RU2294796C2 - Сорбент паров метанола и способ получения холода с помощью адсорбционного холодильного устройства - Google Patents

Сорбент паров метанола и способ получения холода с помощью адсорбционного холодильного устройства Download PDF

Info

Publication number
RU2294796C2
RU2294796C2 RU2005108451/15A RU2005108451A RU2294796C2 RU 2294796 C2 RU2294796 C2 RU 2294796C2 RU 2005108451/15 A RU2005108451/15 A RU 2005108451/15A RU 2005108451 A RU2005108451 A RU 2005108451A RU 2294796 C2 RU2294796 C2 RU 2294796C2
Authority
RU
Russia
Prior art keywords
methanol
sorbent
temperature
adsorption
adsorber
Prior art date
Application number
RU2005108451/15A
Other languages
English (en)
Other versions
RU2005108451A (ru
Inventor
Юрий Иванович Аристов (RU)
Юрий Иванович Аристов
Лариса Геннадьевна Гордеева (RU)
Лариса Геннадьевна Гордеева
Михаил Михайлович Токарев (RU)
Михаил Михайлович Токарев
Анжело Френи (IT)
Анжело Френи
Джованни Рестуцциа (IT)
Джованни Рестуцциа
Гаэтано Каццола (IT)
Гаэтано Каццола
Original Assignee
Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук filed Critical Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук
Priority to RU2005108451/15A priority Critical patent/RU2294796C2/ru
Publication of RU2005108451A publication Critical patent/RU2005108451A/ru
Application granted granted Critical
Publication of RU2294796C2 publication Critical patent/RU2294796C2/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

Изобретение относится к сорбционной технике, а именно к сорбентам паров метанола, и может быть использовано в адсорбционных холодильных машинах и тепловых насосах. Описан сорбент паров метанола, содержащий в качестве пористой матрицы неорганические оксиды, пористые угли, природные сорбенты или их смеси, и активное вещество, помещенное в поры матрицы и способное к обратимым процессам сорбции/десорбции паров метанола, выбранное из ряда: галогениды и нитраты щелочных, щелочноземельных металлов и металлов подгруппы железа. Описан способ получения холода с помощью адсорбционного холодильного устройства, в котором в качестве адсорбата используют пары метанола, а в качестве сорбента паров метанола используют описанный выше сорбент. Технический результат - увеличение сорбционной емкости используемого сорбента паров метанола. 1 з.п. ф-лы

