds. The second step in the process of obtaining a product based on titanium carbosilicide is the reaction hot pressing of this mixture, the maximum temperature of which is 1800 ° C, the maximum pressure is 200 MPa. The final product contains impurities of about 5%, has a density close to theoretical density. The disadvantage is the high energy consumption and the complexity of the technological equipment that provides these modes.

Техническим результатом заявляемого технического решения является снижение энергозатрат, повышение технологичности процесса при получении высококачественного композиционного материала с высокой плотностью и высоким содержанием карбосилицида титана.The technical result of the claimed technical solution is to reduce energy consumption, increase the manufacturability of the process upon receipt of a high-quality composite material with a high density and a high content of titanium carbosilicide.

Технический результат достигается тем, что в способе получения композиционного материала на основе карбосилицида титана, включающем создание порошковой смеси, состоящей из титана, кремния, графита или соединений, их содержащих, и горячее прессование смеси, согласно изобретению, порошковую смесь подвергают механосинтезу в вакуумированной мельнице при частоте вращения барабана 260-330 об/мин, горячее прессование проводят при температуре 1350-1450°С, давлении прессования 10-15 МПа, выдержке 0,5-3 часа в вакууме или в атмосфере инертного газа. В качестве вакуумированной мельницы используют планетарную мельницу, механосинтез проводят при массовом соотношении смеси и мелющих шаров мельницы 1:30, при вращении барабана в прерывистом режиме.The technical result is achieved in that in a method for producing a composite material based on titanium carbosilicide, comprising creating a powder mixture consisting of titanium, silicon, graphite or compounds containing them, and hot pressing the mixture according to the invention, the powder mixture is subjected to mechanosynthesis in a vacuum mill at the drum rotation frequency of 260-330 rpm, hot pressing is carried out at a temperature of 1350-1450 ° C, a pressing pressure of 10-15 MPa, an exposure time of 0.5-3 hours in vacuum or in an inert gas atmosphere. A planetary mill is used as an evacuated mill, mechanosynthesis is carried out at a mass ratio of the mixture and grinding balls of the mill at 1:30, while the drum rotates in intermittent mode.

Технический результат обеспечивается за счет введения в способ получения композиционного материала на основе карбосилицида титана обработку порошковой смеси механосинтезом в вакуумированной мельнице. Процесс механосинтеза включает гомогенизацию, сухое измельчение и твердофазные реакции. В процессе механосинтеза в исходной смеси образуется от 15 до 30% карбосилицида титана. Образование карбосилицида титана на этапе механосинтеза позволяет существенно изменить режимы горячего твердофазного прессования и проводить его при температуре 1350-1450°С, давлении прессования 10-15 МПа, выдержке 0,5-3 часа в вакууме или в атмосфере инертного газа, что позволяет снизить энергозатраты технологического процесса и использовать стандартное технологическое оборудование прессования.The technical result is achieved by introducing into the method of producing a composite material based on titanium carbosilicide the treatment of the powder mixture by mechanosynthesis in a vacuum mill. The mechanosynthesis process includes homogenization, dry grinding and solid phase reactions. In the process of mechanosynthesis, from 15 to 30% of titanium carbosilicide is formed in the initial mixture. The formation of titanium carbosilicide at the stage of mechanosynthesis can significantly change the modes of hot solid-phase pressing and carry it out at a temperature of 1350-1450 ° C, pressing pressure of 10-15 MPa, holding for 0.5-3 hours in a vacuum or in an inert gas atmosphere, which reduces energy costs technological process and use standard technological equipment pressing.

