RU2368934C2 - Адаптивная система управления - Google Patents

Адаптивная система управления Download PDF

Info

Publication number
RU2368934C2
RU2368934C2 RU2007121876/09A RU2007121876A RU2368934C2 RU 2368934 C2 RU2368934 C2 RU 2368934C2 RU 2007121876/09 A RU2007121876/09 A RU 2007121876/09A RU 2007121876 A RU2007121876 A RU 2007121876A RU 2368934 C2 RU2368934 C2 RU 2368934C2
Authority
RU
Russia
Prior art keywords
input
output
phase
controller
amplitude
Prior art date
Application number
RU2007121876/09A
Other languages
English (en)
Other versions
RU2007121876A (ru
Inventor
Александр Владимирович Спицын (RU)
Александр Владимирович Спицын
Вячеслав Михайлович Мазуров (RU)
Вячеслав Михайлович Мазуров
Николай Григорьевич Тупиков (RU)
Николай Григорьевич Тупиков
Original Assignee
Общество с ограниченной ответственностью "Электроспецприбор"
Общество с ограниченной ответственностью "Промавтоматика"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Электроспецприбор", Общество с ограниченной ответственностью "Промавтоматика" filed Critical Общество с ограниченной ответственностью "Электроспецприбор"
Priority to RU2007121876/09A priority Critical patent/RU2368934C2/ru
Publication of RU2007121876A publication Critical patent/RU2007121876A/ru
Application granted granted Critical
Publication of RU2368934C2 publication Critical patent/RU2368934C2/ru

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

Изобретение относится к электрическим самонастраивающимся системам управления. Технический результат заключается в улучшении динамических характеристик системы и повышении запасов устойчивости системы по амплитуде и фазе. Он достигается тем, что адаптивная система управления содержит регулятор, объект управления, измеритель амплитуды и фазы, первый вычислительный блок, устройство сравнения, первый сумматор, генератор пробных гармонических колебаний, блок фазовой подстройки, первый заграждающий фильтр, блок вычисления коэффициентов заграждающего фильтра, второй заграждающий фильтр, второй сумматор, второй вычислительный блок и модель объекта управления. 2 з.п. ф-лы, 4 ил.