Description

Изобретение относится к сорбционной технике, а именно к способам получения холода в адсобционном холодильном устройстве.
Известны адсорбционные (абсорбционные) холодильные устройства или тепловые насосы, в которых в качестве рабочей пары используют метанол и различные ад/абсорбенты. Использование метанола в качестве охлаждающего агента позволяет благодаря высокому давлению насыщенных паров избежать транспортных затруднений, снизить интервал рабочих температур устройства, получать холод с температурой ниже 0°С [Tchernev D. (1999) Int. Sorp.Heat Pump Conf, 24-26 March, Munich, Germany, pp.65-70., Meunier, F. Proceed. 20th hit. Cong. Refrigeration, Sydney, vol III, p.522.] В качестве сорбентов предлагают использовать как твердые пористые адсорбенты (силикагель, угли, алюмосиликаты, цеолиты) [L.Gordeeva, Yu.Aristov, A.Freni, G.Restuccia. (2002) ISHPC 02, Proc. Of the Int. Sorption Heat Pump Conf, 24-27 September, Shanghai, China, pp.625; L.Wang, J.Wu, R.Wang, Y.Xu ISHPC 02, Proc. of the Int. Sorption Heat Pump Conf. Shanghai, China, September 24-27, 2002, p.650.], так и жидкие абсорбенты (растворы неорганических солей и их смеси) [Пат. US 4509336, F 25 B 15/00, 09.04.85]. Недостатками первых являются низкая сорбционная емкость в условиях рабочего цикла холодильного устройства и высокая температура регенерации адсорбента, что приводит к низким значениям холодильного коэффициента (СОР). При использовании жидких абсорбентов возникают транспортные затруднения, связанные с необходимостью диффузии паров метанола через слой абсорбента, что ведет к увеличению времени цикла и низким значениям мощности устройства.
Наиболее близким к предлагаемому является адсорбционное холодильное устройство, состоящее из как минимум одного адсорбера, конденсора и испарителя и использующее в качестве рабочей пары адсорбент - активированный уголь и метанол [L.Wang, J.Wu, R.Wang, Y.Xu ISHPC 02, Proc.of the Int. Sorption Heat Pump Conf. Shanghai, China, September 24-27, 2002, pp.650-654.]. Адсорбер, заполненный адсорбентом, насыщенным метанолом, изостерически нагревается до температуры 40-70°С, используя тепло внешнего энергоисточника. Затем адсорбер соединяют с конденсором, находящимся при температуре 35-45°С, и нагревают до температуры 60-150°С, при этом метанол, содержащийся в адсорбенте, десорбируется и конденсируется в конденсоре. Затем адсорбер отсоединяется от конденсора и изостерически охлаждается до температуры 50-80°С. Затем адсорбер соединяется с испарителем, в котором поддерживается температура 5-15°С, и охлаждается до температуры 35-45°С. При этом на адсорбенте сорбируется метанол, испаряющийся в испарителе. Процесс испарения метанола сопровождается поглощением тепла и охлаждением окружающей среды или теплоносителя. Полученный холод может быть использован для кондиционирования воздуха в помещения или для получения льда.
Недостатком прототипа является низкая сорбционная емкость активированного угля по метанолу и, следовательно, небольшое количество метанола (0,12-0,14 г/г), адсорбирующегося/десорбирующегося адсорбентом в указанном интервале температур. Следствием этого являются низкие значения холодильного коэффициента устройства (СОР) 0.40-0.45.
Изобретение решает задачу увеличения холодильного коэффициента адсорбционно-холодильного устройства за счет увеличения сорбционной емкости используемого сорбента паров метанола.
Для решения этой задачи используют композитный сорбент, состоящий из пористой матрицы и помещенного в ее поры активного вещества. В качестве пористой матрицы используется вещество с открытой системой пор, а в качестве активного компонента - вещество, способное поглощать пары метанола.
В качестве пористой матрицы сорбент содержит неорганические оксиды, пористые глины и пористые угли. Пористая матрица может иметь микропоры, мезопоры и макропоры и используется в виде сферических частиц диаметром 0.5-6 мм, либо цилиндрических частиц («черенков») диаметром 0.5-5 мм и длиной 3-15 мм, либо в виде частиц неправильной формы, либо в виде колец или блоков сотовой структуры, либо в виде слоя, приготовленного с использованием связующего, который может быть нанесен на поверхность теплообменника.
В качестве активного вещества сорбент содержит галогениды и нитраты щелочных, щелочноземельных металлов и металлов подгруппы железа. Количество активного вещества составляет 17-50 мас.%. Регенерацию композитного сорбента проводят путем нагрева при температуре не ниже 60°С.
Помещение активного вещества в пористую матрицу позволяет совместить достоинства жидкостных абсорбентов, такие как высокая сорбционная емкость и низкая температура десорбции, а также высокая селективность по отношению к метанолу, и твердых пористых адсорбентов, такие как высокая скорость адсорбции/десорбции и высокая технологичность.
