RU2289177C2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
RU2289177C2
RU2289177C2 RU2005101617/09A RU2005101617A RU2289177C2 RU 2289177 C2 RU2289177 C2 RU 2289177C2 RU 2005101617/09 A RU2005101617/09 A RU 2005101617/09A RU 2005101617 A RU2005101617 A RU 2005101617A RU 2289177 C2 RU2289177 C2 RU 2289177C2
Authority
RU
Russia
Prior art keywords
channel
separator
cooling gas
porous
fuel cell
Prior art date
Application number
RU2005101617/09A
Other languages
Russian (ru)
Other versions
RU2005101617A (en
Inventor
Сейджи САНО (JP)
Сейджи САНО
Ясуши АРАКИ (JP)
Ясуши АРАКИ
Original Assignee
Тойота Джидоша Кабушики Кайша
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тойота Джидоша Кабушики Кайша filed Critical Тойота Джидоша Кабушики Кайша
Publication of RU2005101617A publication Critical patent/RU2005101617A/en
Application granted granted Critical
Publication of RU2289177C2 publication Critical patent/RU2289177C2/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

FIELD: fuel cells using polymeric electrolyte.
SUBSTANCE: proposed fuel cell has separator wherein porous section is organized. Cooling gas duct is organized at porous section surface opposing that where gaseous reagent duct is formed. Cooling gas duct communicates with gaseous reagent duct to supply gaseous reagent to fuel element. Cooling gas duct is controlled with respect to gas flowrate. Porous section is organized only in separator part where section is disposed downstream of gaseous reagent flow duct. Cooler duct is organized in separator section upstream of gaseous reagent duct. Rib and part of rib base are of higher porosity. Groove may be filled with porous material. Porous section can be replaced by water exchange section. One more separator section, apart from porous one, can be made of porous material.
EFFECT: facilitated discharge of produced water and ability of preventing reduction in power characteristics.
16 cl, 18 dwg

Description

Область применения изобретенияThe scope of the invention

Настоящее изобретение имеет отношение к созданию топливного элемента. Более конкретно, настоящее изобретение имеет отношение к созданию топливного элемента PEFC (топливного элемента с полимерным электролитом), в котором улучшено удаление вырабатываемой воды.The present invention relates to a fuel cell. More specifically, the present invention relates to a PEFC fuel cell (polymer electrolyte fuel cell) in which the removal of produced water is improved.

Предпосылки к созданию изобретенияBACKGROUND OF THE INVENTION

PEFC содержит слой комплекта мембрана - электрод (МЕА) и сепаратор. МЕА содержит электролитную мембрану ионообменной мембраны и два электрода, расположенные на противоположных сторонах мембраны. Два электрода включают в себя анод, расположенный на одной стороне мембраны и содержащий первый слой катализатора, и катод, расположенный на другой стороне мембраны и содержащий второй слой катализатора. Сепаратор содержит канал топливного газа, образованный в нем для подачи топливного газа (например, водорода) к аноду, или канал газообразного окислителя для подачи газообразного окислителя (например, кислорода, а обычно воздуха) к катоду, и/или канал охладителя, образованный в нем для того, чтобы охладитель (обычно охлаждающая вода) мог протекать через канал охладителя. Слой газовой диффузии может быть расположен между МЕА и сепаратором на стороне анода и на стороне катода МЕА.PEFC contains a membrane-electrode kit (MEA) layer and a separator. MEA contains an electrolyte membrane of an ion exchange membrane and two electrodes located on opposite sides of the membrane. Two electrodes include an anode located on one side of the membrane and containing the first catalyst layer, and a cathode located on the other side of the membrane and containing the second catalyst layer. The separator comprises a fuel gas channel formed therein for supplying fuel gas (e.g., hydrogen) to the anode, or a gaseous oxidizer channel for supplying a gaseous oxidizer (e.g., oxygen, and usually air) to the cathode, and / or a cooler channel formed therein so that the cooler (usually cooling water) can flow through the cooler channel. A gas diffusion layer may be located between the MEA and the separator on the anode side and on the MEA cathode side.

На стороне анода каждого элемента происходит реакция, в которой водород превращается в ионы водорода (то есть протоны) и электроны. Ионы водорода движутся через электролитную мембрану к катоду, где ионы водорода вступают в реакцию с подводимым кислородом, а электроны, которые генерируются у анода смежного МЕА и движутся к катоду данного МЕА через сепаратор или которые генерируются у анода топливного элемента, расположенного на одном конце батареи топливных элементов, и движутся к катоду топливного элемента, расположенному на другом конце батареи топливных элементов (через цепь внешней нагрузки), с образованием воды следующим образом:On the anode side of each element, a reaction occurs in which hydrogen is converted into hydrogen ions (i.e. protons) and electrons. Hydrogen ions move through the electrolyte membrane to the cathode, where hydrogen ions react with the oxygen supplied, and the electrons that are generated at the anode of the adjacent MEA and move to the cathode of this MEA through the separator or which are generated at the anode of the fuel cell located at one end of the fuel cell elements, and move to the cathode of the fuel cell located on the other end of the fuel cell battery (through an external load circuit), with the formation of water as follows:

У анода: Н2→2Н++2 е- At the anode: H 2 → 2H + + 2 e -

У катода: 2Н++2е-+(1/2)О2→Н2ОAt the cathode: 2Н + + 2е - + (1/2) О 2 → Н 2 О

Количество вырабатываемой воды увеличивается на участке ниже по течению канала газообразного окислителя, что может вызывать затопление. В области затопления подача газообразного окислителя к катоду затрудняется, и описанная выше реакция не может протекать гладко. В результате ухудшается характеристика выработки электроэнергии (снижается выработка электроэнергии). Следовательно, важным является удаление вырабатываемой воды, за счет чего исключается затопление.The amount of generated water increases in the area downstream of the gaseous oxidizer channel, which can cause flooding. In the flooding area, the supply of a gaseous oxidizing agent to the cathode is hindered, and the reaction described above cannot proceed smoothly. As a result, the characteristic of electricity generation is deteriorating (electricity generation is decreasing). Therefore, it is important to remove the produced water, which eliminates flooding.

Аналогичная проблема возникает в канале топливного газа, так как часть воды, имеющаяся в канале газообразного окислителя, движется через электролитную мембрану в канал топливного газа. Для того, чтобы описанная выше реакция могла протекать гладко, электролитная мембрана должна быть смочена должным образом, причем газообразный окислитель и топливный газ должны быть увлажнены до их поступления в топливный элемент. Следовательно, при этом повышается вероятность затопленияA similar problem arises in the fuel gas channel, since part of the water present in the gaseous oxidizer channel moves through the electrolyte membrane into the fuel gas channel. In order for the reaction described above to proceed smoothly, the electrolyte membrane must be properly moistened, and the gaseous oxidizer and fuel gas must be moistened before they enter the fuel cell. Consequently, this increases the likelihood of flooding

В патенте Японии No. HEI 11-508726 раскрыто, что весь сепаратор целиком изготовлен из пористого материала, причем вода, выработанная у катода, проталкивается через пористый сепаратор в канал охлаждающей воды, так что затопление исключается.Japanese Patent No. HEI 11-508726 discloses that the entire separator is entirely made of porous material, with the water generated at the cathode being pushed through the porous separator into the cooling water channel, so that flooding is eliminated.

Однако в топливном элементе, в котором вода, выработанная у катода, проталкивается в канал охлаждающей воды, в таком как элемент, описанный в патенте Японии No. HEI 11-508726, возникает ряд следующих проблем:However, in a fuel cell in which water generated at a cathode is pushed into a cooling water channel, such as the cell described in Japanese Patent No. HEI 11-508726, a number of the following problems occur:

В том случае, когда охлаждающая вода представляет собой антифриз, некоторые компоненты охладителя могут повредить электролитную мембрану, когда охладитель движется в канал газообразного окислителя. По этой причине в топливном элементе, описанном в патенте Японии No. HEI 11-508726, используют чистую воду, так что работа топливного элемента при температурах ниже температуры замерзания невозможна. Более того, загрязнения, имеющиеся в канале газообразного окислителя, проникают через сепаратор в охлаждающую воду, так что ионная проводимость охлаждающей воды возрастает.In the case where the cooling water is antifreeze, some components of the coolant can damage the electrolyte membrane when the coolant moves into the channel of the gaseous oxidizer. For this reason, in the fuel cell described in Japanese Patent No. HEI 11-508726 use pure water, so that fuel cell operation at temperatures below freezing is not possible. Moreover, the contaminants present in the channel of the gaseous oxidizer penetrate through the separator into the cooling water, so that the ionic conductivity of the cooling water increases.

Кроме того, для того, чтобы заставить вырабатываемую воду двигаться к каналу охлаждающей воды и в нем, требуется управление перепадом давлений между газовым каналом и каналом охладителя, при этом система становится достаточно сложной.In addition, in order to make the produced water move to and in the cooling water channel, it is necessary to control the pressure drop between the gas channel and the cooler channel, and the system becomes quite complex.

Более того, так как вырабатываемая вода вытесняется в охлаждающую воду, то вырабатываемая вода не может быть использована для увлажнения газообразного реагента.Moreover, since the produced water is displaced into the cooling water, the produced water cannot be used to moisten the gaseous reagent.

Более того, равномерное вытеснение вырабатываемой воды невозможно, так как канал окислителя содержит ребра и канавки, и поэтому характеристики пропускания вырабатываемой воды являются различными для участка с ребрами и для участка с канавками сепаратора.Moreover, uniform displacement of the produced water is impossible, since the oxidizer channel contains ribs and grooves, and therefore the transmission characteristics of the generated water are different for the section with ribs and for the section with separator grooves.

Краткое изложение изобретенияSUMMARY OF THE INVENTION

Первой задачей настоящего изобретения является создание топливного элемента, в котором вырабатываемая вода может быть удалена из газового канала в другой газовый канал (а не в канал охлаждающей воды).The first objective of the present invention is to provide a fuel cell in which the produced water can be removed from the gas channel to another gas channel (and not to the cooling water channel).

Второй задачей настоящего изобретения является создание топливного элемента, в котором вырабатываемая вода может быть использована повторно.A second object of the present invention is to provide a fuel cell in which the produced water can be reused.

Третьей задачей настоящего изобретения является создание топливного элемента, в котором вырабатываемая вода может быть главным образом равномерно удалена в области удаления вырабатываемой воды.A third object of the present invention is to provide a fuel cell in which the produced water can be substantially evenly removed in the area for removing the produced water.

Устройство в соответствии с настоящим изобретением, которое позволяет решить указанные задачи, включает в себя следующее:The device in accordance with the present invention, which allows to solve these problems, includes the following:

(a) топливный элемент, который содержит МЕА и сепаратор. Сепаратор имеет обращенную к МЕА поверхность, где образован канал газообразного реагента. Сепаратор содержит пористый участок, имеющий поверхность, противоположную обращенной к МЕА поверхности, где образован канал охлаждающего газа;(a) a fuel cell that contains an MEA and a separator. The separator has a surface facing MEA where a gaseous reactant channel is formed. The separator comprises a porous region having a surface opposite to the MEA facing surface, where a cooling gas channel is formed;

(b) топливный элемент в соответствии с приведенным выше параграфом (а), в котором канал охлаждающего газа соединен с каналом подачи газообразного реагента, для подачи газообразного реагента в топливный элемент, на стороне ниже по течению канала охлаждающего газа;(b) a fuel cell in accordance with paragraph (a) above, wherein the cooling gas channel is connected to the gaseous reactant supply channel for supplying the gaseous reactant to the fuel cell, on the downstream side of the cooling gas channel;

(c) топливный элемент в соответствии с приведенным выше параграфом (а), в котором(c) a fuel cell in accordance with paragraph (a) above, in which

(i) пористость ребра или ребра и участка основания ребра, газового канала пористого участка, выбранного из группы, в которую входят по меньшей мере один канал газообразного реагента и канал охлаждающего газа, выше, чем в любых других частях пористого участка, или(i) the porosity of the rib or rib and the base portion of the rib, the gas channel of the porous section selected from the group consisting of at least one channel of the gaseous reactant and the channel of the cooling gas, is higher than in any other parts of the porous section, or

(ii) отношение площади поверхности ребра к площади поверхности канавки газового канала, выбранного из группы, в которую входят по меньшей мере один канал газообразного реагента и канал охлаждающего газа, меньше у пористого участка, чем на любом другом участке сепаратора, или(ii) the ratio of the surface area of the rib to the surface area of the groove of the gas channel selected from the group consisting of at least one channel of the gaseous reactant and the channel of the cooling gas is less at the porous section than at any other section of the separator, or

(iii) канал охлаждающего газа заполнен пористым материалом;(iii) the cooling gas channel is filled with porous material;

(d) топливный элемент, который содержит МЕА и сепаратор. Сепаратор имеет обращенную к МЕА поверхность, где образован канал газообразного реагента. Сепаратор содержит участок обмена воды, имеющий поверхность, противоположную обращенной к МЕА поверхности. На стороне поверхности, противоположной обращенной к МЕА поверхности, в сепараторе образован канал охлаждающего газа;(d) a fuel cell that contains an MEA and a separator. The separator has a surface facing MEA where a gaseous reactant channel is formed. The separator contains a water exchange section having a surface opposite to the surface facing the MEA. On the side of the surface opposite the surface facing the MEA, a cooling gas channel is formed in the separator;

(e) топливный элемент в соответствии с приведенным выше параграфом (а), в котором по меньшей мере один участок сепаратора в направлении от боковой поверхности канала газообразного реагента к противоположной поверхности, по меньшей мере в одной области на боковой поверхности канала газообразного реагента, изготовлен из пористого материала.(e) a fuel cell in accordance with paragraph (a) above, wherein at least one portion of the separator in the direction from the side surface of the gaseous reactant channel to the opposite surface of at least one region on the side surface of the gaseous reactant channel porous material.

В топливном элементе в соответствии с приведенным выше параграфом (а) из-за того, что пористый участок образован в сепараторе и канал охлаждающего газа образован на пористом участке у поверхности, противоположной обращенной к МЕА поверхности, где образован канал газообразного реагента, вырабатываемая вода может проходить через пористый участок из канала газообразного реагента в канал охлаждающего газа. За счет использования газа одного и того же вида в качестве газообразного реагента и охлаждающего газа, такие проблемы, как затопление и повреждение электролитной мембраны, которые могут случаться, когда охлаждающая вода поступает в газообразный реагент, не происходят, даже если охлаждающий газ поступает в канал газообразного реагента.In the fuel cell in accordance with paragraph (a) above, because the porous section is formed in the separator and the cooling gas channel is formed on the porous section at the surface opposite to the MEA surface, where the gaseous reactant channel is formed, the generated water may pass through a porous portion from a gaseous reactant channel to a cooling gas channel. By using the same type of gas as a gaseous reagent and a cooling gas, problems such as flooding and damage to the electrolyte membrane, which can occur when cooling water enters the gaseous reagent, do not occur, even if the cooling gas enters the gaseous channel reagent.

В топливном элементе в соответствии с приведенным выше параграфом (b), благодаря тому, что канал охлаждающего газа соединен на своей стороне ниже по течению с каналом газообразного реагента, для подачи газообразного реагента в топливный элемент, вырабатываемая вода, которая поступила в канал охлаждающего газа, втекает в канал газообразного реагента, подаваемого в топливный элемент, и используется для увлажнения газообразного реагента.In the fuel cell in accordance with paragraph (b) above, because the cooling gas channel is connected on its side downstream to the gaseous reactant channel to supply the gaseous reactant to the fuel cell, the produced water that has entered the cooling gas channel flows into the channel of the gaseous reactant supplied to the fuel cell and is used to moisten the gaseous reactant.

В топливном элементе в соответствии с приведенным выше параграфом (с), за счет использования по меньшей мере одной структуры с большей пористостью у ребра, чем в любой другой части пористого участка, или с большей пористостью у ребра и части основания ребра, чем в любой другой части пористого участка, меньшего отношения ребра к канавке у пористого участка, чем на любой другом участке сепаратора, и заполнения канала охлаждающего газа пористым материалом, движение вырабатываемой воды из канала газообразного реагента в канал охлаждающего газа сделано равномерным у пористого участка.In a fuel cell in accordance with paragraph (c) above, by using at least one structure with greater porosity at the rib than in any other part of the porous region, or with greater porosity at the rib and part of the rib base than any other parts of the porous section, a smaller ratio of rib to groove at the porous section than in any other separator section, and filling the cooling gas channel with porous material, the movement of produced water from the gaseous reactant channel into the cooling gas channel and made uniform at the porous area.