Description

Изобретение относится к электрическим самонастраивающимся системам управления, а именно к области адаптивных систем управления с пробным гармоническим сигналом, и предназначено для управления химическими, энергетическими, электромеханическими и другими объектами с переменными или нестационарными параметрами.
Наиболее близким по технической сущности к предлагаемому решению является самонастраивающаяся система управления с гармоническим пробным сигналом (патент РФ №2068196, кл. G05B 13/02), содержащая регулятор, объект управления, выход которого подключен к первому входу измерителя амплитуды и фазы, первый вход которого соединен с первым входом вычислительного блока, выход которого соединен с входом подстройки параметров регулятора, сигнальный вход которого соединен с выходом устройства сравнения, первый вход которого является входом задания системы, сумматор и генератор пробных гармонических колебаний, блок фазовой подстройки, вход которого соединен с вторым выходом измерителя амплитуды и фазы, заграждающий фильтр и блок вычисления коэффициентов заграждающего фильтра, вход которого соединен с выходом блока фазовой подстройки, подключенным к второму входу вычислительного блока и к входу генератора пробных гармонических колебаний, выход которого соединен с вторым входом измерителя амплитуды и фазы и с первым входом сумматора, второй вход которого подключен к выходу регулятора, а выход к входу объекта управления, выход которого соединен с информационным входом заграждающего фильтра, подключенного выходом к второму входу устройства сравнения, а управляющим входом к выходу блока вычисления коэффициентов заграждающего фильтра.
Недостатком известной системы являются ее неудовлетворительные динамические характеристики, обусловленные наличием заграждающего фильтра 2-го порядка в контуре управления, что приводит к уменьшению запасов устойчивости системы по амплитуде и фазе и появлению в цепи обратной связи пары комплексных корней, существенно повышающих колебательность и длительность переходных процессов в системе.
Задачей изобретения является улучшение динамических характеристик системы и повышение запасов устойчивости системы по амплитуде и фазе.
Указанный результат достигается тем, что в адаптивную систему управления, включающую регулятор, объект управления, выход которого подключен к первому входу измерителя амплитуды и фазы, первый выход которого соединен с первым входом вычислительного блока, выход которого соединен с входом подстройки параметров регулятора, сигнальный вход которого соединен с выходом устройства сравнения, первый вход которого является входом задания системы, первый сумматор, генератор пробных гармонических колебаний, блок фазовой подстройки, вход которого соединен с вторым выходом измерителя амплитуды и фазы, первый заграждающий фильтр, блок вычисления коэффициентов заграждающего фильтра, вход которого объединен с вторым входом вычислительного блока и входом генератора пробных гармонических колебаний и подключен к выходу блока фазовой подстройки, выход генератора пробных гармонических колебаний соединен с вторым входом измерителя амплитуды и фазы и с первым входом сумматора, второй вход которого подключен к выходу регулятора, а выход к входу объекта управления, выход которого соединен с информационным входом первого заграждающего фильтра, управляющий вход которого подключен к выходу блока вычисления коэффициентов заграждающего фильтра, введены второй заграждающий фильтр, второй сумматор, второй вычислительный блок и модель объекта управления, первый вход которой подключен к выходу регулятора, а выход к первому входу второго сумматора и информационному входу второго заграждающего фильтра, управляющий вход которого подключен к выходу блока вычисления коэффициентов заграждающего фильтра, выходы первого и второго заграждающих фильтров подключены к второму и третьему входам второго сумматора соответственно, выход второго сумматора подключен к второму входу устройства сравнения, второй вход модели объекта управления подключен к выходу второго блока вычисления, первый, второй и третий входы которого подключены к первому и второму выходам измерителя амплитуды и фазы и к выходу блока фазовой автоподстройки соответственно.
Кроме того
- регулятор выполнен на основе цифрового скоростного ПИД-регулятора,
- измеритель амплитуды и фазы выполнен на основе дискретного фильтра Фурье.
Изобретение поясняется с помощью чертежей, где на Фиг.1. показана структурная схема адаптивной системы управления, на Фиг.2. - графики переходных процессов при отработке возмущающих скачкообразных воздействий с включенной и выключенной компенсацией негативного влияния заграждающих фильтров, на Фиг.3 - график отработки смены задания в системе управления без компенсации негативного влияния заграждающих фильтров (прототип), на Фиг.4 - график отработки смены задания в адаптивной системе управления с компенсацией негативного влияния заграждающих фильтров.