Использование композитного сорбента в холодильном устройстве позволяет значительно увеличить количество метанола адсорбирующегося/десорбирующегося в условиях рабочего цикла устройства (до 0,7 г/г) и снизить максимальную температуру цикла до 70-90°С, что приводит к увеличению холодильного коэффициента устройства (до 0.6-0.7) и открывает возможность использовать для регенерации сорбента источники с низким термическим потенциалом (солнечную энергию, энергию тепловых отходов промышленности).
Сущность изобретения иллюстрируется следующими примерами.
Примеры 1-12 иллюстрируют различные составы и сорбционную емкость предлагаемого сорбента.
Пример 1. Активный оксид алюминия в виде черенков диаметром 2 мм и длиной 7 мм предварительно прогревают при температуре 200°С, затем охлаждают и помещают в его поры водный раствор хлорида лития и вновь прогревают при температуре 200°С. Содержание активного компонента в композитном сорбенте составляет 17.2 мас.%. Полученный композитный сорбент помещают в адсорбер объемом 1 л, нагревают адсорбер до температуры 30°С и затем подают на вход адсорбера предварительно осушенный воздух, насыщенный парами метанола в барботере до парциального давления 60 мбар. Относительное давление паров метанола составляет Р/Р0=0.3, где Р - парциальное давление паров метанола, Р0 - давление насыщенных паров метанола при температуре сорбции. Расход воздуха составляет 100 л/ч. Процесс адсорбции прекращают после достижения адсорбентом постоянного веса. Количество поглощенного метанола составляет 382 г.
Сорбционная емкость, определяемая как количество поглощенного метанола к массе сухого сорбента, составляет 44%.
Пример 2. Аналогичен примеру 1, но для приготовления композитного сорбента используют силикагель в виде сфер диаметром 2-4 мм, предварительно прогретый при температуре 150°С. В поры охлажденного силикагеля помещают раствор хлорида лития и прогревают при температуре 200°С. Содержание хлорида лития составляет 24 мас.%. Количество поглощенного сорбентом метанола составляет 493 г. Сорбционная емкость - 64%.
Пример 3. Аналогичен примеру 2, но в поры силикагеля помещают раствор хлорида никеля. Содержание активного компонента составляет 44 мас.%. Количество поглощенного метанола составляет 417 г/г. Сорбционная емкость сорбента - 48%.
Пример 4. Аналогичен примеру 2, но в поры силикагеля помещают раствор нитрата кальция. Содержание активного компонента составляет 48 мас.%. Количество поглощенного метанола составляет 367 г/г. Сорбционная емкость сорбента - 34%.
Пример 5. Аналогичен примеру 2, но в поры силикагеля помещают раствор хлорида магния. Содержание активного компонента составляет 31 мас.%. Количество поглощенного метанола составляет 309 г/г. Сорбционная емкость сорбента - 38%.
Пример 6. Аналогичен примеру 2, но в поры силикагеля помещают раствор бромида никеля. Содержание активного компонента составляет 45 мас.%. Количество поглощенного метанола составляет 407 г/г. Сорбционная емкость сорбента - 41%.
Пример 7. Аналогичен примеру 2, но в поры силикагеля помещают раствор бромида лития. Содержание активного компонента составляет 35 мас.%. Количество поглощенного метанола составляет 363 г. Сорбционная емкость сорбента - 54%.
Пример 8. Аналогичен примеру 2, но в поры силикагеля помещают раствор нитрата магния. Содержание активного компонента составляет 39 мас.%. Количество поглощенного метанола составляет 298 г/г. Сорбционная емкость сорбента - 31%.
Пример 9. Аналогичен примеру 2, но в поры силикагеля помещают раствор хлорида кобальта. Содержание активного компонента составляет 42 мас.%. Количество поглощенного метанола составляет 301 г/г. Сорбционная емкость сорбента - 33%.
Пример 10. Аналогичен примеру 1, но в качестве пористой матрицы используют природную глину вермикулит, в поры которой помещают раствор хлорида магния. Содержание бромида кальция составляет 37 мас.%. Количество поглощенного метанола составляет 229 г.Сорбционная емкость сорбента - 44%.
Пример 11. Сравнительный. Аналогично примеру 1, но в адсорбер загружают силикагель марки КСМ. Количество поглощенного метанола составляет 148 г. Сорбционная емкость - 17%.
Пример 12. Сравнительный. Аналогично примеру 1, но в адсорбер загружают активированный уголь. Количество поглощенного метанола составляет 121 г. Сорбционная емкость - 19%.
Примеры 13-20 иллюстрируют использование сорбента метанола в адсорбционных холодильных устройствах.