Механосинтез включает гомогенизацию, сухое измельчение смеси, а также твердофазные реакции между компонентами. В процессе механосинтеза к частицам порошка подводится высокая энергия. Происходит усвоение твердыми частицами смеси механической энергии активации. При высоких скоростях деформаций происходит изменение структуры твердых тел, ускорение процессов диффузии при пластической деформации. На свежеобразованной поверхности образуются активные центры поверхности, возникают импульсы высоких локальных давлений и температур. В локально ограниченных участках температура может достигать высоких значений, доходящих до точки плавления легкоплавкого компонента. Сухое измельчение без жидких агентов, активаторов, диспергаторов, поверхностно активных веществ способствует «холодной сварке» образующихся частиц, заключающейся в том, что без нагревания извне появляются композитные частицы, содержащие карбосилицид титана. Это объясняется переходом твердой фазы компонентов смеси в неравновесное состояние, характеризующееся мелкозернистым строением частиц порошка, увеличением пределов растворимости в твердой фазе, появлением растворимости в системах, состоящих из нерастворимости компонентов, измельчением элементов структуры материала частиц до нанометровых размеров, образованием новых кристаллических и аморфных фаз, инициацией химических реакций при более низких температурах. Образование новых фаз происходит за счет высокой степени микроискажений и большого количества дефектов решетки, что ускоряет диффузию атомов одного элемента в кристаллическую решетку другого. Для использования активных центров на свежеобразованной поверхности для получения композиционных частиц в процессе «холодной сварки» механосинтез проводят в вакууме. В результате механосинтеза образуется от 15 до 30% карбосилицида титана.Mechanosynthesis includes homogenization, dry grinding of the mixture, as well as solid-phase reactions between the components. In the process of mechanosynthesis, high energy is supplied to the powder particles. Solid particles absorb the mixture of mechanical activation energy. At high strain rates, the structure of solids changes, and diffusion processes accelerate during plastic deformation. Active surface centers are formed on a freshly formed surface, and pulses of high local pressures and temperatures arise. In locally limited areas, the temperature can reach high values, reaching the melting point of the low-melting component. Dry grinding without liquid agents, activators, dispersants, surfactants contributes to the "cold welding" of the formed particles, which consists in the fact that without heating from the outside, composite particles containing titanium carbosilicide appear. This is explained by the transition of the solid phase of the components of the mixture to a nonequilibrium state, characterized by a fine-grained structure of the powder particles, an increase in the solubility limits in the solid phase, the appearance of solubility in systems consisting of insolubility of the components, grinding elements of the structure of the particle material to nanometer sizes, the formation of new crystalline and amorphous phases, initiation of chemical reactions at lower temperatures. The formation of new phases occurs due to a high degree of micro distortion and a large number of lattice defects, which accelerates the diffusion of atoms of one element into the crystal lattice of another. To use active centers on a freshly formed surface to obtain composite particles in the process of "cold welding", mechanosynthesis is carried out in vacuum. As a result of mechanosynthesis, 15 to 30% of titanium carbosilicide is formed.

Способ получения композиционного материала на основе карбосилицида титана заключается в следующем.A method of obtaining a composite material based on titanium carbosilicide is as follows.

Исходную смесь порошков титана, карбида кремния и графита или их соединений в мольном соотношении 3:1.25:0,75 помещают в кювету планетарной мельницы совместно с мелющими шарами в соотношении 1:30, вакуумируют до остаточного давления менее 1 Па. Для механосинтеза используют планетарную мельницу «Санд». Механосинтез проводят при частоте вращения барабана мельницы 320 об/мин в прерывистом режиме. Указанные параметры обеспечивают подвод к частицам энергии, необходимой для активации процессов образования новых фаз. При частоте вращения барабана мельницы менее 260 об/мин образования карбосилицида не происходит, т.к. энергии мелющих тел недостаточно для активации энергии синтеза. При частоте вращения барабана более 330 об/мин происходит интенсивный разогрев смеси и ее налипание на стенки кюветы мельницы, что препятствует процессу механосинтеза. При оптимальной частоте вращения барабана мельницы 320 об/мин оптимальное время механосинтеза - 20-30 мин, охлаждение - в течение 1 часа. Затем проводят горячее прессование полученной композиции в графитовой пресс-форме при температуре 1400°С, давлении 10 МПа и изотермической выдержке 1 час. Нагрузку прикладывают непосредственно перед началом нагрева, нагрев ведут со скоростью 7 град/мин. Опытным путем установлено, что в данном способе получения композиционного материала на основе карбосилицида титана при увеличении температуры горячего прессования происходит снижение содержания карбосилицида титана, что можно объяснить активацией процессов жидкофазного спекания из-за плавления свободного кремния. Охлаждение материала происходит вместе установкой горячего прессования. После остывания образец извлекают из графитовой пресс-формы.The initial mixture of powders of titanium, silicon carbide and graphite or their compounds in a molar ratio of 3: 1.25: 0.75 is placed in a cuvette of a planetary mill together with grinding balls in a ratio of 1:30, vacuum to a residual pressure of less than 1 Pa. For mechanosynthesis, the Sand planetary mill is used. Mechanosynthesis is carried out at a rotational speed of the mill drum 320 rpm in intermittent mode. The indicated parameters provide the supply to the particles of energy necessary to activate the processes of formation of new phases. When the rotational speed of the mill drum is less than 260 rpm, the formation of carbosilicide does not occur, because the energy of grinding media is not enough to activate the energy of synthesis. At a drum rotation frequency of more than 330 rpm, the mixture is heated intensely and it sticks to the walls of the mill cell, which impedes the process of mechanosynthesis. At the optimal rotational speed of the mill drum 320 rpm, the optimal mechanosynthesis time is 20-30 minutes, cooling - for 1 hour. Then, the resulting composition is hot pressed in a graphite mold at a temperature of 1400 ° C, a pressure of 10 MPa and an isothermal exposure of 1 hour. A load is applied immediately before the start of heating, heating is carried out at a speed of 7 deg / min. It has been experimentally established that in this method of producing a composite material based on titanium carbosilicide, with an increase in the temperature of hot pressing, a decrease in the content of titanium carbosilicide occurs, which can be explained by the activation of liquid-phase sintering due to the melting of free silicon. The cooling of the material takes place together with the installation of hot pressing. After cooling, the sample is removed from the graphite mold.