Адаптивная система управления включает регулятор 1, выполненный на основе цифрового скоростного ПИД-регулятора, объект 2 управления, выход которого подключен к первому входу измерителя 3 амплитуды и фазы, выполненный на основе дискретного фильтра Фурье, первый выход которого соединен с первым входом первого 4 вычислительного блока, выход которого соединен с входом подстройки параметров регулятора 1, сигнальный вход которого соединен с выходом устройства 5 сравнения, первый вход которого является входом задания системы, первый сумматор 6, генератор 7 пробных гармонических колебаний, блок 8 фазовой подстройки, вход которого соединен с вторым выходом измерителя 3 амплитуды и фазы, первый 9 заграждающий фильтр, блок 10 вычисления коэффициентов заграждающего фильтра, вход которого объединен с вторым входом вычислительного блока и входом генератора пробных гармонических колебаний и подключен к выходу блока 8 фазовой подстройки, выход генератора пробных гармонических колебаний соединен с вторым входом измерителя амплитуды и фазы и с первым входом первого сумматора, второй вход которого подключен к выходу регулятора, а выход к входу объекта управления, выход которого соединен с информационным входом первого заграждающего фильтра, управляющий вход которого подключен к выходу блока вычисления коэффициентов заграждающего фильтра, введены второй 11 заграждающий фильтр, второй 12 сумматор, второй 13 вычислительный блок и модель 14 объекта управления, первый вход которой подключен к выходу регулятора, а выход к первому входу второго сумматора и информационному входу второго заграждающего фильтра, управляющий вход которого подключен к выходу блока вычисления коэффициентов заграждающего фильтра, выходы первого и второго заграждающих фильтров подключены к второму и третьему входам второго сумматора соответственно, выход второго сумматора подключен к второму входу устройства сравнения, второй вход модели объекта управления подключен к выходу второго блока вычисления, первый, второй и третий входы которого подключены к первому и второму выходам измерителя амплитуды и фазы и к выходу блока фазовой автоподстройки соответственно.
Адаптивная система управления работает следующим образом.
Генератор 7 пробных гармонических колебаний формирует пробный сигнал
Figure 00000001
,
где k - текущий номер периода квантования;
Rг - заданное значение амплитуды тестовой гармоники;
δ[k] - дискретное время генератора пробных колебаний, зависящее от текущей величины нормируемого периода колебаний Nj и определяющееся соотношением δ[k]=δ[k]+2π/Nj, при этом если δ[k]≥2π, то δ[k]=δ[k]-2π.
Nj - нормированный период, который связан с частотой пробных колебаний соотношением
ω=2π/(NjTq),
где Tq - период квантования.
Измеритель 3 амплитуды и фазы, представляющий собой дискретный фильтр Фурье по m-периодов пробных колебаний определяет на j-ом цикле адаптации оценки амплитуды
Figure 00000002
(j) и фазы
Figure 00000003
(j) гармонической составляющей в сигнале Y[k], согласно формулам
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
где Rs(j), Rc(j) - синусная и косинусная составляющие сигнала УВД;
m - число анализируемых периодов колебаний, варьируя которое можно достичь повышения помехоустойчивости контура адаптации в зависимости от «зашумленности» Y[k].
Длительность анализируемой на j-м цикле последовательности, в течение которой не меняется частота генератора, равна mNjTq. При работе адаптивной системы управления в реальном времени текущие значения сигнала с выхода объекта управления Y[k] получают путем аналого-цифрового преобразования.
При настройке в условиях высокого уровня шумов полученные на j-м цикле адаптации величины текущих оценок амплитуды
Figure 00000008
(j) и фазы
Figure 00000009
(j) вектора АФХ объекта могут быть подвергнуты сглаживанию, например методом скользящего среднего. Кроме того, для ослабления шума, создающего помехи наблюдениям, рекомендуется, а в большинстве случаев необходимо, использование совместно с фильтром Фурье дополнительного полосового фильтра, средняя частота которого должна быть жестко связана с частотой пробных колебаний ω. Полосовой фильтр может быть построен на базе уже включенных в структуру системы заграждающих фильтров.
Блок 8 фазовой подстройки работает, в простейшем случае, по интегральному закону управления, так как скачки по пробной частоте нежелательны. Он, путем изменения частоты колебаний ω генератора, отслеживает фазовый сдвиг между входной и выходной гармониками объекта на уровне φ3=-π рад. Используется следующий вид закона управления блока фазовой подстройки частоты:
Figure 00000010
,
где β выбирается в диапазоне 0.5÷1,5, обеспечивающем устойчивую работу контура адаптации для объектов с различными величинами запаздывания.
Первый 4 вычислительный блок. По достижении или удержании, в случае непрерывной адаптации, установившегося значения фазового сдвига величины -π рад:
|
Figure 00000009
(j)-φ3|≤γ, где γ точность слежения, блок фазовой подстройки разрешает работу вычислительного блока. Обычно, в зависимости от точности используемых АЦП, γ=0.05÷0.2. Первый вычислительный блок определяет настройки регулятора согласно известным формулам Циглера-Николса следующим образом:
Figure 00000011
Figure 00000012
;
Figure 00000013
,
где kp, Ти и Т - параметры настройки адаптивной системы управления, нормированные по периоду квантования Tq.
При этом регулятор в адаптивной системе управления должен быть с зависимыми настройками.
Регулятор 1 реализует алгоритм цифрового скоростного ПИД- регулятора с фильтрацией Д составляющей. Он получается путем дискретизации соответствующего непрерывного ПИД-регулятора, и закон управления выглядит следующим образом:
Figure 00000014
где kp - коэффициент передачи регулятора, Ти - постоянная времени изодрома регулятора, Тд - постоянная времени дифференцирования регулятора.
Второй 13 вычислительный блок обеспечивает определение параметров kм и Тм, которые определяются по известным характеристикам вектора АФХ объекта
Figure 00000015
и
Figure 00000016
, найденным контуром самонастройки, по соотношениям
Figure 00000017
где
Figure 00000008
(J) - установившаяся амплитуда колебаний на выходе объекта управления на j-м цикле адаптации;
Figure 00000009
(j) - разность фаз гармоники с нормированным периодом пробных колебаний N на выходе объекта и фазы пробного сигнала Uг[k],
n - порядок полинома.
Модель 14 объекта управления описывается следующим выражением:
Figure 00000018
где коэффициенты α, β, а1, а2, а3, b1 и b2 вычисляются через параметры объекта kм,
Tм и период квантования Tq по формулам
Figure 00000019
,
Figure 00000020
,
a1=3α, a2=-3α2, a33, b1=αβ, b2=-α2β.