В топливном элементе в соответствии с приведенным выше параграфом (d), за счет замены пористого участка участком обмена воды, охлаждающий газ на одной стороне участка обмена воды и газообразный реагент на другой стороне участка обмена воды могут отличаться друг от друга.In a fuel cell in accordance with paragraph (d) above, by replacing the porous section with a water exchange section, the cooling gas on one side of the water exchange section and the gaseous reactant on the other side of the water exchange section may be different from each other.

В топливном элементе в соответствии с приведенным выше параграфом (е), за счет того, что по меньшей мере один участок боковой поверхности канала газообразного реагента сепаратора образован из пористого материала, улучшаются характеристики удаления воды и подвода газа к электроду у обращенной к МЕА поверхности сепаратора.In the fuel cell in accordance with paragraph (e) above, due to the fact that at least one portion of the side surface of the separator gas channel is formed of a porous material, the characteristics of water removal and gas supply to the electrode at the separator surface facing MEA are improved.

Краткое описание чертежейBrief Description of the Drawings

Далее будет описан топливный элемент в соответствии с настоящим изобретением со ссылкой на сопроводительные чертежи.Next, a fuel cell in accordance with the present invention will be described with reference to the accompanying drawings.

На фиг.1 показан вид спереди топливного элемента с каналом охлаждающего газа и его контуром и каналом охлаждающей воды в соответствии с первым вариантом настоящего изобретения (который может быть применен и к другим вариантам в соответствии с настоящим изобретением).Figure 1 shows a front view of a fuel cell with a cooling gas channel and its circuit and cooling water channel in accordance with the first embodiment of the present invention (which can be applied to other variants in accordance with the present invention).

На фиг.2 показан вид спереди топливного элемента, где можно видеть канал газообразного реагента топливного элемента, в соответствии с настоящим изобретением.Figure 2 shows a front view of the fuel cell, where you can see the channel of the gaseous reagent of the fuel cell in accordance with the present invention.

На фиг.3 показано поперечное сечение топливного элемента в соответствии с первым вариантом настоящего изобретения.Figure 3 shows a cross section of a fuel cell in accordance with a first embodiment of the present invention.

На фиг.4 показан вид спереди топливного элемента с газовым каналом, в том случае, когда охлаждающий газ объединен с газообразным реагентом, в соответствии с первым вариантом настоящего изобретения.4 is a front view of a gas channel fuel cell in the case where the cooling gas is combined with a gaseous reactant according to a first embodiment of the present invention.

На фиг.5 показан вид спереди топливного элемента с каналом охлаждающего газа и его контуром в соответствии со вторым вариантом настоящего изобретения.5 is a front view of a fuel cell with a cooling gas channel and its circuit in accordance with a second embodiment of the present invention.

На фиг.6 показан вид спереди топливного элемента с каналом охлаждающего газа и его контуром в соответствии с третьим вариантом настоящего изобретения.6 is a front view of a fuel cell with a cooling gas channel and its circuit in accordance with a third embodiment of the present invention.

На фиг.7 показано поперечное сечение топливного элемента в соответствии с четвертым вариантом настоящего изобретения.7 shows a cross section of a fuel cell in accordance with a fourth embodiment of the present invention.

На фиг.8 показано поперечное сечение топливного элемента в соответствии с пятым вариантом настоящего изобретения.FIG. 8 shows a cross section of a fuel cell in accordance with a fifth embodiment of the present invention.

На фиг.9 показано поперечное сечение топливного элемента в соответствии с шестым вариантом настоящего изобретения (по линии А-А фиг.2).FIG. 9 shows a cross section of a fuel cell in accordance with a sixth embodiment of the present invention (along line AA of FIG. 2).

На фиг.10 показано поперечное сечение топливного элемента в соответствии с шестым вариантом настоящего изобретения (по линии В-В фиг.2).FIG. 10 shows a cross section of a fuel cell in accordance with a sixth embodiment of the present invention (along line BB of FIG. 2).

На фиг.11 показано поперечное сечение топливного элемента в соответствии с седьмым вариантом настоящего изобретения.11 shows a cross section of a fuel cell in accordance with a seventh embodiment of the present invention.

На фиг.12 показано поперечное сечение топливного элемента в соответствии с восьмым вариантом настоящего изобретения.12 is a cross-sectional view of a fuel cell in accordance with an eighth embodiment of the present invention.

На фиг.13 показано поперечное сечение топливного элемента в соответствии с девятым вариантом настоящего изобретения (в том случае, когда пористый материал для заполнения канала охлаждающего газа образован интегрально с пористым участком).13 shows a cross section of a fuel cell in accordance with a ninth embodiment of the present invention (in the case where a porous material for filling the cooling gas channel is integrally formed with the porous section).

На фиг.14 показано поперечное сечение топливного элемента в соответствии с девятым вариантом настоящего изобретения (в том случае, когда пористый материал для заполнения канала охлаждающего газа образован раздельно от пористого участка).On Fig shows a cross section of a fuel cell in accordance with the ninth embodiment of the present invention (in the case when the porous material for filling the channel of the cooling gas is formed separately from the porous section).

На фиг.15 показан вид в перспективе топливного элемента в соответствии с десятым вариантом настоящего изобретения.15 is a perspective view of a fuel cell in accordance with a tenth embodiment of the present invention.

На фиг.16 показано поперечное сечение топливного элемента, у канавки газового канала, в соответствии с одиннадцатым вариантом настоящего изобретения.16 is a cross-sectional view of a fuel cell at a gas channel groove in accordance with an eleventh embodiment of the present invention.

На фиг.17 показано поперечное сечение топливного элемента, у ребра газового канала, в соответствии с одиннадцатым вариантом настоящего изобретения.On Fig shows a cross section of a fuel cell, at the edge of the gas channel, in accordance with the eleventh variant of the present invention.

На фиг.18 показан вид сбоку батареи топливных элементов в соответствии с настоящим изобретением.On Fig shows a side view of the battery of fuel cells in accordance with the present invention.

Подробное описание предпочтительных вариантов изобретенияDETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Сначала будут описаны со ссылкой на фиг.1-4 и на фиг.16-18 общие или аналогичные узлы для всех вариантов в соответствии с настоящим изобретением.First, general or similar nodes for all variants in accordance with the present invention will be described with reference to FIGS.

Топливный элемент 10 в соответствии с настоящим изобретением представляет собой топливный элемент с полимерным электролитом (PEFC). Топливный элемент 10 установлен, например, на транспортном средстве. Однако топливный элемент 10 может быть использован и не на транспортном средстве.The fuel cell 10 in accordance with the present invention is a polymer electrolyte fuel cell (PEFC). The fuel cell 10 is mounted, for example, on a vehicle. However, the fuel cell 10 may not be used on the vehicle.

Как это показано на фиг.3 и фиг.18, PEFC 10 содержит слой комплекта мембрана-электрод (МЕА) и сепаратор 18. МЕА содержит электролитную мембрану 11 ионообменной мембраны, электрод 14 (анод, топливный электрод), который содержит слой катализатора 12, расположенный на одной стороне мембраны 11, и электрод 17 (катод, воздушный электрод), который содержит слой катализатора 15, расположенный на другой стороне мембраны 11. Диффузионные слои 13 и 16 могут быть расположены между МЕА и сепараторами на стороне анода и стороне катода соответственно.As shown in FIG. 3 and FIG. 18, PEFC 10 contains a membrane-electrode kit (MEA) layer and a separator 18. MEA contains an ion exchange membrane electrolyte membrane 11, an electrode 14 (anode, fuel electrode), which contains a catalyst layer 12, located on one side of the membrane 11, and an electrode 17 (cathode, air electrode), which contains a catalyst layer 15 located on the other side of the membrane 11. The diffusion layers 13 and 16 can be located between the MEA and the separators on the anode side and the cathode side, respectively.

Слои МЕА и сепаратора 18 образуют единичный топливный элемент 19. По меньшей мере один топливный элемент 19 образует модуль. Множество модулей объединяют вместе в пакет, причем образуют электрические выводы 20, электрические изоляторы 21 и торцевые платы 22 на противоположных концах пакета модулей, за счет чего образуется батарея топливных элементов 23. После стягивания батареи топливных элементов между противоположными торцевыми платами 22, чтобы прижать друг к другу топливные элементы, торцевые платы 22 соединяют с элементом крепления (например, с нажимной пластиной 24), расположенным параллельно снаружи от батареи топливных элементов, при помощи болтов 25 или гаек.The layers of MEA and the separator 18 form a single fuel element 19. At least one fuel element 19 forms a module. A plurality of modules are bundled together to form electrical leads 20, electrical insulators 21 and end plates 22 at opposite ends of the module package, whereby the fuel cell battery 23 is formed. After the fuel cell batteries are pulled together between the opposite end plates 22, to press each other friend fuel cells, end plates 22 are connected to a fastening element (for example, with a pressure plate 24) located parallel to the outside of the fuel cell battery, using bolts 25 or .

Два сепаратора 18 расположены на противоположных сторонах МЕА напротив друг друга и представляют собой сепаратор стороны анода и сепаратор стороны катода. Сепаратор 18 стороны анода содержит канал 27 топливного газа, образованный в нем у обращенной к МЕА поверхности сепаратора, для подачи топливного газа (например, водорода) к аноду. Сепаратор 18 стороны катода содержит канал 28 газообразного окислителя, образованный в нем у обращенной к МЕА поверхности сепаратора, для подачи газообразного окислителя (например, кислорода, а обычно воздуха) к катоду. Как топливный газ, так и газообразный окислитель называют газообразным реагентом, и как канал 27 топливного газа, так и канал 28 газообразного окислителя называют каналами газообразного реагента. Более того, сепаратор 18 содержит канал 26 охладителя (например, охлаждающей воды), образованный в нем для пропускания потока охладителя (например, охлаждающей воды).Two separators 18 are located on opposite sides of the MEA opposite each other and are an anode side separator and a cathode side separator. The anode side separator 18 comprises a fuel gas channel 27 formed therein at the surface of the separator facing MEA to supply fuel gas (e.g., hydrogen) to the anode. The cathode side separator 18 comprises a gaseous oxidizer channel 28 formed therein at the separator surface facing MEA to supply a gaseous oxidizer (e.g., oxygen, and usually air) to the cathode. Both the fuel gas and the gaseous oxidizer are called the gaseous reactant, and both the channel 27 of the fuel gas and the channel 28 of the gaseous oxidizer are called gaseous reactant channels. Moreover, the separator 18 contains a channel 26 of a cooler (for example, cooling water) formed therein for passing a stream of cooler (for example, cooling water).

Каналы 27 и 28 газообразного реагента сепаратора могут быть прямолинейными каналами или извилистыми каналами. Каналы 27 и 28 газообразного реагента могут быть образованы в виде канавки или группы канавок. Канал может быть образован между множеством выступов, расположенных зигзагом.The channels 27 and 28 of the gaseous reagent of the separator can be straight channels or tortuous channels. The channels 27 and 28 of the gaseous reactant can be formed in the form of grooves or groups of grooves. A channel may be formed between a plurality of protrusions arranged in a zigzag pattern.

Как это показано на фиг.1 и фиг.2, в сепараторе 18 образованы распределительный коллектор 29а охладителя (например, охлаждающей воды), выпускной коллектор 29b охладителя (например, охлаждающей воды), распределительный коллектор 30а топливного газа (например, водорода), выпускной коллектор 30b топливного газа (например, водорода), распределительный коллектор 31а газообразного окислителя (например, воздуха) и выпускной коллектор 31b газообразного окислителя (например, воздуха). Канал 26 охладителя (например, охлаждающей воды), образованный в плоскости топливного элемента, соединен с распределительным коллектором 29а охладителя (например, охлаждающей воды) и с выпускным коллектором 29b охладителя (например, охлаждающей воды). Канал 27 топливного газа, образованный в плоскости топливного элемента, соединен с распределительным коллектором 30а топливного газа (например, водорода) и с выпускным коллектором 30b топливного газа (например, водорода). Канал 28 газообразного окислителя, образованный в плоскости топливного элемента, соединен с распределительным коллектором 31а газообразного окислителя (например, воздуха) и с выпускным коллектором 31b газообразного окислителя (например, воздуха).As shown in FIGS. 1 and 2, a separator 18a of a cooler (e.g., cooling water), an exhaust manifold 29b of a cooler (e.g., cooling water), a distribution manifold 30a of a fuel gas (e.g. hydrogen), an exhaust, are formed in the separator 18 a fuel gas (e.g., hydrogen) manifold 30b, an oxidizing gas (e.g., air) distribution manifold 31a, and an oxidizing gas (e.g., air) exhaust manifold 31b. A cooler channel (e.g., cooling water) 26 formed in the plane of the fuel cell is connected to a distribution manifold 29a of a cooler (e.g., cooling water) and to an exhaust manifold 29b of a cooler (e.g., cooling water). A fuel gas channel 27 formed in the plane of the fuel cell is connected to a fuel gas distribution manifold 30a (e.g., hydrogen) and to a fuel gas (e.g. hydrogen) exhaust manifold 30b. The gaseous oxidizer channel 28 formed in the plane of the fuel cell is connected to the distribution collector 31a of the gaseous oxidizer (e.g., air) and to the exhaust manifold 31b of the gaseous oxidizer (e.g., air).

Сепаратор 18 может быть изготовлен из углерода (в том числе из графита), металла (в том числе из спеченного сплава и т.п.), в виде сборки металлического элемента и рамы из синтетической смолы, из электропроводной синтетической смолы, а также из комбинации этих материалов.The separator 18 can be made of carbon (including graphite), metal (including sintered alloy, etc.), in the form of an assembly of a metal element and frame of synthetic resin, of conductive synthetic resin, as well as a combination of these materials.

В топливном элементе в соответствии с настоящим изобретением, по меньшей мере у одного участка области генерирования мощности топливного элемента, пористый участок 32 образован в сепараторе 18, причем на второй стороне пористого участка 32, противоположной первой стороне пористого участка, где образован канал газообразного реагента (газовый канал, который представляет собой по меньшей мере канал топливного газа 27 или канал газообразного окислителя 28), канал охлаждающего газа 33 образован в плоскости топливного элемента.In the fuel cell in accordance with the present invention, at least one portion of the fuel cell power generation region, the porous portion 32 is formed in the separator 18, and on the second side of the porous portion 32, opposite the first side of the porous portion where the gaseous reactant channel (gas a channel, which is at least a fuel gas channel 27 or a gaseous oxidizer channel 28), a cooling gas channel 33 is formed in the plane of the fuel cell.

В сепараторе 18 имеются распределительный коллектор 34а охлаждающего газа и выпускной коллектор 34b охлаждающего газа, причем канал 33 охлаждающего газа в плоскости топливного элемента соединен с распределительным коллектором 34а охлаждающего газа и выпускным коллектором 34b охлаждающего газа. Охлаждающий газ втекает из распределительного коллектора 34а охлаждающего газа в канал 33 охлаждающего газа в плоскости топливного элемента и затем вытекает из канала 33 охлаждающего газа в выпускной коллектор 34b охлаждающего газа.In the separator 18, there is a cooling gas distribution manifold 34a and a cooling gas exhaust manifold 34b, the cooling gas channel 33 in the plane of the fuel cell being connected to the cooling gas distribution manifold 34a and the cooling gas exhaust manifold 34b. The cooling gas flows from the cooling gas distribution manifold 34a into the cooling gas channel 33 in the plane of the fuel cell and then flows from the cooling gas channel 33 to the cooling gas exhaust manifold 34b.

Канал 33 охлаждающего газа может быть выполнен в виде канавки или группы канавок. Более того, канал 33 охлаждающего газа может быть образован между множеством выступов, расположенных зигзагом. Канал 33 охлаждающего газа может быть выполнен в виде канавки, заполненной пористым материалом.The cooling gas channel 33 may be in the form of a groove or a group of grooves. Moreover, a cooling gas channel 33 may be formed between a plurality of protrusions arranged in a zigzag pattern. The cooling gas channel 33 may be in the form of a groove filled with porous material.