Данным способом получают материал плотностью 4,47 г/см3 (пористость около 2%), в составе которого содержится 90% карбосилицида титана и 10% карбида титана.In this way, a material is obtained with a density of 4.47 g / cm 3 (porosity of about 2%), which contains 90% titanium carbosilicide and 10% titanium carbide.

Таким образом, заявляемое изобретение позволяет получить композиционный материал с высоким содержанием карбосилицида титана и высокой плотностью при снижении энергозатарат и повышении технологичности процесса.Thus, the claimed invention allows to obtain a composite material with a high content of titanium carbosilicide and high density while reducing energy consumption and increasing the processability.

Claims (2)

1. Способ получения композиционного материала на основе карбосилицида титана, включающий получение порошковой смеси, состоящей из титана, кремния, углерода или соединений, их содержащих, и горячее прессование смеси, отличающийся тем, что порошковую смесь подвергают механосинтезу в вакуумированной мельнице при частоте вращения барабана 260-330 об/мин, а горячее прессование проводят при температуре 1350-1450°С, давлении прессования 10-15 МПа и выдержке 0,5-3 ч в вакууме или в атмосфере инертного газа.1. A method of obtaining a composite material based on titanium carbosilicide, comprising obtaining a powder mixture consisting of titanium, silicon, carbon or compounds containing them, and hot pressing the mixture, characterized in that the powder mixture is subjected to mechanosynthesis in a vacuum mill at a drum speed of 260 -330 rpm, and hot pressing is carried out at a temperature of 1350-1450 ° C, a pressing pressure of 10-15 MPa and an exposure of 0.5-3 hours in a vacuum or inert gas atmosphere. 2. Способ по п.1, отличающийся тем, что в качестве вакуумированной мельницы используют планетарную мельницу, механосинтез проводят при массовом соотношении смеси и мелющих шаров мельницы 1:30, при частоте вращения барабана 320 об/мин, в прерывистом режиме. 2. The method according to claim 1, characterized in that a planetary mill is used as an evacuated mill, mechanosynthesis is carried out at a mass ratio of the mixture and grinding balls of the mill at 1:30, at a drum rotation frequency of 320 rpm, in intermittent mode.
RU2007141270/02A 2007-11-06 2007-11-06 Method of receiving of composite material on basis of titanium carbon-silicide RU2372167C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007141270/02A RU2372167C2 (en) 2007-11-06 2007-11-06 Method of receiving of composite material on basis of titanium carbon-silicide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007141270/02A RU2372167C2 (en) 2007-11-06 2007-11-06 Method of receiving of composite material on basis of titanium carbon-silicide

Publications (2)

Publication Number Publication Date
RU2007141270A RU2007141270A (en) 2009-05-20
RU2372167C2 true RU2372167C2 (en) 2009-11-10

Family

ID=41021242

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007141270/02A RU2372167C2 (en) 2007-11-06 2007-11-06 Method of receiving of composite material on basis of titanium carbon-silicide

Country Status (1)