Второй 11 заграждающий фильтр, являющийся фильтром второго порядка реализует в координатах "вход-выход" следующий алгоритм работы:
Yф[k]=-cYф[k-2]+b(Y[k-1]-Yф[k-1])+a(Y[k-2]+Y[k]),
где коэффициенты фильтра а, b, с вычисляются через нормированный период Nj пробных колебаний на j-м цикле самонастройки по формулам
Figure 00000021
Добротность фильтра Dф должна находиться в диапазоне 1-10, причем, чем больше добротность, тем меньше влияние фильтра на динамику системы, меньше чувствительность к шумам.
На вход объекта управления 2 подается сумма сигналов с выхода регулятора Up(t) и пробное гармоническое воздействие Uг(t) с генератора пробных гармонических колебаний, частота которого может изменяться. Измеритель амплитуды и фазы путем умножения выходного сигнала Y(t) на опорный сигнал Uг(t) с амплитудой Rг осуществляет выделение текущих значений амплитуды
Figure 00000008
и фазы
Figure 00000009
гармонической составляющей на выходе объекта управления Y(t). Таким образом, оценивается положение вектора АФХ объекта. Блок 8 фазовой подстройки частоты изменяет частоту колебаний цифрового генератора таким образом, чтобы поддерживать текущий фазовый сдвиг на заданном уровне φ3=-π. При каждой смене частоты пробных колебаний генератора блок вычисления коэффициентов заграждающего фильтра осуществляет пересчет коэффициентов цифровых заграждающих фильтров 9 и 11. Первый заграждающий фильтр в цепи главной обратной связи исключает пробную гармонику из замкнутого контура управления, что и позволяет определить вектор АФХ объекта при сохранении процесса управления объектом.
Первый вычислительный блок при достижении фазой
Figure 00000009
с определенной точностью заданного значения -π производит расчет настроек ПИД-регулятора, используя коэффициент усиления объекта управления на критической частоте
Figure 00000008
180/Rг. Второй вычислительный блок 13 по значениям текущих оценок амплитуды
Figure 00000008
и фазы
Figure 00000009
вектора АФХ объекта обеспечивает построение модели объекта управления. Модель объекта строится в виде инерционного звена с передаточной функцией
Figure 00000022
,
где kм и Тм - коэффициент передачи и постоянная времени модели объекта управления соответственно, при фиксированном значении порядка модели n.
Порядок полинома для широкого круга объектов n=2÷4. Второй 11 заграждающий фильтр абсолютно идентичен по своим параметрам первому 9 фильтру и совместно с моделью 14 объекта управления создает компенсацию негативного влияния.
При равенстве передаточных функций объекта 2 управления и модели 14 объекта управления фактически процесс регулирования осуществляется по каналу: ПИД-регулятор 1, модель 14 объекта управления, второй 11 заграждающий фильтр (включенный по схеме избирательного фильтра). Таким образом, по этому каналу в основной контур регулирования вводится потерянная ранее дополнительная гармоническая составляющая, что способствует улучшению динамики основного контура регулирования, позволяет в отличие от прототипа, установить в регуляторе его оптимальные настройки при сохранении непрерывной работы контура самонастройки. Последнее обстоятельство позволяет использовать предложенную адаптивную систему для управления объектами с переменными параметрами.
В адаптивной системе управления не требуется точного совпадение передаточных функций объекта и модели в широком диапазоне частот, так как достаточно близкое совпадение их частотных характеристик необходимо обеспечить лишь в области критической частоты колебаний объекта. Последний факт и то, что управление не является идентификационным, то есть модель объекта управления не участвует в формировании коэффициентов регулятора kp, Ти и Т, а работает только в контуре компенсации, позволяют применить достаточно простую модель.
Исследование динамики адаптивной системы управления проводилось путем моделирования на ЭВМ. На Фиг.2 изображены графики переходных процессов при отработке возмущающих скачкообразных воздействий (прямого и обратного) с включенным и выключенным блоком компенсации негативного влияния заграждающих фильтров.
Как видно из графиков, возмущения отрабатываются при компенсации быстрее в 2-4 раза при заметно меньшей колебательности переходных процессов в системе.
Был проведен также эксперимент по управлению адаптивной системы управления в режиме реального времени. В качестве объекта использовался электротехнический объект, описываемый передаточной функцией пятого порядка. Алгоритм управления был реализован на языке C++ и выполнялся на управляющей ЭВМ, оснащенной комплектом аналоговых плат ввода-вывода.
Результаты исследования динамики основного контура системы управления без блока компенсации (прототип), и с включенной компенсацией приведены на Фиг.3 и Фиг.4, соответственно. Как показали исследования, которые проводились на цифровой модели и в масштабе реального времени на электротехническом объекте отработка воздействий системой с компенсацией проходит в два раза быстрее, чем без нее, при значительном снижении колебательности процессов и сохранении оптимальных настроек.
Это позволяет осуществлять непрерывную подстройку регулятора с частотно-зависимой обратной связью в процессе длительной работы системы без потери качества ее динамических свойств. Приведенные примеры практического использования говорят о перспективности использования предлагаемой адаптивной системы управления при управлении технологическими объектами с переменными параметрами, так как она обеспечивает постоянную оптимальную подстройку регулятора при изменении параметров объекта управления в процессе нормальной эксплуатации, используя весьма простую математическую модель, имеет высокое быстродействие и помехозащищенность.
Таким образом, адаптивная система управления имеет более высокие динамические характеристики и более высокий запас устойчивости системы по амплитуде и фазе по сравнению с прототипом.