Часть сепаратора в направлении толщины сепаратора, от боковой поверхности канала газообразного реагента в направлении противоположной поверхности, по меньшей мере в одной области указанной боковой поверхности канала газообразного реагента, изготовлена из пористого материала 49.A part of the separator in the direction of the thickness of the separator, from the side surface of the channel of the gaseous reactant in the direction of the opposite surface, in at least one region of the specified side surface of the channel of the gaseous reactant, is made of porous material 49.

Пористый участок 32 образован в сепараторе 18 по меньшей мере в одной области в плоскости топливного элемента (которая может быть полной областью плоскости топливного элемента) и по всей толщине сепаратора 18 (в случае участка в виде канавки, по всей толщине сепаратора у основания канавки). Пористый участок 32 позволяет вырабатываемой воде и газу (газообразному реагенту и охлаждающему газу) топливного элемента проходить через пористый участок в направлении сепаратора от одной поверхности к другой, противоположной поверхности сепаратора. Так как предусмотрен пористый участок 32, то даже если вырабатываемая вода появляется в канале 27, 28 газообразного реагента топливного элемента, то эта вырабатываемая вода может проходить через пористый участок 32 и поступать в канал 33 охлаждающего газа для испарения. В результате происходит как охлаждение топливного элемента, так и удаление вырабатываемой воды, потому что вырабатываемая вода отбирает теплоту при ее испарении.The porous portion 32 is formed in the separator 18 in at least one region in the plane of the fuel cell (which may be the entire region of the plane of the fuel cell) and throughout the thickness of the separator 18 (in the case of the groove portion, throughout the thickness of the separator at the bottom of the groove). The porous portion 32 allows the generated water and gas (gaseous reagent and cooling gas) of the fuel cell to pass through the porous portion in the direction of the separator from one surface to another, opposite the surface of the separator. Since a porous portion 32 is provided, even if the generated water appears in the gaseous reactant of the fuel cell 27, 28, this generated water can pass through the porous portion 32 and enter the cooling gas channel 33 for evaporation. As a result, both the cooling of the fuel cell and the removal of the produced water occur, because the generated water takes away heat during its evaporation.

Пористый участок 32 изготовлен из электропроводного материала, так как он выполняет функцию накопления электричества.The porous portion 32 is made of an electrically conductive material, since it performs the function of accumulating electricity.

Материал пористого участка 32 преимущественно является таким же, что и материал сепаратора, чтобы облегчить их соединение. Например, если сепаратор 18 изготовлен из углерода, то пористый участок 32 преимущественно должен быть образован из пористого углерода (в этом случае графитная форма должна быть сделана пористой за счет надлежащего выбора формы и размера частиц углерода и отношения концентраций компонентов в смеси частиц углерода и связующего). Пористый участок 32 может быть образован интегрально с остальной частью сепаратора, или может быть образован отдельно от остальной части сепаратора и соединен с остальной частью сепаратора.The material of the porous portion 32 is advantageously the same as the material of the separator in order to facilitate their bonding. For example, if the separator 18 is made of carbon, then the porous portion 32 should preferably be formed of porous carbon (in this case, the graphite shape should be made porous due to the appropriate choice of the shape and size of the carbon particles and the ratio of the concentrations of the components in the mixture of carbon particles and a binder) . The porous portion 32 may be formed integrally with the rest of the separator, or may be formed separately from the rest of the separator and connected to the rest of the separator.

В структуре, в которой каналы 27, 28 газообразного реагента образованы у одной поверхности пористого участка 32, а канал 33 охлаждающего газа образован у другой поверхности пористого участка 32, охлаждающий газ, который протекает в канале 33 охлаждающего газа, преимущественно должен быть таким же газом, который протекает в каналах 27, 28 газообразного реагента. Более конкретно, если воздух протекает в канале газообразного реагента 28, образованном у одной поверхности пористого участка 32, то воздух используют в качестве охлаждающего газа, который протекает вдоль другой поверхности участка 32. Когда газообразный водород протекает в канале газообразного реагента 27, образованном у одной поверхности пористого участка 32, то водород используют в качестве охлаждающего газа, который протекает вдоль другой поверхности участка 32. Если используют одинаковый газ в каналах 27, 28 газообразного реагента и в канале 33 охлаждения, то исключаются такие проблемы, как повреждение электролитной мембраны 11 и содействие затоплению, даже если газ движется между каналами газообразного реагента 27, 28 и каналом 33 охлаждающего газа, в отличие от случая, когда вода и газ действуют против друг друга, за исключением варианта настоящего изобретения, показанного на фиг.15.In a structure in which gaseous reactant channels 27, 28 are formed at one surface of the porous portion 32, and a cooling gas channel 33 is formed at another surface of the porous portion 32, the cooling gas that flows in the cooling gas channel 33 should preferably be the same gas. which flows in the channels 27, 28 of the gaseous reactant. More specifically, if air flows in the channel of the gaseous reactant 28 formed on one surface of the porous portion 32, then the air is used as cooling gas, which flows along the other surface of the portion 32. When gaseous hydrogen flows in the channel of the gaseous reactant 27 formed on one surface of the porous portion 32, then hydrogen is used as a cooling gas, which flows along the other surface of the portion 32. If the same gas is used in the channels 27, 28 of the gaseous reactant and in the le cooling, then such problems as damage to the electrolyte membrane 11 and the facilitation of flooding, even if the gas moves between the channels of the gaseous reagent 27, 28 and the channel 33 of the cooling gas, are excluded, in contrast to the case when water and gas act against each other, with the exception of the embodiment of the present invention shown in FIG.

Как это показано на фиг.3 и фиг.7, в топливном элементе, который расположен рядом с другим топливным элементом, где образован канал охлаждения 33, может быть образован второй канал 33' охлаждающего газа, который соответствует по положению первому каналу 33 охлаждающего газа, причем газ такого же рода, который протекает в первом канале 33 охлаждающего газа (то есть газ, который отличается от газа, протекающего в канале газообразного реагента сепаратора, где образован второй канал 33' охлаждающего газа), может протекать во втором канале 33' охлаждающего газа. Сепаратор, в котором образован канал 33' охлаждающего газа, не должен пропускать газ и воду, причем в сепараторе, в котором образован канал 33' охлаждающего газа, участок сепаратора между каналом газообразного реагента и каналом 33' охлаждающего газа не является пористым участком 32. У участка сепаратора, охватывающего каналы 33 и 33' охлаждающего газа, установлено уплотнительное кольцо 45 (фиг.3), причем это уплотнительное кольцо герметизирует канал 33 охлаждающего газа и канал 33' охлаждающего газа снаружи. На фиг.3 показан случай, когда газообразный окислитель протекает в каналах 33 и 33' охлаждающего газа, а на фиг.7 показан случай, когда топливный газ протекает в каналах 33 и 33' охлаждающего газа.As shown in FIGS. 3 and 7, in a fuel cell that is adjacent to another fuel cell where a cooling channel 33 is formed, a second cooling gas channel 33 ′ can be formed which corresponds in position to the first cooling gas channel 33, moreover, the same gas that flows in the first cooling gas channel 33 (i.e., a gas that differs from gas flowing in the separator gas channel where the second cooling gas channel 33 'is formed) can flow in the second cooling channel 33' th gas. The separator in which the cooling gas channel 33 ′ is formed must not allow gas and water to pass, and in the separator in which the cooling gas channel 33 ′ is formed, the separator section between the gaseous reactant channel and the cooling gas channel 33 ′ is not a porous portion 32. U section of the separator, covering the channels 33 and 33 'of the cooling gas, a sealing ring 45 is installed (figure 3), and this sealing ring seals the channel 33 of the cooling gas and the channel 33' of the cooling gas from the outside. Figure 3 shows the case where the gaseous oxidizer flows in the cooling gas channels 33 and 33 ', and Figure 7 shows the case where the fuel gas flows in the cooling gas channels 33 and 33'.

Канал 33 охлаждающего газа соединен, на стороне ниже по течению канала охлаждающего газа, с каналом подачи газообразного реагента (например, с распределительным коллектором 27а, 28а газообразного реагента) для подачи газообразного реагента в топливный элемент 10. За счет такого построения вырабатываемая вода испаряется в канале охлаждающего газа и увлажняет охлаждающий газ, причем увлажненный охлаждающий газ поступает в распределительный коллектор газообразного реагента и используется как часть газообразного реагента, за счет чего вырабатываемая вода может быть использована как вода для увлажнения газообразного реагента.The cooling gas channel 33 is connected, on the downstream side of the cooling gas channel, to a gaseous reactant supply channel (for example, to a gaseous reactant distribution manifold 27a, 28a) for supplying a gaseous reactant to the fuel cell 10. Due to this construction, the generated water evaporates in the channel cooling gas and moisturizes the cooling gas, and the moistened cooling gas enters the distribution manifold of the gaseous reactant and is used as part of the gaseous reactant, whereby Pipeline water may be used as the water for humidifying the reactant gas.

Соединительный канал 35, который соединяет канал 33 охлаждающего газа с каналом подачи газообразного реагента на стороне ниже по течению канала 33 охлаждающего газа, может быть образован в плоскости топливного элемента или снаружи от батареи 23. На фиг.1 соединительный канал 35, который флюидально соединяет выпускной коллектор 34b охлаждающего газа с распределительными коллекторами 27а, 28а газообразного реагента, расположен снаружи от батареи. Охлаждающий газ от каждого топливного элемента собирается в выпускном коллекторе 34b охлаждающего газа и подается в распределительные коллекторы 27а, 28а газообразного реагента через соединительный канал 35. Соединительный канал 35 может быть расположен внутри батареи 23 и в плоскости каждого топливного элемента.The connecting channel 35, which connects the cooling gas channel 33 to the reagent gas supply channel on the side downstream of the cooling gas channel 33, can be formed in the plane of the fuel cell or outside of the battery 23. In FIG. 1, the connecting channel 35, which fluidly connects the outlet a coolant gas collector 34b with reagent gas distribution manifolds 27a, 28a located outside the battery. Coolant gas from each fuel cell is collected in a cooling gas exhaust manifold 34b and supplied to the distribution gas manifolds 27a, 28a through the connecting channel 35. The connecting channel 35 may be located inside the battery 23 and in the plane of each fuel element.

Контур охлаждающего газа, который содержит канал 33 охлаждающего газа, выполнен таким образом, что количество охлаждающего газа, которое протекает в канале 33 охлаждающего газа, является контролируемым. Например, предусмотрен обводной канал 36, который обходит (шунтирует) канал 33 охлаждающего газа и соединяет первый участок контура охлаждающего газа, расположенный выше по течению относительно канала 33 охлаждающего газа, и второй участок контура охлаждающего газа, расположенный ниже по течению относительно канала 33 охлаждающего газа, причем клапан управления 37 установлен в обводном канале 36 или в канале 33 охлаждающего газа (на фиг.1 клапан 37 установлен в обводном канале 36). При таком построении, за счет срабатывания клапана управления 37 можно контролировать количество охлаждающего газа, который протекает в канале охлаждающего газа 33.The cooling gas circuit that contains the cooling gas channel 33 is configured such that the amount of cooling gas that flows in the cooling gas channel 33 is controlled. For example, a bypass channel 36 is provided that bypasses (shunts) the cooling gas channel 33 and connects the first section of the cooling gas circuit located upstream with respect to the cooling gas channel 33 and the second section of the cooling gas circuit located downstream with respect to the cooling gas channel 33 moreover, the control valve 37 is installed in the bypass channel 36 or in the channel 33 of the cooling gas (in figure 1, the valve 37 is installed in the bypass channel 36). With this construction, due to the actuation of the control valve 37, it is possible to control the amount of cooling gas that flows in the channel of the cooling gas 33.

Стабильная работа топливного элемента может быть обеспечена в варианте, который содержит обводной канал 36, так как изменение количества охлаждающего газа, подаваемого в распределительные коллекторы 27а, 28а газообразного реагента (которое в свою очередь представляет собой количество газообразного реагента, подаваемого в топливный элемент, когда нет специальной системы подачи газообразного реагента), является небольшим, даже если изменяется количество охлаждающего газа, протекающего через канал 33 охлаждающего газа. Альтернативно, как это показано на фиг.4, может быть предусмотрена другая система подачи газообразного реагента, в которой охлаждающий газ поступает в газообразный реагент от системы подачи газообразного реагента.Stable operation of the fuel cell can be achieved in an embodiment that includes a bypass channel 36, since a change in the amount of cooling gas supplied to the distribution gaseous reactant manifolds 27a, 28a (which in turn is the amount of gaseous reactant supplied to the fuel cell when not special reagent gas supply system) is small even if the amount of cooling gas flowing through the cooling gas channel 33 is changed. Alternatively, as shown in FIG. 4, another gaseous reactant supply system may be provided in which cooling gas is supplied to the gaseous reactant from the gaseous reactant supply system.

С точки зрения удаления вырабатываемой воды, желательно, чтобы область плоскости топливного элемента, в которой предусмотрен пористый участок 32, была возможно большей, в то время как с точки зрения охлаждения топливного элемента, желательно, чтобы область топливного элемента, в которой предусмотрен пористый участок 32, была возможно меньшей, так как охлаждение газом производят у пористого участка 32 и эффективность охлаждения газом ниже, чем эффективность охлаждения водой.From the point of view of removing the produced water, it is desirable that the region of the plane of the fuel cell in which the porous portion 32 is provided is, while from the point of view of cooling the fuel cell, it is desirable that the region of the fuel cell in which the porous portion 32 is provided was possibly less, since gas cooling was performed at the porous portion 32 and the gas cooling efficiency was lower than the water cooling efficiency.

Для того, чтобы сделать удаление вырабатываемой воды и охлаждение топливного элемента совместимыми, когда канал 27, 28 газообразного реагента разделен на 3 участка, в том числе на участок выше по течению, средний участок и участок ниже по течению, желательно, чтобы пористый участок 32 был расположен только в той части (эта часть соответствует "влажной зоне" на фиг.2) сепаратора, где расположен участок ниже по течению. Участок ниже по течению канала 27, 28 газообразного реагента представляет собой часть топливного элемента, в которой вырабатывается относительно большое количество воды, причем за счет размещения пористого участка 32 на этом участке ниже по течению, улучшается удаление вырабатываемой воды, в результате чего исключается снижение выработки электроэнергии на этом участке ниже по течению. Более того, участок охлаждения газа может быть ограничен частью топливного элемента, в которой расположен участок ниже по течению канала 27, 28 газообразного реагента, за счет чего может быть решена проблема охлаждения.In order to make the removal of the produced water and cooling of the fuel cell compatible when the channel 27, 28 of the gaseous reactant is divided into 3 sections, including the upstream section, the middle section and the downstream section, it is desirable that the porous section 32 is located only in that part (this part corresponds to the "wet zone" in figure 2) of the separator, where the section is located downstream. The section downstream of the channel 27, 28 of the gaseous reactant is a part of the fuel cell in which a relatively large amount of water is generated, and by placing the porous section 32 in this section downstream, the removal of generated water is improved, thereby eliminating the reduction in power generation in this section downstream. Moreover, the gas cooling section may be limited to the part of the fuel cell in which the section located downstream of the gaseous reactant channel 27, 28, whereby the cooling problem can be solved.

У сепаратора, за исключением участка ниже по течению канала 27, 28 газообразного реагента (в той части сепаратора, где расположен участок выше по течению и средний участок канала 27, 28 газообразного реагента), расположен канал 26 охладителя, через который протекает охлаждающая вода. В качестве охладителя используют, например, LLC (долговечный незамерзающий жидкий охладитель). Канал 26 охладителя (например, LLC или охлаждающей воды) и канал 33 охлаждающего газа в плоскости топливного элемента представляют собой системы, независимые друг от друга. Часть сепаратора, в которой расположены участок выше по течению и средний участок канала 27, 28 газообразного реагента, представляет собой область, в которой концентрация газообразного реагента является высокой (еще много газообразного реагента остается без его потребления), так что количество генерируемой энергии и выделяемого тепла в этой области является относительно высоким. За счет охлаждения этой области не газом, а охлаждающей водой, может быть обеспечено охлаждение с высокой эффективностью.The separator, with the exception of the section downstream of the channel 27, 28 of the gaseous reactant (in that part of the separator where the section is located upstream and the middle section of the channel 27, 28 of the gaseous reactant), there is a cooler channel 26 through which cooling water flows. As a cooler, for example, LLC (durable non-freezing liquid cooler) is used. A cooler channel 26 (e.g., LLC or cooling water) and a cooling gas channel 33 in the plane of the fuel cell are independent of each other. The part of the separator in which the portion upstream and the middle portion of the gaseous reactant channel 27, 28 are located is a region in which the concentration of the gaseous reactant is high (there is still a lot of gaseous reactant without its consumption), so that the amount of generated energy and heat generated in this area is relatively high. By cooling this area not with gas, but with cooling water, high efficiency cooling can be ensured.