Пример 13. Адсорбционное холодильное устройство состоит из испарителя, заполненного метанолом при температуре 7°С, адсорбера, заполненного композитным сорбентом, состоящим из хлорида лития в количестве 31% в порах силикагеля, и конденсора при температуре 40°С. Адсорбер, заполненный адсорбентом, насыщенным метанолом, изостерически нагревют до температуры 60°С, используя тепло внешнего энергоисточника. Затем адсорбер соединяют с конденсором и нагревают до температуры 85°С, при этом метанол, содержащийся в адсорбенте, десорбируется и конденсируется в конденсоре. Затем адсорбер отсоединяют от конденсора и изостерически охлаждают до температуры 60°С. Затем адсорбер соединяют с испарителем и охлаждают до температуры 35°С. При этом на адсорбенте сорбируется метанол, испаряющийся в испарителе. Процесс испарения метанола сопровождается поглощением тепла и охлаждением окружающей среды или теплоносителя. Для нагрева сорбента и десорбции паров метанола используют тепло от внешнего энергоисточника, который находится при температуре 85°С. Количество метанола, сорбируемого/десорбируемого в указанном интервале температуры, составляет 68%. Холодильный коэффициент, рассчитываемый как отношение тепла, поглощенного в испарителе, к теплу, затраченному для нагрева сорбента и десорбции метанола, составляет 0,62.
Пример 14. Сравнительный. Аналогично примеру 13, но адсорбер заполняют активированным углем. Количество метанола, сорбируемого/десорбируемого в указанном интервале температуры, составляет 14%. Холодильный коэффициент составляет 0,4.
Пример 15. Аналогично примеру 13, но испаритель находится при температуре 0°С, конденсор - 35°С, а температура внешнего энергоисточника равна 75°С Количество метанола, сорбируемого/десорбируемого в указанном интервале температуры, составляет 74%. Холодильный коэффициент составляет 0,68.
Пример 16. Сравнительный. Аналогично примеру 15, но адсорбер заполнен активированным углем. Количество метанола, сорбируемого/десорбируемого в указанном интервале температуры, составляет 11%. Холодильный коэффициент составляет 0,15.
Пример 17. Адсорбционное холодильное устройство состоит из испарителя, заполненного метанолом при температуре 15°С, адсорбера, заполненного композитным сорбентом, состоящим из нитрата магния в количестве 29% в порах оксида алюминия, и конденсора при температуре 45°С. Адсорбер, заполненный адсорбентом, насыщенным метанолом, изостерически нагревают до температуры 65°С, используя тепло внешнего энергоисточника. Затем адсорбер соединяют с конденсором и нагревают до температуры 100°С. Затем адсорбер отсоединяют от конденсора и изостерически охлаждают до температуры 75°С. Затем адсорбер соединяют с испарителем и охлаждают до температуры 40°С. Количество метанола, сорбируемого/десорбируемого в указанном интервале температуры, составляет 52%. Холодильный коэффициент, рассчитываемый как отношение тепла, поглощенного в испарителе, к теплу, затраченному для нагрева сорбента и десорбции метанола, составляет 0,56.
Пример 18. Сравнительный. Аналогично примеру 17, но адсорбер заполняют цеолитом. Количество метанола, сорбируемого/десорбируемого в указанном интервале температуры, составляет 7%. Холодильный коэффициент составляет 0,11.
Пример 19. Адсорбционное холодильное устройство состоит из испарителя, заполненного метанолом при температуре -7°С, адсорбера, заполненного композитным сорбентом, состоящим из хлорид никеля в количестве 48% в порах природной глины - вспученного вермикулита, и конденсора при температуре 30°С. Адсорбер, заполненный адсорбентом, насыщенным метанолом, изостерически нагревают до температуры 50°С, используя тепло внешнего энергоисточника. Затем адсорбер соединяют с конденсором и нагревают до температуры 90°С. Затем адсорбер отсоединяют от конденсора и изостерически охлаждают до температуры 70°С. Затем адсорбер соединяют с испарителем и охлаждают до температуры 30°С. Количество метанола, сорбируемого/десорбируемого в указанном интервале температуры, составляет 65%. Холодильный коэффициент, рассчитываемый как отношение тепла, поглощенного в испарителе, к теплу, затраченному для нагрева сорбента и десорбции метанола, составляет 0,71.
Пример 20. Сравнительный. Аналогично примеру 19, но адсорбер заполняют силикагелем. Количество метанола, сорбируемого/десорбируемого в указанном интервале температуры, составляет 12%. Холодильный коэффициент составляет 0,29.
Как следует из примеров, предлагаемые композитные сорбенты метанола обладают более высокой сорбционной емкостью к парам метанола в условиях типичного цикла адсорбционного холодильного устройства (до 74%), чем стандартные сорбенты метанола. Приведенные примеры демонстрируют преимущества предлагаемых композитных сорбентов по сравнению с традиционными и показывают возможность использования их в адсорбционных холодильных аппаратах.