Claims (3)

1. Адаптивная система управления, включающая регулятор, объект управления, выход которого подключен к первому входу измерителя амплитуды и фазы, первый выход которого соединен с первым входом вычислительного блока, выход которого соединен с входом подстройки параметров регулятора, сигнальный вход которого соединен с выходом устройства сравнения, первый вход которого является входом задания системы, первый сумматор, генератор пробных гармонических колебаний, блок фазовой подстройки, вход которого соединен с вторым выходом измерителя амплитуды и фазы, первый заграждающий фильтр, блок вычисления коэффициентов заграждающего фильтра, вход которого объединен с вторым входом вычислительного блока и входом генератора пробных гармонических колебаний и подключен к выходу блока фазовой подстройки, выход генератора пробных гармонических колебаний соединен с вторым входом измерителя амплитуды и фазы и с первым входом сумматора, второй вход которого подключен к выходу регулятора, а выход к входу объекта управления, выход которого соединен с информационным входом первого заграждающего фильтра, управляющий вход которого подключен к выходу блока вычисления коэффициентов заграждающего фильтра, отличающаяся тем, что в нее введены второй заграждающий фильтр, второй сумматор, второй вычислительный блок и модель объекта управления, первый вход которой подключен к выходу регулятора, а выход к первому входу второго сумматора и информационному входу второго заграждающего фильтра, управляющий вход которого подключен к выходу блока вычисления коэффициентов заграждающего фильтра, выходы первого и второго заграждающих фильтров подключены к второму и третьему входам второго сумматора, соответственно, выход второго сумматора подключен к второму входу устройства сравнения, второй вход модели объекта управления подключен к выходу второго блока вычисления, первый, второй и третий входы которого подключены к первому и второму выходам измерителя амплитуды и фазы и к выходу блока фазовой автоподстройки, соответственно.
2. Адаптивная система управления по п.1, отличающаяся тем, что регулятор выполнен на основе цифрового скоростного ПИД регулятора.
3. Адаптивная система управления по п.1, отличающаяся тем, что измеритель амплитуды и фазы выполнен на основе дискретного фильтра Фурье.
RU2007121876/09A 2007-06-14 2007-06-14 Адаптивная система управления RU2368934C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007121876/09A RU2368934C2 (ru) 2007-06-14 2007-06-14 Адаптивная система управления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007121876/09A RU2368934C2 (ru) 2007-06-14 2007-06-14 Адаптивная система управления