В том случае, когда в пористом участке 32 каждый канал 27, 28 газообразного реагента и канал 33 охлаждающего газа выполнен в виде канавки, образованной между смежными ребрами, трудно производить равномерное удаление вырабатываемой воды в области удаления вырабатываемой воды, так как способность к удалению вырабатываемой воды в части сепаратора, соответствующей участку ребра, ниже, чем в части сепаратора, соответствующей участку канавки.In the case where in the porous section 32 each gaseous reagent channel 27, 28 and the cooling gas channel 33 are made in the form of a groove formed between adjacent ribs, it is difficult to uniformly remove the produced water in the area of the produced water, since the ability to remove the produced water in the part of the separator corresponding to the portion of the rib is lower than in the part of the separator corresponding to the portion of the groove.

Для обеспечения равномерного удаления вырабатываемой воды (i) ребро 46 (участок сепаратора, который находится ближе к вершине ребра, чем к поверхности основания канавки) или ребро 46 и участок основания 48 ребра (участок сепаратора между поверхностью основания канавки канала 27, 28 и поверхностью основания канавки канала 33), расположенный внизу ребра 46, газового канала, который представляет собой по меньшей мере только канал 27, 28 газообразного реагента или только канал 33 охлаждающего газа, пористого участка 32, может иметь более высокую пористость, чем любая другая часть пористого участка 32; илиTo ensure uniform removal of the produced water (i), rib 46 (a separator portion that is closer to the top of the rib than to the surface of the groove base) or rib 46 and a rib portion 48 (the separator portion between the base surface of the channel groove 27, 28 and the base surface grooves of the channel 33) located at the bottom of the rib 46 of the gas channel, which is at least only the channel 27, 28 of the gaseous reactant or only the channel 33 of the cooling gas, the porous section 32, may have a higher porosity l than any other part of the porous section 32; or

(ii) газовый канал, который представляет собой по меньшей мере только канал 27, 28 газообразного реагента или только канал 33 охлаждающего газа, имеет меньшее отношение ребро-канавка у пористого участка, чем в любой другой части сепаратора, кроме пористого участка; или(ii) a gas channel, which is at least only a reagent channel 27, 28 or only a cooling gas channel 33, has a smaller rib-groove ratio in the porous region than in any other part of the separator except the porous region; or

(iii) канал 33 охлаждающего газа заполнен пористым материалом 49. Элемент 50 представляет собой прокладку.(iii) the cooling gas channel 33 is filled with porous material 49. The element 50 is a gasket.

За счет использования такой структуры, движение вырабатываемой воды из канала 27, 28 газообразного реагента в канал 33 охлаждающего газа становится равномерным по всему пористому участку 32.Through the use of such a structure, the movement of the produced water from the reagent channel 27, 28 into the cooling gas channel 33 becomes uniform throughout the porous region 32.

Как это показано на фиг.16 и фиг.17, часть сепаратора 18 в направлении сепаратора от стороны поверхности канала газообразного реагента в направлении противоположной поверхности сепаратора (например, ребро и участок основания ребра или участок ребра канала газообразного реагента) может быть сделана из пористого материала 51, по меньшей мере в одной области боковой поверхности канала газообразного реагента (например, на среднем участке канала газообразного реагента или на среднем участке и на участке выше по течению канала газообразного реагента). Пористый материал 51 представляет собой единое целое с пористым участком 32, так что вода, поглощенная пористым материалом 51, может двигаться к пористому участку 32 за счет капиллярности. Пористым материалом 51 может быть такой же материал, что и материал пористого участка 32, с такой же пористостью, или же это может быть материал, отличающийся от материала пористого участка 32, с другой пористостью.As shown in FIG. 16 and FIG. 17, the part of the separator 18 in the direction of the separator from the side of the surface of the channel of the gaseous reactant in the direction of the opposite surface of the separator (for example, the rib and the portion of the base of the rib or the portion of the edge of the channel of the gaseous reactant) can be made of porous material 51, in at least one region of a side surface of the gaseous reactant channel (for example, in the middle portion of the gaseous reactant channel or in the middle portion and in the section upstream of the gaseous reactant channel enta). The porous material 51 is integral with the porous portion 32, so that water absorbed by the porous material 51 can move toward the porous portion 32 due to capillarity. The porous material 51 may be the same material as the material of the porous portion 32, with the same porosity, or it may be a material different from the material of the porous portion 32, with a different porosity.

В том случае, когда по меньшей мере одна область боковой поверхности канала газообразного реагента сепаратора 18 изготовлена из пористого материала 51, улучшается характеристика удаления воды и характеристика снабжения газом у поверхности накопления электричества (у поверхности контакта сепаратора с диффузионным слоем). Причина, по которой улучшается характеристика снабжения газом, заключается в том, что газ поступает к участку электрода, который прижат при помощи ребра сепаратора не только через диффузионный слой, но также и через участок ребра, изготовленный из пористого материала 51.In the case where at least one region of the side surface of the channel of the gaseous reactant of the separator 18 is made of porous material 51, the water removal characteristic and the gas supply characteristic at the electricity storage surface (at the contact surface of the separator with the diffusion layer) are improved. The reason that the gas supply performance is improved is because the gas enters the portion of the electrode, which is pressed by the separator rib not only through the diffusion layer, but also through the portion of the rib made of porous material 51.

Далее будут описаны особые характеристики каждого из вариантов настоящего изобретения. В соответствии с вариантом 1 настоящего изобретения, который показан на фиг.1-4, канал 33 охлаждающего газа сепаратора 18 флюидально связан с воздуходувкой 38, установленной на входе канала 33 охлаждающего газа. Выпускное отверстие воздуходувки 38 флюидально связано с распределительным коллектором 34а охлаждающего газа, а впускное отверстие воздуходувки 38 сообщается с источником охлаждающего газа (с атмосферой). Контур охлаждающего газа сообщается с каналом 30а, 31а подачи газообразного реагента (в распределительном коллекторе 31а газообразного реагента) через соединительный канал 35 на выходе канала 33 охлаждающего газа. Соединительный канал 35 не имеет воздуходувки. Охлаждающий газ используют для газообразного реагента в исходном виде. На фиг.1 охлаждающий газ представляет собой воздух.Next, the specific characteristics of each embodiment of the present invention will be described. According to Embodiment 1 of the present invention, which is shown in FIGS. 1-4, the cooling gas channel 33 of the separator 18 is fluidly connected to a blower 38 installed at the inlet of the cooling gas channel 33. The outlet of the blower 38 is fluidly connected to the cooling gas distribution manifold 34a, and the inlet of the blower 38 is in communication with the source of cooling gas (with the atmosphere). The cooling gas circuit communicates with the reagent gas supply channel 30a, 31a (in the reagent gas distribution manifold 31a) through the connecting channel 35 at the outlet of the cooling gas channel 33. The connecting channel 35 does not have a blower. The cooling gas is used for the gaseous reactant in its original form. 1, the cooling gas is air.

На выходном участке канала 27, 28 газообразного реагента (канала газообразного окислителя 2 в показанном примере) образован пористый участок 32. У обращенной к МЕА поверхности пористого участка 32 образован канал 27, 28 газообразного реагента, а на внешней поверхности пористого участка 32 образован канал 33 охлаждающего газа. Вырабатываемая вода движется из газового канала 27, 28 через пористый участок 32 в канал 33 охлаждающего газа, за счет чего исключается затопление. Появляющаяся в канале 33 охлаждающего газа вода увлажняет охлаждающий газ. Так как увлажненный охлаждающий газ используют в качестве газообразного реагента, не требуется средство увлажнения газообразного реагента, которое необходимо в обычной системе, или же мощность такого средства увлажнения может быть снижена. Более того, вырабатываемая вода испаряется с поглощением большого количества теплоты, в том числе латентной теплоты и теплоты для повышения температуры вырабатываемой воды до точки кипения вырабатываемой воды (сухое тепло), когда вода проходит через пористый участок 32, за счет чего происходит охлаждение топливного элемента 10. В результате достигается как исключение затопления, так и охлаждение топливного элемента.A porous portion 32 is formed at the output portion of the gaseous reactant channel 27, 28 (gaseous oxidizer channel 2 in the shown example). A gaseous reactant channel 27, 28 is formed on the surface of the porous portion 32 facing MEA, and a cooling channel 33 is formed on the outer surface of the porous portion 32 gas. The produced water moves from the gas channel 27, 28 through the porous portion 32 into the cooling gas channel 33, thereby preventing flooding. The water that appears in the cooling gas channel 33 humidifies the cooling gas. Since humidified cooling gas is used as the gaseous reagent, the humidifying gaseous reagent is not required, which is necessary in a conventional system, or the power of such a humidifying agent can be reduced. Moreover, the generated water evaporates with the absorption of a large amount of heat, including latent heat and heat to raise the temperature of the generated water to the boiling point of the generated water (dry heat) when the water passes through the porous section 32, due to which the fuel cell 10 is cooled As a result, both elimination of flooding and cooling of the fuel cell are achieved.

При структуре каналов в соответствии с вариантом 1 настоящего изобретения, в которой каналы 27, 28 газообразного реагента и канал 33 охлаждающего газа расположены напротив друг друга через пористый участок 32, так как каналы 27, 28 газообразного реагента расположены ниже по течению относительно канала 33 охлаждающего газа, то газовое давление в каналах 27, 28 газообразного реагента ниже, чем газовое давление в канале 33 охлаждающего газа, так что газ вытекает из канала 33 охлаждающего газа через пористый участок 32 в каналы 27, 28 газообразного реагента. В результате концентрация газа возрастает на участке ниже по течению канала 27, 28 газообразного реагента, причем возрастает выработка электроэнергии на участке ниже по течению каналов 27, 28 газообразного реагента. Несмотря на поток охлаждающего газа из канала 33 охлаждающего газа в каналы 27, 28 газообразного реагента, вырабатываемая вода может поступать из каналов 27, 28 газообразного реагента в канал 33 охлаждающего газа за счет капиллярности и испарения. Для того, чтобы снизить давление охлаждающего газа у пористого участка 32, чтобы усилить движение вырабатываемой воды из каналов 27, 28 газообразного реагента в канал 33 охлаждающего газа, канал 33 охлаждающего газа дросселируют, чтобы повысить скорость течения и понизить статическое давление.In the channel structure in accordance with embodiment 1 of the present invention, in which the gaseous reactant channels 27, 28 and the cooling gas channel 33 are opposed to each other through the porous portion 32, since the gaseous reactant channels 27, 28 are located downstream of the cooling gas channel 33 then the gas pressure in the channels of the gaseous reactant is lower than the gas pressure in the channel 33 of the cooling gas, so that the gas flows from the channel 33 of the cooling gas through the porous portion 32 into the channels 27, 28 of the gaseous reactant. As a result, the gas concentration increases in the section downstream of the gaseous reactant channel 27, 28, and the generation of electricity in the section downstream of the gaseous reactant channels 27 increases. Despite the flow of cooling gas from the cooling gas channel 33 to the gaseous reactant channels 27, 28, the generated water can flow from the reagent channels 27, 28 to the cooling gas channel 33 due to capillarity and evaporation. In order to reduce the pressure of the cooling gas at the porous portion 32 in order to increase the movement of the produced water from the reagent channels 27, 28 into the cooling gas channel 33, the cooling gas channel 33 is throttled to increase the flow rate and lower the static pressure.

В соответствии с вариантом 2 настоящего изобретения, показанным на фиг.5, воздуходувка 38 расположена в соединительном канале 35, который соединяет канал 33 охлаждающего газа и канал подачи газообразного реагента, на стороне ниже по течению канала охлаждающего газа 33. Выпускное отверстие воздуходувки 38 флюидально соединено с распределительным коллектором 30а, 31а газообразного реагента, в то время как впускное отверстие воздуходувки 38 флюидально соединено с выпускным коллектором 34b охлаждающего газа. Контур охлаждающего газа соединен с распределительным коллектором 30а, 31а газообразного реагента (с распределительным коллектором 31а газообразного реагента в показанном примере), на стороне ниже по течению относительно канала 33 охлаждающего газа, через соединительный канал 35 и воздуходувку 38. На стороне выше по течению канала 33 охлаждающего газа воздуходувка не установлена. Охлаждающий газ используют в качестве газообразного реагента в его исходном виде. В примере фиг.5 охлаждающим газом является воздух.In accordance with Embodiment 2 of the present invention shown in FIG. 5, the blower 38 is located in the connecting channel 35, which connects the cooling gas channel 33 and the reagent gas supply channel, on the downstream side of the cooling gas channel 33. The outlet of the blower 38 is fluidly connected with a reagent gas distribution manifold 30a, 31a, while the inlet of the blower 38 is fluidly connected to the outlet of the cooling gas manifold 34b. The cooling gas circuit is connected to the gaseous reagent distribution manifold 30a, 31a (to the gaseous reagent distribution manifold 31a in the example shown), on the downstream side of the cooling gas channel 33, through the connecting channel 35 and the blower 38. On the side upstream of the channel 33 cooling gas blower not installed. The cooling gas is used as a gaseous reagent in its original form. In the example of FIG. 5, the cooling gas is air.

На участке ниже по течению канала 27, 28 газообразного реагента (канала 28 газообразного окислителя в показанном пример) образован пористый участок 32. У обращенной к МЕА поверхности пористого участка 32 образованы каналы 27, 28 газообразного реагента, в то время как у внешней поверхности пористого участка, противоположной поверхности МЕА, образован канал 33 охлаждающего газа. Вырабатываемая вода движется из канала 27, 28 газообразного реагента через пористый участок 32 в канал 33 охлаждающего газа, где она используется, за счет чего исключается возможность затопления. Появляющаяся в канале 33 охлаждающего газа вода увлажняет охлаждающий газ. Так как увлажненный охлаждающий газ используют в качестве газообразного реагента, не требуется средство увлажнения газообразного реагента, которое необходимо в обычной системе, или же мощность такого средства увлажнения может быть снижена. Более того, вырабатываемая вода испаряется с поглощением большого количества латентной теплоты и с повышением температуры вырабатываемой воды до точки кипения вырабатываемой воды, когда вода проходит через пористый участок 32, за счет чего происходит охлаждение топливного элемента 10. В результате достигается как исключение затопления, так и охлаждение топливного элемента.In the section downstream of the gaseous reactant channel 27, 28 (the gaseous oxidizer channel 28 in the example shown), a porous portion 32 is formed. The gaseous reactant channels 27, 28 are formed on the surface of the porous portion 32 facing the MEA, while the outer surface of the porous section opposite the MEA surface, a cooling gas channel 33 is formed. The generated water moves from the channel 27, 28 of the gaseous reactant through the porous section 32 into the channel 33 of the cooling gas, where it is used, thereby eliminating the possibility of flooding. The water that appears in the cooling gas channel 33 humidifies the cooling gas. Since humidified cooling gas is used as the gaseous reagent, the humidifying gaseous reagent is not required, which is necessary in a conventional system, or the power of such a humidifying agent can be reduced. Moreover, the generated water evaporates with the absorption of a large amount of latent heat and with an increase in the temperature of the generated water to the boiling point of the generated water when the water passes through the porous section 32, due to which the fuel cell 10 is cooled. As a result, both elimination of flooding and fuel cell cooling.