Claims (2)

1. Способ получения холода с помощью холодильного устройства, содержащего испаритель, заполненный метанолом, адсорбер, заполненный сорбентом паров метанола и конденсор, отличающийся тем, что в качестве сорбента используют пористую матрицу, выбранную из ряда: силикагель, оксид алюминия, вермикулит, поры которой содержат галогенид или нитрат металлов из ряда: кальций, магний, литий, никель или кобальт в количестве не менее 17 мас.%.
2. Способ по п.1, отличающийся тем, что цикл холодильного устройства характеризуется следующими параметрами: температура испарителя 0 или 7°С, температура конденсора 30-45°С, температура десорбции 85°С.
RU2005108451/15A 2005-03-28 2005-03-28 Сорбент паров метанола и способ получения холода с помощью адсорбционного холодильного устройства RU2294796C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005108451/15A RU2294796C2 (ru) 2005-03-28 2005-03-28 Сорбент паров метанола и способ получения холода с помощью адсорбционного холодильного устройства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005108451/15A RU2294796C2 (ru) 2005-03-28 2005-03-28 Сорбент паров метанола и способ получения холода с помощью адсорбционного холодильного устройства

Publications (2)

Publication Number Publication Date
RU2005108451A RU2005108451A (ru) 2006-09-10
RU2294796C2 true RU2294796C2 (ru) 2007-03-10

Family

ID=37112351

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005108451/15A RU2294796C2 (ru) 2005-03-28 2005-03-28 Сорбент паров метанола и способ получения холода с помощью адсорбционного холодильного устройства

Country Status (1)

Country Link
RU (1) RU2294796C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2564344C1 (ru) * 2014-04-03 2015-09-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет" (СПбГУ) Способ подготовки сорбента для концентрирования паров полярных органических соединений
RU2587737C1 (ru) * 2015-03-25 2016-06-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ повышения температурного потенциала источника тепла
RU2626525C1 (ru) * 2016-07-26 2017-07-28 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Устройство для реализации адсорбционного цикла повышения температурного потенциала источника теплоты

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2564344C1 (ru) * 2014-04-03 2015-09-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет" (СПбГУ) Способ подготовки сорбента для концентрирования паров полярных органических соединений
RU2587737C1 (ru) * 2015-03-25 2016-06-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ повышения температурного потенциала источника тепла
RU2626525C1 (ru) * 2016-07-26 2017-07-28 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Устройство для реализации адсорбционного цикла повышения температурного потенциала источника теплоты

Also Published As

Publication number Publication date
RU2005108451A (ru) 2006-09-10

Similar Documents

Publication Publication Date Title
Shabir et al. Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications
Younes et al. A review on adsorbent-adsorbate pairs for cooling applications
Gordeeva et al. Composites ‘salt inside porous matrix’for adsorption heat transformation: a current state-of-the-art and new trends
US8962520B2 (en) Activated carbon/silica-gel/CaCl2 composite adsorbent material for air-conditioning applications and a method of preparing the same
Aristov New family of solid sorbents for adsorptive cooling: Material scientist approach
Tso et al. Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems
Shmroukh et al. Adsorption working pairs for adsorption cooling chillers: A review based on adsorption capacity and environmental impact
Yuan et al. Inorganic composite sorbents for water vapor sorption: A research progress
US11859877B2 (en) Hybrid adsorber heat exchanging device and method of manufacture
JP2967871B2 (ja) 二酸化炭素と水の吸着方法及び吸着剤
Ye et al. Activated carbon fiber cloth and CaCl2 composite sorbents for a water vapor sorption cooling system
US20150059368A1 (en) Utilization of waste heat using fiber sorbent system
RU2294796C2 (ru) Сорбент паров метанола и способ получения холода с помощью адсорбционного холодильного устройства
Shmroukh et al. Adsorption refrigeration working pairs: The state-of-the-art in the application
RU2244586C1 (ru) Поглотитель диоксида углерода и способ удаления диоксида углерода из газовых смесей
Aristov Selective water sorbents, a new family of materials for adsorption cooling/heating: State of the art
Gordeeva et al. Adsorptive air conditioning systems driven by low temperature energy sources: choice of the working pairs
Ahmed et al. A Review: Future of the adsorption working pairs in cooling
KR20180114598A (ko) 흡습성 무기염이 함침된 활성탄계 흡착식 냉방기용 수분 흡착제의 제조 방법 및 이러한 방법으로 제조된 수분 흡착제를 포함하는 흡착식 냉방 장치
RU2244588C1 (ru) Способ получения композитного осушителя газов и жидкостей
Lee et al. Control of Water-Adsorption Properties of Mesoporous Silica and MOF by Ion Exchange and Salt Impregnation
JP2000329422A (ja) 吸着式冷凍装置
RU2162009C2 (ru) Сорбент для адсорбционных холодильных установок
JP2005127614A (ja) 吸着式冷凍機とその運転方法
RU2288026C1 (ru) Способ удаления паров метанола из газовых смесей

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120329