Publications (2)

Publication Number Publication Date
RU2007121876A RU2007121876A (ru) 2008-12-20
RU2368934C2 true RU2368934C2 (ru) 2009-09-27

Family

ID=41169761

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007121876/09A RU2368934C2 (ru) 2007-06-14 2007-06-14 Адаптивная система управления

Country Status (1)

Country Link
RU (1) RU2368934C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457529C1 (ru) * 2011-01-11 2012-07-27 Учреждение Российской академии наук Институт лазерной физики Сибирского отделения Адаптивная система для регулирования и стабилизации физических величин
RU2461037C1 (ru) * 2011-06-14 2012-09-10 Общество с ограниченной ответственностью "Электроспецприбор" Адаптивная система управления
RU2608081C2 (ru) * 2015-06-26 2017-01-13 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Способ компенсации влияния гармонических колебаний момента нагрузки в электромеханической системе и устройство для его осуществления
RU2612084C1 (ru) * 2016-03-24 2017-03-02 Роман Григорьевич Крумер Способ адаптивного управления плохо формализуемым объектом

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457529C1 (ru) * 2011-01-11 2012-07-27 Учреждение Российской академии наук Институт лазерной физики Сибирского отделения Адаптивная система для регулирования и стабилизации физических величин
RU2461037C1 (ru) * 2011-06-14 2012-09-10 Общество с ограниченной ответственностью "Электроспецприбор" Адаптивная система управления
RU2608081C2 (ru) * 2015-06-26 2017-01-13 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Способ компенсации влияния гармонических колебаний момента нагрузки в электромеханической системе и устройство для его осуществления
RU2612084C1 (ru) * 2016-03-24 2017-03-02 Роман Григорьевич Крумер Способ адаптивного управления плохо формализуемым объектом

Also Published As

Publication number Publication date
RU2007121876A (ru) 2008-12-20

Similar Documents

Publication Publication Date Title
Golestan et al. Moving average filter based phase-locked loops: Performance analysis and design guidelines
US6862199B2 (en) Adaptive controller for d-statcom in the stationary reference frame to compensate for reactive and harmonic distortion under unbalanced conditions
Algreer et al. Adaptive PD+ I control of a switch-mode DC–DC power converter using a recursive FIR predictor
RU2368934C2 (ru) Адаптивная система управления
Beltran-Carbajal et al. Closed-loop online harmonic vibration estimation in DC electric motor systems
Tomar et al. Amplitude and frequency estimation of exponentially decaying sinusoids
Park et al. Advanced SOGI-FLL scheme based on fuzzy logic for single-phase grid-connected converters
US10734933B2 (en) Motor control apparatus
Yamada et al. Analysis and classical control design of servo system using high order disturbance observer
Laskawski et al. Sampling rate impact on the tuning of PID controller parameters
Ryu et al. Auto-tuning of sliding mode control parameters using fuzzy logic
Wróbel et al. Continuous and finite set model predictive control of induction motor drive
US5304957A (en) Low jitter phase locked loop for single phase applications
RU2339988C1 (ru) Адаптивная система управления
RU2068196C1 (ru) Самонастраивающаяся система управления
Butcher et al. Data‐driven tuning of linear parameter‐varying precompensators
Bodson A discussion of Chaplin and Smith's patent for the cancellation of repetitive vibrations
di Benedetto et al. Variable frequency repetitive-resonant combined control for grid-tied and intentional islanding operations
RU2343524C1 (ru) Адаптивная система управления
Dannehl et al. Discrete sliding mode current control of three-phase grid-connected PWM converters
CN108832836B (zh) 一种超声波电机伺服控制***滑模控制方法
RU2419122C2 (ru) Самонастраивающийся пид-регулятор
Hatlehol et al. Super-Twisting Algorithm Second-Order Sliding Mode Control of a Bidirectional DC-to-DC Converter Supplying a Constant Power Load.
Brasil et al. Comparative study of single-phase PLLs and fuzzy based synchronism algorithm
Zhao et al. Fractional repetitive control based on IIR filter for grid-connected inverters

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090725