При структуре каналов в соответствии с вариантом 2 настоящего изобретения, в которой каналы 27, 28 газообразного реагента и канал 33 охлаждающего газа расположены напротив друг друга через пористый участок 32, так как воздуходувка 38 расположена в соединительном канале 35, газовое давление в каналах 27, 28 газообразного реагента выше, чем газовое давление в канале 33 охлаждающего газа, так что газообразный реагент вытекает через пористый участок 32 в канал 33 охлаждающего газа. Вырабатываемая вода может двигаться из каналов 27, 28 газообразного реагента в канал 33 охлаждающего газа, поддерживая течение газа. В результате достигается как удаление вырабатываемой воды, так и исключение возможности затопления.When the structure of the channels in accordance with option 2 of the present invention, in which the channels of the gaseous reagent 27, and the channel 33 of the cooling gas are located opposite each other through the porous section 32, since the blower 38 is located in the connecting channel 35, the gas pressure in the channels 27, 28 the gaseous reactant is higher than the gas pressure in the cooling gas channel 33, so that the gaseous reactant flows through the porous portion 32 into the cooling gas channel 33. The generated water can move from the channels 27, 28 of the gaseous reactant into the channel 33 of the cooling gas, maintaining the gas flow. As a result, both the removal of produced water and the elimination of the possibility of flooding are achieved.

Вариант 3 в соответствии с настоящим изобретением представляет собой вариант, в котором приняты меры против блокировки, которая может случиться на пористом участке 32 в варианте 1 настоящего изобретения.Option 3 in accordance with the present invention is an option in which measures are taken against blocking that may occur in the porous region 32 in embodiment 1 of the present invention.

В соответствии с вариантом 3 настоящего изобретения, показанным на фиг.6, соединительный канал 35, который соединяет канал 33 охлаждающего газа и канал подачи газообразного реагента, соединен с ответвлением трубопровода 39, на стороне ниже по течению канала 33 охлаждающего газа. В ответвлении трубопровода 39 расположена вторая воздуходувка 43. В ответвлении трубопровода 39 предусмотрен также клапан 41 открывания/закрывания, выше по течению от выходной точки 40 ответвления трубопровода 39. В соединительном канале 35 предусмотрен клапан 42 открывания/закрывания, ниже по течению от выходной точки 40 ответвления трубопровода 39. Воздуходувка 43 может быть заменена другим устройством создания вакуума. Другие использованные узлы и элементы соответствуют варианту 1 настоящего изобретения.In accordance with Embodiment 3 of the present invention shown in FIG. 6, a connecting channel 35 that connects the cooling gas channel 33 and the gaseous reagent supply channel is connected to a branch of a conduit 39, on the downstream side of the cooling gas channel 33. A second blower 43 is located in the branch of the pipeline 39. An opening / closing valve 41 is also provided in the branch of the pipeline 39, upstream of the outlet point 40 of the branch pipe 39. An opening / closing valve 42 is provided in the connecting channel 35, downstream of the outlet point 40 branch piping 39. Blower 43 may be replaced by another device for creating a vacuum. Other used components and elements correspond to option 1 of the present invention.

При нормальной работе топливного элемента клапан 42 открывания/закрывания открыт, а клапан 41 открывания/закрывания закрыт, при этом воздуходувка 43 не работает. Когда возникает блокировка на пористом участке 32 во время работы топливного элемента, тогда клапан 42 открывания/закрывания закрывается, а клапан 41 открывания/закрывания открывается, при этом воздуходувка 43 начинает работать, а воздуходувка 38 перестает работать. При работе в таком режиме в канале 33 охлаждающего газа пористого участка 32 создается вакуум, в результате чего отсасываются и удаляются посторонние вещества, вызвавшие блокировку пористого участка 32. После удаления посторонних веществ клапан 42 открывания/закрывания открывается, а клапан 41 открывания/закрывания закрывается, при этом воздуходувка 43 перестает работать, а воздуходувка 38 начинает работать.During normal operation of the fuel cell, the open / close valve 42 is open and the open / close valve 41 is closed, while the blower 43 does not work. When blocking occurs in the porous portion 32 during operation of the fuel cell, then the open / close valve 42 closes and the open / close valve 41 opens, while the blower 43 starts to work and the blower 38 stops working. When operating in this mode, a vacuum is created in the cooling gas channel 33 of the porous portion 32, as a result of which foreign substances are sucked off and removed, causing the porous portion 32 to become blocked. After the foreign substances have been removed, the open / close valve 42 opens and the open / close valve 41 closes, while the blower 43 stops working, and the blower 38 starts to work.

В соответствии с вариантом 4 настоящего изобретения, показанным на фиг.7, пористый участок 32 образован на стороне анода сепаратора 18. Канал 27 топливного газа образован у одной поверхности пористого участка 32, а канал 33 охлаждающего газа образован у другой поверхности пористого участка 32. Топливный газ (например, водород) протекает в канале охлаждающего газа 33'. На стороне катода сепаратора смежного топливного элемента канал 33 охлаждающего газа образован у внешней поверхности сепаратора смежного топливного элемента, противоположной поверхности МЕА, где образован канал 28 газообразного окислителя. Канал 33 охлаждающего газа смежного топливного элемента не отделен перегородкой от канала 33' охлаждающего газа данного топливного элемента, и топливный газ (например, водород) протекает по каналу 33 охлаждающего газа смежного топливного элемента. На стороне катода сепаратора смежного топливного элемента участок сепаратора между каналом 33 газообразного окислителя у одной поверхности сепаратора и каналом 33' охлаждающего газа у другой поверхности сепаратора изготовлен не из пористого материала, а из газонепроницаемого материала, так что топливный газ (например, водород), протекающий в канале охлаждающего газа 33', и газообразный окислитель (например, воздух), протекающий в канале газообразного окислителя 33, не перемешиваются друг с другом.According to embodiment 4 of the present invention shown in FIG. 7, a porous portion 32 is formed on the anode side of the separator 18. A fuel gas channel 27 is formed on one surface of the porous portion 32, and a cooling gas channel 33 is formed on the other surface of the porous portion 32. Fuel gas (e.g. hydrogen) flows in the cooling gas channel 33 '. On the cathode side of the adjacent fuel cell separator, a cooling gas channel 33 is formed at the outer surface of the adjacent fuel cell separator opposite to the MEA surface where the oxidizing gas channel 28 is formed. The cooling gas channel 33 of the adjacent fuel cell is not separated by a partition from the cooling gas channel 33 'of the fuel cell, and fuel gas (e.g., hydrogen) flows through the cooling gas channel 33 of the adjacent fuel cell. On the cathode side of the separator of the adjacent fuel element, the separator section between the gaseous oxidizer channel 33 at one surface of the separator and the cooling gas channel 33 'at the other surface of the separator is made not of a porous material, but of a gas-tight material, so that fuel gas (e.g., hydrogen) flowing in the channel of the cooling gas 33 ', and the gaseous oxidizing agent (for example, air) flowing in the channel of the gaseous oxidizing agent 33 are not mixed with each other.

Вода в канале 27 топливного газа (вода, которая поступила из канала 28 газообразного окислителя в канал 27 топливного газа через электролитную мембрану 11) движется в направлении канала 33' охлаждающего газа через пористый участок 32 и испаряется. В результате решается проблема затопления в канале 27 топливного газа. Более того, вода испаряется с поглощением большого количества теплоты, в том числе латентной теплоты и теплоты для повышения температуры воды до точки кипения воды, за счет чего происходит эффективное охлаждение топливного элемента.Water in the fuel gas channel 27 (water that has flowed from the gaseous oxidizer channel 28 to the fuel gas channel 27 through the electrolyte membrane 11) moves in the direction of the cooling gas channel 33 'through the porous portion 32 and evaporates. As a result, the problem of flooding in the fuel gas channel 27 is solved. Moreover, water evaporates with the absorption of a large amount of heat, including latent heat and heat to raise the temperature of the water to the boiling point of water, due to which the fuel cell is effectively cooled.

Более того, водород, протекающий в канале 33' охлаждающего газа, увлажняется водой, которая поступает в канал через пористый участок 32, и непосредственно подается в распределительный коллектор 30 топливного газа через соединительный канал 35 и используется в качестве топливного газа. В результате не требуется предусматривать средство увлажнения топливного газа, и даже если оно есть, то оно может иметь малую мощность.Moreover, the hydrogen flowing in the cooling gas channel 33 ′ is moistened with water, which enters the channel through the porous portion 32, and is directly supplied to the fuel gas distribution manifold 30 through the connecting channel 35 and is used as fuel gas. As a result, it is not necessary to provide a means of humidifying the fuel gas, and even if it is, it may have low power.

В соответствии с вариантом 5 настоящего изобретения, показанным на фиг.8, пористый участок 32 образован как на стороне анода сепаратора, так и на стороне катода сепаратора. На стороне анода сепаратора канал 27 топливного газа образован у одной поверхности пористого участка 32, а канал 33' охлаждающего газа образован у другой поверхности пористого участка 32. Топливный газ (например, водород) протекает в канале 33' охлаждающего газа. На стороне катода сепаратора канал 28 газообразного окислителя образован у одной поверхности пористого участка 32, а канал 33 охлаждающего газа образован у другой поверхности пористого участка 32. Газообразный окислитель (например, воздух) протекает в канале 33 охлаждающего газа. В пакете топливных элементов разделительная пластина 44 расположена между каналом 33 охлаждающего газа, в котором протекает газообразный окислитель, и каналом 33' охлаждающего газа, в котором протекает топливный газ, так что топливный газ и воздух не перемешиваются друг с другом.According to Embodiment 5 of the present invention shown in FIG. 8, a porous portion 32 is formed both on the separator anode side and on the separator cathode side. On the separator anode side, a fuel gas channel 27 is formed on one surface of the porous portion 32, and a cooling gas channel 33 'is formed on the other surface of the porous portion 32. Fuel gas (eg, hydrogen) flows in the cooling gas channel 33'. On the cathode side of the separator, a gaseous oxidizer channel 28 is formed at one surface of the porous portion 32, and a cooling gas channel 33 is formed at another surface of the porous portion 32. A gaseous oxidizer (eg, air) flows in the cooling gas channel 33. In the fuel cell stack, a separation plate 44 is disposed between the cooling gas channel 33 in which the oxidizing gas flows and the cooling gas channel 33 'in which the fuel gas flows so that the fuel gas and air are not mixed with each other.

Вода, которая в канале 27 топливного газа движется через пористый участок 32, испаряется в канал 33' охлаждающего газа, где протекает топливный газ. В результате исключается проблема затопления в канале 27 топливного газа. Более того, вода испаряется с поглощением большого количества теплоты, в том числе латентной теплоты и теплоты для повышения температуры воды до точки кипения воды, за счет чего происходит эффективное охлаждение топливного элемента. Аналогично вырабатываемая вода, которая в канале 28 газообразного окислителя движется через пористый участок 32, испаряется в канал 33 охлаждающего газа, где протекает газообразный окислитель. В результате исключается проблема затопления в канале 28 газообразного окислителя. Более того, вода испаряется с поглощением большого количества теплоты, в том числе латентной теплоты и теплоты для повышения температуры воды до точки кипения воды, за счет чего происходит эффективное охлаждение топливного элемента.Water that moves in the fuel gas channel 27 through the porous portion 32 is vaporized into the cooling gas channel 33 'where the fuel gas flows. As a result, the problem of flooding in the fuel gas channel 27 is eliminated. Moreover, water evaporates with the absorption of a large amount of heat, including latent heat and heat to raise the temperature of the water to the boiling point of water, due to which the fuel cell is effectively cooled. Similarly, the generated water, which in the channel 28 of the gaseous oxidizer moves through the porous portion 32, evaporates into the channel 33 of the cooling gas, where the gaseous oxidizer flows. As a result, the problem of flooding in the channel 28 of the gaseous oxidizer is eliminated. Moreover, water evaporates with the absorption of a large amount of heat, including latent heat and heat to raise the temperature of the water to the boiling point of water, due to which the fuel cell is effectively cooled.

Более того, водород, протекающий в канале 33' охлаждающего газа, увлажняется водой, которая поступает в канал через пористый участок 32, и непосредственно подается в распределительный коллектор 30а топливного газа через соединительный канал 35 и используется в качестве топливного газа. В результате не требуется предусматривать средство увлажнения топливного газа, и даже если оно есть, то оно может иметь малую мощность. Аналогично воздух, протекающий в канале 33 охлаждающего газа, увлажняется водой, которая поступает в канал через пористый участок 32, и непосредственно подается в распределительный коллектор 31а газообразного окислителя через соединительный канал 35 и используется в качестве газообразного окислителя. В результате не требуется предусматривать средство увлажнения газообразного окислителя, и даже если оно есть, то оно может иметь малую мощность.Moreover, the hydrogen flowing in the cooling gas channel 33 'is moistened with water, which enters the channel through the porous portion 32, and is directly supplied to the fuel gas distribution manifold 30a through the connecting channel 35 and used as fuel gas. As a result, it is not necessary to provide a means of humidifying the fuel gas, and even if it is, it may have low power. Similarly, the air flowing in the cooling gas channel 33 is humidified with water, which enters the channel through the porous portion 32, and is directly supplied to the gaseous oxidizer distribution manifold 31a through the connecting channel 35 and is used as the gaseous oxidizer. As a result, it is not necessary to provide a means of humidifying the gaseous oxidizing agent, and even if it is, it may have low power.

В соответствии с вариантом 6 настоящего изобретения, показанным на фиг.9 (где изображено поперечное сечение по линии А-А фиг.2) и фиг.10 (где изображено поперечное сечение по линии В-В фиг.2), по меньшей мере один газовый канал (на фиг.9 и 10 оба газовых канала) из группы, в которую входят канал 28 (или 27) газообразного реагента и канал 33 охлаждающего газа, образованный на пористом участке 32, образован при помощи канавки, заключенной между смежными ребрами 46. На пористом участке 32 только ребро 46 (часть, расположенная ближе к вершине ребра, чем к поверхности основания канавки) построено таким образом, чтобы иметь больший диаметр пор и большую пористость, чем любая другая часть (часть между поверхностью основания канавки канала 28 (или 27) газообразного реагента и поверхностью основания канавки канала 33 охлаждающего газа) пористого участка 32. На фиг.9 ребро 46 канала 28 (или 27) газообразного реагента имеет больший диаметр пор и большую пористость, чем любая другая часть пористого участка, а на фиг.10 ребро 46 канала 33 охлаждающего газа имеет больший диаметр пор и большую пористость, чем любая другая часть пористого участка.In accordance with embodiment 6 of the present invention shown in FIG. 9 (where a cross-section is shown along line AA of FIG. 2) and FIG. 10 (where a cross-section is shown along line BB of FIG. 2), at least one the gas channel (both gas channels in FIGS. 9 and 10) from the group of the gaseous reagent channel 28 (or 27) and the cooling gas channel 33 formed in the porous section 32 is formed by a groove enclosed between adjacent ribs 46. In the porous section 32, only the rib 46 (the part located closer to the top of the rib than to the surface of the groove base) is constructed so as to have a larger pore diameter and greater porosity than any other part (the part between the surface of the groove base of the channel 28 (or 27) of the gaseous reactant and the surface of the groove base of the cooling gas channel 33) of the porous portion 32. In FIG. .9 the rib 46 of the channel 28 (or 27) of the gaseous reactant has a larger pore diameter and greater porosity than any other part of the porous section, and in FIG. 10, the rib 46 of the cooling gas channel 33 has a larger pore diameter and greater porosity than any other part part of the porous area.