Country Link
RU (1) RU2372167C2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458167C1 (en) * 2011-06-06 2012-08-10 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Method for obtaining powdered composition on base of titanium carbosilicide for plasma coatings
RU2458168C1 (en) * 2011-06-06 2012-08-10 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Method for obtaining powdered composition on base of titanium carbosilicide for ion-plasma coatings
RU2460706C2 (en) * 2010-07-15 2012-09-10 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Method of producing titanium carbosilicide-based powdered composition
RU2462331C2 (en) * 2010-09-15 2012-09-27 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Method of producing composite material based on titanium silicocarbide and titanium porous-fibrous component
RU2486164C2 (en) * 2011-07-19 2013-06-27 Учреждение Российской академии наук Институт химии Коми научного центра Уральского отделения РАН METHOD OF PRODUCING CERAMICS AND COMPOSITE MATERIALS BASED ON Ti3SiC2
RU2492256C1 (en) * 2012-05-16 2013-09-10 Валерий Иванович Панин Pure titanium-based nanostructured composite and method of its production
RU2610380C2 (en) * 2015-07-13 2017-02-09 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Method of producing titanium carbosilicide-based composite
RU2638866C1 (en) * 2016-06-15 2017-12-18 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Method of producing high temperature powder composite material based on silicon carbides and titanium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2460706C2 (en) * 2010-07-15 2012-09-10 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Method of producing titanium carbosilicide-based powdered composition
RU2462331C2 (en) * 2010-09-15 2012-09-27 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Method of producing composite material based on titanium silicocarbide and titanium porous-fibrous component
RU2458167C1 (en) * 2011-06-06 2012-08-10 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Method for obtaining powdered composition on base of titanium carbosilicide for plasma coatings
RU2458168C1 (en) * 2011-06-06 2012-08-10 Государственное образовательное учреждение высшего профессионального образования "Пермский государственный технический университет" Method for obtaining powdered composition on base of titanium carbosilicide for ion-plasma coatings
RU2486164C2 (en) * 2011-07-19 2013-06-27 Учреждение Российской академии наук Институт химии Коми научного центра Уральского отделения РАН METHOD OF PRODUCING CERAMICS AND COMPOSITE MATERIALS BASED ON Ti3SiC2
RU2492256C1 (en) * 2012-05-16 2013-09-10 Валерий Иванович Панин Pure titanium-based nanostructured composite and method of its production
RU2492256C9 (en) * 2012-05-16 2013-12-10 Сергей Валерьевич Панин Pure titanium-based nanostructured composite and method of its production
RU2610380C2 (en) * 2015-07-13 2017-02-09 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Method of producing titanium carbosilicide-based composite
RU2638866C1 (en) * 2016-06-15 2017-12-18 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Method of producing high temperature powder composite material based on silicon carbides and titanium

Also Published As

Publication number Publication date
RU2007141270A (en) 2009-05-20

Similar Documents

Publication Publication Date Title
RU2372167C2 (en) Method of receiving of composite material on basis of titanium carbon-silicide
Wan et al. Spark plasma sintering of silicon nitride/silicon carbide nanocomposites with reduced additive amounts
KR101160140B1 (en) Manufacturing method of zirconium diboride-silicon carbide composite
CN111646799B (en) Combustion method for preparing Tin+1ACnMethod of producing a material
US20070138706A1 (en) Method for preparing metal ceramic composite using microwave radiation
WO2020244484A1 (en) High-purity sic ceramic prepared by normal-pressure solid phase sintering and preparation method therefor
CN111675541A (en) Preparation method of carbon-containing MAX phase material
JP6918697B2 (en) Cermet material and its manufacturing method
CN100453508C (en) Chemically excited combustion process for synthesizing Si3N4/SiC composite powder
CN105272229A (en) Ceramic containing pyrochlore phase zirconic acid gadolinium powder and preparation method of ceramic
RU2410197C1 (en) Method of producing composite ti2sic2-based material
CN113416076A (en) Preparation method of self-reinforced silicon carbide ceramic material
CN105350294B (en) A kind of chopped carbon fiber of applying silicon carbide layer and preparation method thereof
EP2456733A2 (en) Methods of forming sintered boron carbide
JP2020029390A (en) Method for producing aluminum silicon carbide
Han et al. Formation mechanism of AlN-SiC solid solution with multiple morphologies in Al-Si-SiC composites under flowing nitrogen at 1300° C
Zhou et al. Effect of Ni–Al SHS reaction on diamond grit for fabrication of diamond tool material
CN106032323A (en) Method for preparing Ti2AlC ceramic powder from TiAl powder
CN107099722B (en) Surface self-lubricating Ti (C, N) based ceramic metal preparation method based on carbon diffusion
Chanadee et al. Self-propagating high-temperature synthesis of Si-SiC composite powder
KR20150014371A (en) A method of producing graphite material
Li et al. Reaction and formation mechanism of Fe-Si3N4 composite prepared by flash combustion synthesis
RU2486164C2 (en) METHOD OF PRODUCING CERAMICS AND COMPOSITE MATERIALS BASED ON Ti3SiC2
RU2638866C1 (en) Method of producing high temperature powder composite material based on silicon carbides and titanium
JP2011068538A (en) Method for producing titanium silicon carbide ceramic

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20101107