Когда газообразный реагент протекает в канале газообразного реагента 28 (или 27) пористого участка 32, если диаметр пор и пористость ребра 46 такие же, как и в других частях пористого участка, то вырабатываемая вода, имеющаяся в канале 28 (или 27) газообразного реагента, будет протекать через участок 47 основания канавки (имеющий относительно низкое гидравлическое сопротивление) пористого участка 32 в канал 33 охлаждающего газа, так как гидравлическое сопротивление тракта протекания от канала 28 (или 27) газообразного реагента через ребро 46 до канала 33 охлаждающего газа выше, чем гидравлическое сопротивление тракта протекания от канала 28 (или 27) газообразного реагента через участок 47 основания канавки до канала 33 охлаждающего газа. Однако в варианте 6 в соответствии с настоящим изобретением, так как ребро 46 (часть, расположенная ближе к вершине ребра, чем к поверхности основания канавки) построено таким образом, чтобы иметь больший диаметр пор и большую пористость, чем любая другая часть (кроме ребра 46 пористого участка 32), то гидравлическое сопротивление тракта протекания от канала 28 (или 27) газообразного реагента через ребро 46 до канала 33 охлаждающего газа понижено и главным образом равно гидравлическому сопротивлению тракта протекания от канала 28 (или 27) газообразного реагента через участок 47 основания канавки до канала 33 охлаждающего газа. В результате, независимо от наличия ребра 46 и канавки, вырабатываемая вода движется в канал 33 охлаждающего газа главным образом равномерно практически через все области пористого участка 32. Следовательно, вероятность затопления может быть исключена практически для всех областей пористого участка 32.When the gaseous reactant flows in the channel of the gaseous reactant 28 (or 27) of the porous portion 32, if the pore diameter and porosity of the rib 46 are the same as in other parts of the porous portion, then the produced water available in the channel 28 (or 27) of the gaseous reactant, will flow through the portion 47 of the groove base (having a relatively low hydraulic resistance) of the porous portion 32 into the cooling gas channel 33, since the hydraulic resistance of the flow path from the channel 28 (or 27) of the gaseous reactant through the rib 46 to channel 3 3 of the cooling gas is higher than the hydraulic resistance of the flow path from the reagent channel 28 (or 27) through the groove base portion 47 to the cooling gas channel 33. However, in embodiment 6 in accordance with the present invention, since the rib 46 (the part located closer to the top of the rib than to the surface of the base of the groove) is constructed so as to have a larger pore diameter and greater porosity than any other part (except the rib 46 of the porous portion 32), then the hydraulic resistance of the flow path from the channel 28 (or 27) of the gaseous reactant through the rib 46 to the channel 33 of the cooling gas is reduced and is mainly equal to the hydraulic resistance of the flow path from the channel 28 (or 27) gaseously reagent through section 47 of the base of the groove to the channel 33 of the cooling gas. As a result, regardless of the presence of a rib 46 and a groove, the produced water moves into the cooling gas channel 33 mainly uniformly through almost all areas of the porous section 32. Therefore, the likelihood of flooding can be eliminated for almost all areas of the porous section 32.

В соответствии с вариантом 7 настоящего изобретения, показанным на фиг.11, каждый канал из группы, в которую входят канал 28 (или 27) газообразного реагента и канал 33 охлаждающего газа, образованный на пористом участке 32, выполнен в виде канавки, заключенной между смежными ребрами 46. На пористом участке 32 только ребро 46 (часть, расположенная ближе к вершине ребра, чем к поверхности основания канавки) и участок 48 основания ребра (участок между плоскостью удлинения поверхности основания канавки канала 28 (или 27) газообразного реагента и плоскостью удлинения поверхности основания канавки канала 33 охлаждающего газа) построены таким образом, чтобы иметь больший диаметр пор и большую пористость, чем любая другая часть (участок 47 основания канавки) пористого участка 32.In accordance with option 7 of the present invention, shown in FIG. 11, each channel from the group that includes the gaseous reagent channel 28 (or 27) and the cooling gas channel 33 formed in the porous portion 32 is made in the form of a groove enclosed between adjacent ribs 46. In the porous portion 32, only the rib 46 (the portion closer to the top of the rib than to the surface of the groove base) and the portion of the rib base 48 (the portion between the extension plane of the groove base of the groove channel 28 (or 27) of the gaseous reactant and the lengths of the surface of the base of the groove of the cooling gas channel 33) are constructed so as to have a larger pore diameter and greater porosity than any other part (section 47 of the groove base) of the porous portion 32.

Когда газообразный реагент протекает в канале 28 (или 27) газообразного реагента пористого участка 32, то если диаметр пор и пористость ребра 46 и участка 48 основания ребра такие же, как и в других частях пористого участка, вырабатываемая вода, имеющаяся в канале 28 (или 27) газообразного реагента, будет протекать через участок 47 основания канавки (имеющий относительно низкое гидравлическое сопротивление) пористого участка 32 в канал 33 охлаждающего газа, так как гидравлическое сопротивление тракта протекания от канала 28 (или 27) газообразного реагента через ребро 46 и участок 48 основания ребра до канала 33 газообразного реагента больше, чем гидравлическое сопротивление тракта протекания от канала 28 (или 27) газообразного реагента через участок основания канавки 47 до канала 33 охлаждающего газа. Однако в варианте 7 настоящего изобретения, так как ребро 46 (часть, расположенная ближе к вершине ребра, чем к поверхности основания канавки) и участок 48 основания ребра выполнены таким образом, чтобы иметь больший диаметр пор и большую пористость, чем любая другая часть (участок основания канавки 47) пористого участка 32, то гидравлическое сопротивление тракта протекания от канала 28 (или 27) газообразного реагента через ребро 46 и участок 48 основания ребра до канала 33 охлаждающего газа понижено и главным образом равно гидравлическому сопротивлению тракта протекания от канала 28 (или 27) газообразного реагента через участок основания канавки до канала 33 охлаждающего газа.When the gaseous reactant flows in the channel 28 (or 27) of the gaseous reactant of the porous portion 32, then if the pore diameter and porosity of the rib 46 and the base portion of the rib 48 are the same as in other parts of the porous portion, the produced water available in the channel 28 (or 27) the gaseous reagent will flow through the groove base portion 47 (having a relatively low hydraulic resistance) of the porous portion 32 into the cooling gas channel 33, since the hydraulic resistance of the flow path from the gaseous reaction channel 28 (or 27) nta through rib 46 and portion 48 of the base of the rib to the gaseous reactant channel 33 is greater than the hydraulic resistance of the flow path from the gaseous reactant channel 28 (or 27) through the base portion of the groove 47 to the cooling gas channel 33. However, in embodiment 7 of the present invention, since the rib 46 (the part located closer to the top of the rib than to the surface of the groove base) and the portion of the rib base 48 are made so as to have a larger pore diameter and greater porosity than any other part (portion the base of the groove 47) of the porous portion 32, then the hydraulic resistance of the flow path from the channel 28 (or 27) of the gaseous reactant through the rib 46 and the portion 48 of the base of the rib to the cooling gas channel 33 is reduced and is mainly equal to the hydraulic resistance the path of the flow from the channel 28 (or 27) of the gaseous reactant through the base portion of the grooves to the channel 33 of the cooling gas.

В результате, независимо от ребра 46 и канавки, вырабатываемая вода движется в канал 33 охлаждающего газа главным образом равномерно, практически через все области пористого участка 32. Следовательно, вероятность затопления может быть исключена практически для всех областей пористого участка 32.As a result, irrespective of the rib 46 and the grooves, the produced water moves into the cooling gas channel 33 mainly uniformly, through almost all areas of the porous section 32. Therefore, the likelihood of flooding can be eliminated for almost all areas of the porous section 32.

В соответствии с вариантом 8 настоящего изобретения, показанным на фиг.12, каждый канал из группы, в которую входят канал 28 (или 27) газообразного реагента и канал 33 охлаждающего газа, образованный на пористом участке 32 сепаратора, выполнен в виде канавки, заключенной между смежными ребрами 46. На пористом участке 32 отношение ребра к канавке газового канала, выбранного из группы, в которую входят по меньшей мере один канал 28 (или 27) газообразного реагента и канал 33 охлаждающего газа, меньше, чем отношение ребра к канавке для любой другой части сепаратора, кроме пористого участка 32 (то есть участка, охлаждаемого при помощи LLC). В этом случае, несмотря на то, что контактная поверхность между сепараторами является небольшой у пористого участка, недостатки (повышение контактного сопротивления и т.п.), вызванные наличием малой контактной поверхности, являются незначительными, так как пористый участок расположен ниже по течению от участка канала 28 (или 27) газообразного реагента и поэтому концентрация газообразного реагента на участке ниже по течению является малой, также как и количество энергии, вырабатываемой на участке ниже по течению.In accordance with option 8 of the present invention, shown in Fig. 12, each channel from the group that includes the reagent channel 28 (or 27) and the cooling gas channel 33 formed on the porous separator portion 32 is formed as a groove between adjacent ribs 46. In the porous portion 32, the ratio of the rib to the groove of the gas channel selected from the group comprising at least one gaseous reactant channel 28 (or 27) and the cooling gas channel 33 is less than the ratio of the rib to the groove for any other parts sep Rathore, besides the porous portion 32 (i.e., portion of the cooled using LLC). In this case, despite the fact that the contact surface between the separators is small near the porous section, the disadvantages (increased contact resistance, etc.) caused by the presence of a small contact surface are insignificant, since the porous section is located downstream of the section channel 28 (or 27) of the gaseous reactant, and therefore, the concentration of the gaseous reactant in the downstream section is small, as is the amount of energy generated in the downstream section.

Когда газообразный реагент протекает в канале 28 (или 27) газообразного реагента пористого участка 32, то вырабатываемая вода, имеющаяся в канале 28 (или 27) газообразного реагента, вряд ли проходит через ребро 46 в канал 33 охлаждающего газа и скорее проходит через ребро 46 (может быть "через канавку". - Прим. переводчика) в канал 33 охлаждающего газа. В варианте 8 в соответствии с настоящим изобретением, так как отношение ребра к канавке газового канала, выбранного из группы, в которую входят по меньшей мере один канал 28 (или 27) газообразного реагента и канал 33 охлаждающего газа, меньше, чем отношение ребра к канавке любого другого участка сепаратора, кроме пористого участка 32, то влияние ребра снижено, так что вырабатываемая вода может поступать в канал 33 охлаждающего газа главным образом равномерно, практически во всех областях пористого участка 32. В результате затопление может быть исключено практически во всех областях пористого участка 32.When the gaseous reactant flows in the channel 28 (or 27) of the gaseous reactant of the porous portion 32, the produced water available in the channel 28 (or 27) of the gaseous reactant hardly passes through the rib 46 into the cooling gas channel 33 and rather passes through the rib 46 ( can be “through the groove.” - Approx. translator) into the cooling gas channel 33. In embodiment 8 in accordance with the present invention, since the ratio of the rib to the groove of the gas channel selected from the group consisting of at least one channel 28 (or 27) of the gaseous reactant and the cooling gas channel 33 is less than the ratio of the rib to the groove of any other section of the separator except the porous section 32, the influence of the ribs is reduced, so that the produced water can enter the cooling gas channel 33 mainly uniformly, in almost all areas of the porous section 32. As a result, flooding can cause found in almost all areas of the porous region 32.

В соответствии с вариантом 9 настоящего изобретения, показанным на фиг.13 и фиг.14, канал 33 охлаждающего газа, образованный на пористом участке 32 сепаратора 18, заполнен электропроводным пористым материалом 49, который является газопроницаемым. Пористый материал 49, образующий канал 33 охлаждающего газа, имеет большую пористость и больший диаметр пор, чем пористый материал, образующий пористый участок 32, за счет чего снижается падение давления потока охлаждающего газа. Пористый материал 49, образующий канал 33 охлаждающего газа, представляет собой пористый углерод или пористый металл.According to Embodiment 9 of the present invention, shown in FIGS. 13 and 14, the cooling gas channel 33 formed in the porous portion 32 of the separator 18 is filled with an electrically conductive porous material 49, which is gas permeable. The porous material 49 forming the cooling gas channel 33 has a greater porosity and a larger pore diameter than the porous material forming the porous portion 32, thereby reducing the pressure drop of the cooling gas stream. The porous material 49 forming the cooling gas channel 33 is a porous carbon or porous metal.

Пористый материал 49, образующий канал 33 охлаждающего газа, может быть образован интегрально с пористым материалом, образующим пористый участок 32, как это показано на фиг.13, где пористый материал 49 представляет собой такой же материал, что и пористый материал, образующий пористый участок 32, или может быть образован раздельно от пористого участка 32 и может быть связан с пористым участком 32, как это показано на фиг.14, вне зависимости от того, является или нет пористый материал 49 таким же материалом, как пористый материал, образующий пористый участок 32.The porous material 49 forming the cooling gas channel 33 can be integrally formed with the porous material forming the porous portion 32, as shown in FIG. 13, where the porous material 49 is the same material as the porous material forming the porous portion 32 , or may be formed separately from the porous portion 32 and may be bonded to the porous portion 32, as shown in FIG. 14, whether or not the porous material 49 is the same material as the porous material forming the porous stock 32.

Так как канал 33 охлаждающего газа заполнен электропроводным пористым материалом 49, который является газопроницаемым, ребра и канавки отсутствуют, так что вырабатываемая вода может поступать в канал 33 охлаждающего газа главным образом равномерно, практически во всех областях пористого участка 32. Более того, так как канавки отсутствуют, электрический контакт между сепараторами достигается даже у канала 33 охлаждающего газа, за счет чего снижается сопротивление электрического контакта.Since the cooling gas channel 33 is filled with electrically conductive porous material 49, which is gas permeable, there are no ribs and grooves, so that the produced water can enter the cooling gas channel 33 mainly uniformly, in almost all areas of the porous region 32. Moreover, since the grooves absent, electrical contact between the separators is achieved even at the channel 33 of the cooling gas, thereby reducing the resistance of the electrical contact.

В соответствии с вариантом 10 настоящего изобретения, показанным на фиг.15, топливный элемент содержит МЕА и сепаратор 18, причем канал газообразного реагента образован в сепараторе 18 у обращенной к МЕА поверхности сепаратора. Участок 32' обмена воды образован в сепараторе 18, причем канал 33 охлаждающего газа образован у поверхности сепаратора, противоположной поверхности, у которой образован участок 32' обмена воды. Таким образом, в варианте 10 настоящего изобретения пористый участок 32 других вариантов настоящего изобретения заменен участком 32' обмена воды. Участок 32' обмена воды изготовлен из порошкового пористого материала, который не пропускает газ и может осуществлять только обмен воды. В качестве пористого материала может быть использован такой известный пористый материал, который не пропускает газ во влажном состоянии, но пропускает газ в сухом состоянии. Желательно, чтобы этот пористый материал был электропроводным и представлял собой такой же материал, что и материал сепаратора 18, с точки зрения соединения.According to Embodiment 10 of the present invention shown in FIG. 15, the fuel cell comprises an MEA and a separator 18, wherein a gaseous reactant channel is formed in the separator 18 at the separator surface facing the MEA. A water exchange portion 32 ′ is formed in the separator 18, the cooling gas channel 33 being formed at the surface of the separator opposite the surface at which the water exchange portion 32 ′ is formed. Thus, in Embodiment 10 of the present invention, the porous portion 32 of other embodiments of the present invention is replaced by a water exchange portion 32 '. The water exchange portion 32 'is made of a porous powder material that does not pass gas and can only exchange water. As the porous material, such a well-known porous material can be used that does not allow gas to pass in the wet state, but passes gas in the dry state. It is desirable that this porous material is electrically conductive and is the same material as the material of the separator 18, from the point of view of the connection.

В варианте 10 в соответствии с настоящим изобретением структуры, в которых канал 33 охлаждающего газа соединен на стороне ниже по течению с каналом газообразного реагента, для подачи газообразного реагента в топливный элемент, и в которых участок 32' обмена воды образован только на участке сепаратора, где расположен участок ниже по течению канала газообразного реагента, являются такими же структурами, которые используют в других вариантах настоящего изобретения, причем их эффективность и технические преимущества аналогичны характеристикам других вариантов настоящего изобретения.In Embodiment 10 of the present invention, structures in which the cooling gas channel 33 is connected downstream to the gaseous reactant channel to supply the gaseous reactant to the fuel cell, and in which the water exchange portion 32 ′ is formed only in the separator portion, where located section downstream of the channel of the gaseous reagent, are the same structures that are used in other embodiments of the present invention, and their effectiveness and technical advantages are similar to the characteristics m other embodiments of the invention.

В варианте 10 в соответствии с настоящим изобретением, так как участок 32' обмена воды позволяет проходить через него только воде и не позволяет проходить через него газу, первый газ, протекающий в первом газовом канале у первой поверхности участка 32' обмена воды, может отличаться от второго газа, протекающего во втором газовом канале, расположенном у второй, противоположной поверхности участка 32' обмена воды. Даже когда различные газы протекают в первом и втором газовых каналах, не происходит перемешивание газов друг с другом. На фиг.15 показано, что воздух протекает вдоль первой поверхности участка 32' обмена воды, а сухой водород протекает вдоль второй, противоположной поверхности участка 32' обмена воды. Сухой водород увлажняется водой, которая поступает через участок 32' обмена воды из воздуха, протекающего на участке ниже по течению канала газообразного окислителя. Увлажненный водород втекает в канал топливного газа и используется в качестве газообразного реагента, в своем исходном состоянии. В результате затопление на участке ниже по течению канала газообразного окислителя исключается, и нет необходимости предусматривать средство увлажнения, которое должно быть предусмотрено в обычной системе.In Embodiment 10 in accordance with the present invention, since the water exchange portion 32 ′ only allows water to pass through it and does not allow gas to pass through it, the first gas flowing in the first gas channel at the first surface of the water exchange portion 32 ′ may be different from a second gas flowing in a second gas channel located at a second, opposite surface of the water exchange portion 32 '. Even when various gases flow in the first and second gas channels, the gases do not mix with each other. 15 shows that air flows along the first surface of the water exchange portion 32 ′, and dry hydrogen flows along the second, opposite surface of the water exchange portion 32 ′. Dry hydrogen is moistened with water, which enters through a portion 32 'of water exchange from air flowing in a portion downstream of the gaseous oxidizer channel. Humidified hydrogen flows into the fuel gas channel and is used as a gaseous reactant in its initial state. As a result, flooding in the area downstream of the gaseous oxidizer channel is eliminated, and there is no need to provide a humidification means, which should be provided in a conventional system.

В соответствии с вариантом 11 настоящего изобретения, показанным на фиг.16 и фиг.17, топливный элемент 10 содержит МЕА, первый сепаратор 18, расположенный на одной стороне МЕА, и второй сепаратор 18, расположенный на другой стороне МЕА. Каналы 27 и 28 газообразного реагента образованы соответственно у обращенных к МЕА поверхностей первого и второго сепараторов. Участок по меньшей мере только первого сепаратора или только второго сепаратора, в направлении по меньшей мере к одному сепаратору от боковой поверхности канала газообразного реагента к противоположной поверхности, по меньшей мере в одной области боковой поверхности канала газообразного реагента, изготовлен из пористого материала 51.According to embodiment 11 of the present invention shown in FIG. 16 and FIG. 17, the fuel cell 10 comprises an MEA, a first separator 18 located on one side of the MEA, and a second separator 18 located on the other side of the MEA. The channels 27 and 28 of the gaseous reactant are formed respectively on the surfaces of the first and second separators facing the MEA. The area of at least only the first separator or only the second separator, in the direction of at least one separator from the side surface of the gaseous reactant channel to the opposite surface, in at least one region of the side surface of the gaseous reactant channel, is made of porous material 51.

Сепаратором 18 может быть сепаратор из углерода или сепаратор из металла. В случае металлического сепаратора пористым материалом 51 может быть газопроницаемый пористый спекшийся материал.The separator 18 may be a carbon separator or a metal separator. In the case of a metal separator, the porous material 51 may be a gas permeable porous sintered material.

В примерах, показанных на фиг.16 и фиг.17, участок сепаратора 18 (второго сепаратора), расположенный на стороне ниже по течению канала 28 газообразного окислителя, изготовлен пористым, чтобы образовать пористый участок 32, причем у поверхности пористого участка 32, противоположной боковой поверхности канала газообразного окислителя, образован канал 33 охлаждающего газа, так что канал 28 газообразного окислителя имеет флюидальное сообщение с каналом 33 охлаждающего газа через пористый участок 32.In the examples shown in FIGS. 16 and 17, a portion of the separator 18 (second separator) located on the side downstream of the gaseous oxidizer channel 28 is made porous to form a porous portion 32, and at the surface of the porous portion 32 opposite the side the surface of the gaseous oxidizer channel, a cooling gas channel 33 is formed, so that the gaseous oxidizer channel 28 is in fluid communication with the cooling gas channel 33 through the porous portion 32.

Более того, по меньшей мере один участок (все участки в данном примере) поверхности сепаратора на стороне канала 27 топливного газа и по меньшей мере один участок 28 (все участки в данном примере, кроме пористого участка 32) поверхности сепаратора на стороне канала 28 газообразного окислителя, за исключением пористого участка 32, участок в направлении толщины (в направлении от одной поверхности к другой, противоположной поверхности сепаратора) на стороне канала 27, 28 газообразного реагента (ребро и участок основания канавки канала газообразного реагента) сепаратора 18 изготовлены из пористого материала 51. Участок в направлении толщины (в направлении от одной поверхности к другой, противоположной поверхности сепаратора) стороны канала охладителя 26 сепаратора изготовлен из газонепроницаемого (не пропускающего газ) материала, так что канал 27, 28 газообразного реагента не имеет флюидального сообщения с каналом охладителя 26. В сепараторе 18, в котором образован пористый участок 32, участок, изготовленный из пористого материала 51, сообщается с пористым участком 32.Moreover, at least one section (all sections in this example) of the separator surface on the side of the fuel gas channel 27 and at least one section 28 (all sections in this example, except the porous section 32) of the separator surface on the side of the gaseous oxidizer channel 28 , with the exception of the porous portion 32, the portion in the thickness direction (in the direction from one surface to another, opposite the separator surface) on the side of the gaseous reactant channel 27, 28 (rib and gaseous channel groove base portion reagent) of the separator 18 are made of porous material 51. The section in the thickness direction (in the direction from one surface to the other, opposite the separator surface) of the channel side of the separator cooler 26 is made of gas-tight (gas-tight) material, so that the channel 27, 28 of the gaseous reactant does not have fluid communication with the cooler channel 26. In the separator 18, in which the porous portion 32 is formed, the portion made of porous material 51 is in communication with the porous portion 32.

Когда охлаждающий газ протекает в канале охлаждающего газа 33, вода, которая имеется на участке ниже по течению канала газообразного реагента, испаряется в охлаждающий газ, за счет чего исключается затопление. Количество сухого воздуха, протекающего в канале 33 охлаждающего газа, является регулируемым. В канале охладителя 26 протекает LLC (долговечный незамерзающий жидкий охладитель). За счет подачи газообразного реагента, который протекает через канал 33 охлаждающего газа в канал 27, 28 газообразного реагента, предотвращается высушивание на впуске канала 27, 28 газообразного реагента.When the cooling gas flows in the cooling gas channel 33, the water that is present in the area downstream of the gaseous reactant channel evaporates into the cooling gas, thereby preventing flooding. The amount of dry air flowing in the cooling gas channel 33 is adjustable. LLC (a durable non-freezing liquid cooler) leaks into the cooler channel 26. By supplying a gaseous reactant that flows through the cooling gas channel 33 to the gaseous reactant channel 27, 28, drying of the gaseous reactant at the inlet of the channel 27, 28 is prevented.

Участок 51, изготовленный из пористого материала, может быть образован в сепараторе, в котором пористый участок 32 не образован (в сепараторе со стороны анода в данном примере).A portion 51 made of a porous material may be formed in a separator in which a porous portion 32 is not formed (in the separator from the anode side in this example).

Когда участок 51, изготовленный из пористого материала, образован в сепараторе, в котором образован пористый участок 32 (в сепараторе со стороны катода в данном примере), то тогда изготовленный из пористого материала участок 51 может быть образован только в одной области зоны, где образован канал газообразного реагента. Например, когда пористый участок 32 образован на участке ниже по течению канала 28 газообразного окислителя, то изготовленный из пористого материала участок 51 может быть образован только на среднем участке канала 28 газообразного окислителя или может быть образован на среднем участке и на участке выше по течению канала 28 газообразного окислителя.When a portion 51 made of a porous material is formed in a separator in which a porous portion 32 is formed (in the separator on the cathode side in this example), then a portion 51 made of a porous material can be formed in only one region of the zone where the channel is formed gaseous reagent. For example, when the porous portion 32 is formed in the portion downstream of the gaseous oxidizer channel 28, then the portion 51 made of the porous material may be formed only in the middle portion of the gaseous oxidizer channel 28 or may be formed in the middle portion and in the portion upstream of the channel 28 gaseous oxidizing agent.

Изготовленный из пористого материала участок 51 может быть образован на каждом участке основания канавки и ребра, образующих канал 27, 28 газообразного реагента, или может быть образован только в ребре, образующем канал 27, 28 газообразного реагента. Участок сепаратора, противоположный участку 51, изготовленному из пористого материала, и противоположный каналу 27, 28 газообразного реагента (участок сепаратора на стороне, где образован канал охладителя), изготовлен из газонепроницаемого (не пропускающего газ) материала.A portion 51 made of a porous material may be formed at each portion of the base of the grooves and ribs forming the gaseous reactant channel 27, 28, or may be formed only in the rib forming the gaseous reactant channel 27, 28. The separator portion opposite the portion 51 made of a porous material and opposite the gaseous reactant channel 27, 28 (the separator portion on the side where the cooler channel is formed) is made of a gas impermeable (gas-tight) material.

Что касается технических преимуществ варианта 11 настоящего изобретения, то следует иметь в виду, что так как пористый участок 32 образован в сепараторе 18 и охлаждающий газ протекает вдоль поверхности пористого участка, а вода в газообразном реагенте и вырабатываемая вода протекают через пористый участок 32 в охлаждающий газ, то затопление на стороне канала 27, 28 газообразного реагента исключено.Regarding the technical advantages of Embodiment 11 of the present invention, it should be borne in mind that since the porous portion 32 is formed in the separator 18 and the cooling gas flows along the surface of the porous section, and the water in the gaseous reactant and the produced water flow through the porous section 32 into the cooling gas , then flooding on the side of the channel 27, 28 of the gaseous reactant is excluded.

Более того, за счет подачи охлаждающего газа, имеющего поглощенную воду, в канал 27, 28 газообразного реагента может быть исключено высушивание на участке выше по течению канала газообразного реагента.Moreover, by supplying a cooling gas having absorbed water to the gaseous reactant channel 27, 28, drying in the region upstream of the gaseous reactant channel can be prevented.

Более того, так как участок сепаратора на стороне канала 27, 28 газообразного реагента в направлении толщины (в направлении от одной поверхности к другой, противоположной поверхности сепаратора) сепаратора, по меньшей мере в одной области сепаратора, кроме той области, в которой образован пористый участок 32, изготовлен из пористого материала 51, то содержащая газ вода и вырабатываемая вода во всех областях, кроме той области, в которой образован пористый участок 32, поглощаются пористым материалом 51. Вода, поглощенная пористым материалом 51, движется, за счет капиллярности, от участка, где образован пористый участок 51, к участку, где образован пористый участок 32, и, в свою очередь, от пористого участка 32 в охлаждающий газ, где вода поглощается охлаждающим газом. В результате исключается затопление во всех областях, кроме области, где образован пористый участок 32.Moreover, since the separator portion on the side of the channel 27, 28 of the gaseous reactant in the thickness direction (in the direction from one surface to another, opposite the separator surface) of the separator in at least one separator region, except for the region in which the porous section is formed 32 is made of porous material 51, then gas-containing water and produced water in all areas except the region in which the porous portion 32 is formed are absorbed by the porous material 51. Water absorbed by the porous material 51 due, by capillarity, from the region where the porous region 51 is formed, to the region where the porous region 32 is formed, and, in turn, from the porous region 32 to the cooling gas, where water is absorbed by the cooling gas. As a result, flooding is excluded in all areas except the area where the porous portion 32 is formed.

Более того, так как участок сепаратора на стороне канала 27, 28 газообразного реагента в направлении толщины (в направлении от одной поверхности к другой, противоположной поверхности сепаратора) сепаратора изготовлен из пористого материала 51, то газообразный реагент вероятнее всего будет протекать в ребра, образующие канавку (то есть канал 27, 28 газообразного реагента) между ними, так что повышается концентрация газа на участке слоя 13, 16 газовой диффузии, прижатого ребром, за счет чего повышается выработка энергии.Moreover, since the separator portion on the side of the channel 27, 28 of the gaseous reactant in the thickness direction (in the direction from one surface to the other, opposite the separator surface) of the separator is made of porous material 51, the gaseous reactant will most likely leak into the ribs forming the groove (i.e., the channel of the gaseous reactant 27, 28) between them, so that the gas concentration in the region of the gas diffusion layer 13, 16 pressed by the edge increases, thereby increasing energy production.

Можно привести следующие технические преимущества и применимость в промышленности предложенного топливного элемента:The following technical advantages and applicability in industry of the proposed fuel cell can be given:

(1) Так как пористый участок образован в сепараторе и канал охлаждающего газа образован у поверхности пористого участка, противоположной поверхности, где образован газообразный реагент, то топливный элемент в соответствии с настоящим изобретением может производить как удаление (откачку) вырабатываемой воды, так и собственное охлаждение.(1) Since the porous portion is formed in the separator and the cooling gas channel is formed at the surface of the porous portion opposite the surface where the gaseous reactant is formed, the fuel cell in accordance with the present invention can both remove (pump out) the produced water and self-cool .

Более того, в соответствии с настоящим изобретением достигаются следующие технические преимущества топливного элемента:Moreover, in accordance with the present invention, the following technical advantages of a fuel cell are achieved:

(2) В том случае, когда канал охлаждающего газа флюидально соединен с каналом подачи газообразного реагента, для подачи газообразного реагента в топливный элемент, средство увлажнения для газообразного реагента не требуется, а если оно есть, то его мощность может быть небольшой.(2) In the case where the cooling gas channel is fluidly connected to the gaseous reagent supply channel, for supplying the gaseous reagent to the fuel cell, moisturizing means for the gaseous reagent is not required, and if it is, its power may be small.

(3) В том случае, когда канал охлаждающего газа является управляемым, то возможно управление удалением воды.(3) In the case where the cooling gas channel is controllable, it is possible to control the removal of water.

(4) В том случае, когда (пористый) участок сепаратор образован только там, где находится участок ниже по течению канала газообразного реагента, то затопление эффективно подавляется, так как участок ниже по течению канала газообразного реагента и участок возможного появления вырабатываемой воды совпадают друг с другом.(4) In the case where the (porous) section of the separator is formed only where the section downstream of the gaseous reactant channel is located, flooding is effectively suppressed, since the section downstream of the gaseous reactant channel and the section where the produced water may appear coincide with each other friend.

(5) В том случае, когда предусмотрен другой (второй) канал охлаждения на участке сепаратора, где находится участок выше по течению канала газообразного реагента, то за счет направления охлаждающей воды во второй канал охлаждения участок сепаратора, где находится указанный участок выше по течению, может быть охлажден при помощи охлаждающей воды, которая имеет более высокую охлаждающую способность, чем газ.(5) In the case where another (second) cooling channel is provided in the separator section where the section is located upstream of the gaseous reactant channel, then, by directing cooling water into the second cooling channel, the separator section where this section is located upstream, can be cooled with cooling water, which has a higher cooling capacity than gas.

(6) В том случае, когда ребро или ребро и часть основания ребра, расположенная в нижней части ребра, газового канала, выбранного из группы, в которую входят по меньшей мере один канал газообразного реагента и канал охлаждающего газа, образованные на пористом участке, имеют большую пористость, чем любая другая часть пористого участка, то вырабатываемая вода может поступать в канал охлаждающего газа практически во всех областях пористого участка, вне зависимости от наличия ребра или канавки пористого участка.(6) In the case where the rib or rib and part of the base of the rib located in the lower part of the rib of a gas channel selected from the group consisting of at least one channel of the gaseous reactant and the channel of the cooling gas formed in the porous section have more porosity than any other part of the porous section, the produced water can enter the cooling gas channel in almost all areas of the porous section, regardless of the presence of a rib or groove in the porous section.

(7) В том случае, когда газовый канал, выбранный из группы, в которую входят по меньшей мере один канал газообразного реагента и канал охлаждающего газа, имеет меньшее отношение ребра к канавке у пористого участка, чем на любом другом участке сепаратора, кроме пористого участка (участка сепаратора, охлаждаемого при помощи LLC), то вырабатываемая вода может поступать в канал охлаждающего газа практически во всех областях пористого участка, вне зависимости от наличия ребра или канавки пористого участка.(7) In the case where a gas channel selected from the group consisting of at least one gaseous reactant channel and a cooling gas channel has a smaller rib-to-groove ratio in the porous section than in any other section of the separator except the porous section (separator section cooled by LLC), the produced water can enter the cooling gas channel in almost all areas of the porous section, regardless of the presence of a rib or groove in the porous section.

(8) В том случае, когда канал охлаждающего газа, образованный на пористом участке сепаратора, заполнен пористым материалом, вырабатываемая вода может поступать в канал охлаждающего газа практически во всех областях пористого участка.(8) In the case where the cooling gas channel formed in the porous section of the separator is filled with porous material, the produced water can enter the cooling gas channel in almost all areas of the porous section.

(9) В том случае, когда газы на противоположных сторонах пористого участка аналогичны друг другу, не возникает проблем, даже если эти газы перемешиваются друг с другом.(9) In the case where the gases on the opposite sides of the porous section are similar to each other, there is no problem even if these gases are mixed with each other.

(10) В том случае, когда воздуходувка флюидально соединена с каналом охлаждающего газа сепаратора на стороне выше по течению канала охлаждающего газа, канал охлаждения имеет повышенное давление, так что новый газообразный реагент подается из канала охлаждающего газа через пористый участок в участок ниже по течению канала газообразного реагента (где концентрация газа понижена). В результате повышается выработка энергии на участке ниже по течению канала газообразного реагента.(10) In the case where the blower is fluidly connected to the separator cooling gas channel on the side upstream of the cooling gas channel, the cooling channel has an increased pressure so that a new gaseous reactant is supplied from the cooling gas channel through the porous section to the section downstream of the channel gaseous reagent (where the gas concentration is lowered). As a result, increased energy production in the area downstream of the gaseous reactant channel.

(11) В том случае, когда воздуходувка расположена в соединительном канале, расположенном на стороне ниже по течению каналов охлаждающего газа сепаратора, давление в канале охлаждающего газа сепаратора является отрицательным, так что у пористого участка газ вытекает из канала газообразного реагента в канал охлаждающего газа через пористый участок, в результате чего вырабатываемая вода движется вместе с газовым потоком и ускоряется удаление вырабатываемой воды.(11) In the case where the blower is located in the connecting channel located on the downstream side of the separator cooling gas channels, the pressure in the separator cooling gas channel is negative, so that at the porous section, gas flows from the gaseous reactant channel into the cooling gas channel through a porous section, as a result of which the produced water moves with the gas stream and accelerates the removal of the produced water.

(12) В том случае, когда соединительный канал соединен при помощи (дополнительного) канала с устройством выработки вакуума на стороне ниже по течению канала охлаждающего газа, то при возможной блокировке газового потока посторонними веществами у пористого участка посторонние вещества могут отсасываться за счет выработки вакуума, что позволяет снять блокировку.(12) In the case where the connecting channel is connected by means of an (additional) channel to the vacuum generating device on the side downstream of the cooling gas channel, then with the possible blocking of the gas flow by foreign substances at the porous section, foreign substances can be sucked off by vacuum generation, which allows you to unlock.

(13) В том случае, когда канал охлаждающего газа представляет собой воздушный канал, охлаждающий газ является увлажненным и он может быть использован, в своем исходном состоянии, в качестве газообразного окислителя.(13) In the case where the cooling gas channel is an air channel, the cooling gas is humidified and can be used, in its initial state, as a gaseous oxidizing agent.

(14) В том случае, когда канал охлаждающего газа представляет собой канал топливного газа, охлаждающий газ является увлажненным и он может быть использован, в своем исходном состоянии, в качестве топливного газа.(14) In the case where the cooling gas channel is a fuel gas channel, the cooling gas is humidified and can be used, in its initial state, as fuel gas.

(15) В том случае, когда предусмотрены два сепаратора и канал охлаждающего газа, образованный в одном сепараторе, представляет собой воздушный канал, в то время как канал охлаждающего газа, образованный в другом сепараторе, представляет собой канал топливного газа, увлажненный охлаждающий газ, протекающий в воздушном канале, может быть использован, в своем исходном состоянии, в качестве газообразного окислителя, а увлажненный охлаждающий газ, протекающий в канале топливного газа, может быть использован, в своем исходном состоянии, в качестве топливного газа.(15) In the case where two separators are provided and the cooling gas channel formed in one separator is an air channel, while the cooling gas channel formed in the other separator is a fuel gas channel, moistened cooling gas flowing in the air channel, can be used, in its initial state, as a gaseous oxidizing agent, and moistened cooling gas flowing in the fuel gas channel can be used, in its initial state, as e fuel gas.

(16) В том случае, когда блок обмена воды позволяет проходить через него только воде и не позволяет газу проходить через него, не возникает проблем даже в том случае, когда различные газы протекают в каналах на противоположных сторонах блока обмена воды.(16) In the case when the water exchange unit allows only water to pass through it and does not allow the gas to pass through it, there are no problems even when various gases flow in the channels on opposite sides of the water exchange unit.

(17) В том случае, когда участок сепаратора в направлении сепаратора от стороны поверхности канала газообразного реагента к противоположной поверхности, по меньшей мере в одной области стороны поверхности канала газообразного реагента, изготовлен из пористого материала, то улучшается как удаление (откачка) воды у поверхности накопления электричества, так и подвод газа к электроду.(17) In the case where the separator portion in the direction of the separator from the surface side of the channel of the gaseous reactant to the opposite surface, at least in one region of the side of the surface of the channel of the gaseous reactant, is made of porous material, it improves as the removal (pumping) of water at the surface accumulation of electricity, and gas supply to the electrode.

Claims (16)

1. Топливный элемент, который содержит:1. A fuel cell that contains: комплект мембрана - электрод иmembrane - electrode kit and сепаратор, который имеет обращенную к указанному комплекту поверхность, обращенную к электроду, и канал газообразного реагента, образованный в сепараторе у обращенной к указанному комплекту поверхности сепаратора, содержащий участок выше по течению и участок ниже по течению потока газообразного реагента,a separator which has a surface facing the specified set facing the electrode and a gaseous reactant channel formed in the separator on the surface of the separator facing the specified set, comprising a section upstream and a section downstream of the gaseous reactant причем сепаратор содержит пористый участок (32), образованный по меньшей мере на указанном участке ниже по течению канала газообразного реагента сепаратора, при этом пористый участок содержит первую поверхность, обращенную к электроду указанного комплекта, и вторую поверхность, противоположную указанной первой поверхности пористого участка, причем канал газообразного реагента образован на первой поверхности пористого участка, канал (33 или 33') охлаждающего газа образован на второй поверхности пористого участка и канал охладителя (26), независимый от канала охлаждающего газа, образован на противоположной стороне поверхности сепаратора, обращенной к комплекту, в той части сепаратора, в которой расположен участок выше по течению канала газообразного реагента.moreover, the separator contains a porous section (32), formed at least in the specified section downstream of the channel of the gaseous reactant of the separator, while the porous section contains a first surface facing the electrode of the specified set, and a second surface opposite to the specified first surface of the porous section, a gaseous reactant channel is formed on the first surface of the porous section, a cooling gas channel (33 or 33 ') is formed on the second surface of the porous section and a cooler channel (26), dependent on the cooling gas channel, is formed on the opposite side of the separator surface facing the kit, in that part of the separator in which there is a section upstream of the gaseous reactant channel. 2. Топливный элемент по п.1, в котором канал газообразного реагента содержит участок выше по течению, образованный в указанном пористом участке, и участок ниже по течению потока охлаждающего газа, расположенный ниже по течению относительно участка выше по течению, и канал (33 или 33') охлаждающего газа соединен у участка ниже по течению канала охлаждающего газа с каналом газообразного реагента для подачи газообразного реагента в топливный элемент.2. The fuel cell according to claim 1, wherein the gaseous reactant channel comprises an upstream portion formed in said porous portion and a downstream portion of the cooling gas stream located downstream of the upstream portion and a channel (33 or 33 ') a cooling gas is connected at a site downstream of the cooling gas channel to the gaseous reactant channel for supplying the gaseous reactant to the fuel cell. 3. Топливный элемент по п.2, в котором канал (33 или 33') охлаждающего газа представляет собой канал с управляемым количеством протекающего газа.3. The fuel cell according to claim 2, in which the channel (33 or 33 ') of the cooling gas is a channel with a controlled amount of flowing gas. 4. Топливный элемент по п.1, в котором пористый участок (32) образован только в той части сепаратора, где расположен участок ниже по течению канала газообразного реагента.4. The fuel cell according to claim 1, in which the porous section (32) is formed only in that part of the separator where the section is located downstream of the gaseous reactant channel. 5. Топливный элемент по п.1, в котором канал газообразного реагента и канал (33 или 33') охлаждающего газа пористого участка (32) сепаратора образованы при помощи канавки, образованной в сепараторе, а участок сепаратора между смежными канавками образует ребро (46) и ребро (46) или ребро (46) и участок основания его (48), расположенный в нижней части ребра (46), газового канала по меньшей мере одного из канала газообразного реагента и канала охлаждающего газа указанного пористого участка имеет большую пористость, чем любая другая часть пористого участка.5. The fuel cell according to claim 1, wherein the gaseous reactant channel and the cooling gas channel (33 or 33 ') of the porous separator portion (32) are formed by a groove formed in the separator, and the separator portion forms an edge (46) between adjacent grooves and a rib (46) or rib (46) and a base portion thereof (48) located in the lower part of the rib (46) of the gas channel of at least one of the gaseous reactant channel and the cooling gas channel of said porous section has a greater porosity than any another part of the porous area. 6. Топливный элемент по п.1, в котором канал газообразного реагента и канал (33 или 33') охлаждающего газа пористого участка (32) сепаратора образованы при помощи канавки, образованной в сепараторе, а участок сепаратора между смежными канавками образует ребро (46), и газовый канал по меньшей мере одного из канала газообразного реагента и канала охлаждающего газа имеет меньшее отношение ребра к канавке на пористом участке (32), чем на любом другом участке сепаратора.6. A fuel cell according to claim 1, wherein the gaseous reactant channel and the cooling gas channel (33 or 33 ') of the porous separator portion (32) are formed by a groove formed in the separator, and the separator portion forms an edge (46) between adjacent grooves and the gas channel of at least one of the gaseous reagent channel and the cooling gas channel has a smaller rib-to-groove ratio in the porous region (32) than in any other separator region. 7. Топливный элемент по п.1, в котором канал охлаждающего газа пористого участка (32) сепаратора заполнен пористым материалом (49).7. The fuel cell according to claim 1, wherein the cooling gas channel of the porous separator portion (32) is filled with porous material (49). 8. Топливный элемент по п.1, в котором газы, протекающие вдоль противоположных поверхностей пористого участка (32) сепаратора, представляют собой один и тот же газ.8. The fuel cell according to claim 1, in which the gases flowing along opposite surfaces of the porous separator (32) are the same gas. 9. Топливный элемент по п.1, в котором канал (33 или 33') охлаждающего газа сепаратора соединен на стороне выше по течению канала охлаждающего газа с воздуходувкой (38).9. The fuel cell according to claim 1, in which the channel (33 or 33 ') of the cooling gas of the separator is connected on the side upstream of the channel of the cooling gas with a blower (38). 10. Топливный элемент по п.2, в котором канал (33 или 33') охлаждающего газа сепаратора соединен на стороне ниже по течению канала охлаждающего газа с воздуходувкой (38), причем воздуходувка (38) установлена выше по течению относительно канала подачи газообразного реагента.10. The fuel cell according to claim 2, in which the channel (33 or 33 ') of the cooling gas of the separator is connected on the side downstream of the channel of the cooling gas with a blower (38), and the blower (38) is installed upstream relative to the supply channel of the gaseous reactant . 11. Топливный элемент по п.2, в котором канал (33 или 33') охлаждающего газа сепаратора соединен при помощи канала (39) с устройством выработки вакуума на стороне ниже по течению канала охлаждающего газа, причем устройство выработки вакуума подключено выше по течению относительно канала подачи газообразного реагента.11. The fuel cell according to claim 2, in which the channel (33 or 33 ') of the cooling gas of the separator is connected via a channel (39) to the vacuum generating device on the side downstream of the cooling gas channel, the vacuum generating device being connected upstream with respect to reagent gas feed channel. 12. Топливный элемент по п.1, в котором канал (33 или 33') охлаждающего газа представляет собой воздушный канал.12. The fuel cell according to claim 1, in which the channel (33 or 33 ') of the cooling gas is an air channel. 13. Топливный элемент по п.1, в котором канал (33 или 33') охлаждающего газа представляет собой канал топливного газа.13. The fuel cell according to claim 1, wherein the cooling gas channel (33 or 33 ') is a fuel gas channel. 14. Топливный элемент по п.1, в котором канал (33 или 33') охлаждающего газа образован в каждом из первом и втором сепараторах, расположенных на противоположных сторонах комплекта мембрана - электрод напротив друг друга, причем канал охлаждающего газа, образованный в одном из указанных первом и втором сепараторах, представляет собой воздушный канал, а канал охлаждающего газа, образованный в другом из указанных двух сепараторов, представляет собой канал топливного газа.14. The fuel cell according to claim 1, in which the channel (33 or 33 ') of the cooling gas is formed in each of the first and second separators located on opposite sides of the membrane-electrode set opposite each other, and the cooling gas channel formed in one of said first and second separators is an air channel, and a cooling gas channel formed in the other of the two separators is a fuel gas channel. 15. Топливный элемент по п.1, в котором пористый участок (32) содержит участок (32') обмена воды, который не позволяет газу протекать через этот участок и позволяет воде протекать через него.15. The fuel cell according to claim 1, in which the porous section (32) contains a section (32 ') of water exchange, which does not allow gas to flow through this section and allows water to flow through it. 16. Топливный элемент по п.1, в котором участок сепаратора по толщине в направлении от указанной обращенной к комплекту поверхности сепаратора, где образован канал топливного газа, до противоположной поверхности по меньшей мере в одной области указанной обращенной к комплекту поверхности сепаратора, где образован канал топливного газа, изготовлен из пористого материала (51).16. The fuel cell according to claim 1, in which the separator section in thickness in the direction from the specified facing to the kit surface of the separator, where the fuel gas channel is formed, to the opposite surface in at least one region of the specified facing to the kit surface of the separator, where the channel is formed fuel gas made of porous material (51).
RU2005101617/09A 2002-06-28 2003-01-28 Fuel cell RU2289177C2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002189046 2002-06-28
JP2002-189046 2002-06-28
JP2002-289347 2002-10-02
JP2002289347 2002-10-02
JP2002-360587 2002-12-12

Publications (2)

Publication Number Publication Date
RU2005101617A RU2005101617A (en) 2005-07-10
RU2289177C2 true RU2289177C2 (en) 2006-12-10

Family

ID=35838140

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005101617/09A RU2289177C2 (en) 2002-06-28 2003-01-28 Fuel cell

Country Status (1)

Country Link
RU (1) RU2289177C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2528426C1 (en) * 2010-07-21 2014-09-20 Ниссан Мотор Ко., Лтд. System of fuel cells and method of operation of system
RU2531912C2 (en) * 2009-07-06 2014-10-27 Топсеэ Фюэль Селл А/С Combined schemes of flows in packet of fuel elements or in packet of electrolytic elements
RU2545508C2 (en) * 2009-03-26 2015-04-10 Топсеэ Фюэль Селл А/С Compression device for fuel or electrolytic cells in fuel-cell battery or electrolytic-cell battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2545508C2 (en) * 2009-03-26 2015-04-10 Топсеэ Фюэль Селл А/С Compression device for fuel or electrolytic cells in fuel-cell battery or electrolytic-cell battery
RU2531912C2 (en) * 2009-07-06 2014-10-27 Топсеэ Фюэль Селл А/С Combined schemes of flows in packet of fuel elements or in packet of electrolytic elements
RU2528426C1 (en) * 2010-07-21 2014-09-20 Ниссан Мотор Ко., Лтд. System of fuel cells and method of operation of system

Also Published As

Publication number Publication date
RU2005101617A (en) 2005-07-10

Similar Documents

Publication Publication Date Title
EP1551073B1 (en) Fuel battery
JP4456188B2 (en) Fuel cell stack
CN103069222B (en) Fuel cell humidifier
JP3699063B2 (en) Fuel cell and control method thereof
JP2000012051A (en) Gas separator for fuel cell and fuel cell using the gas separator for the fuel cell
JP2008027674A (en) Humidifier for fuel cell
WO2004075326A1 (en) Polyelectrolyte type fuel cell and operating method for polyelectrolyte type fuel cell
JP4643128B2 (en) Fuel cell system
US7067216B2 (en) Bipolar plate gas moisturizing apparatus for the fuel cell
CA2616650C (en) Modified fuel cells with internal humidification and/or temperature control systems
JP2008108473A (en) Humidifying system for fuel cell
JPH07245116A (en) Fuel cell
JP2010129482A (en) Fuel cell separator, fuel cell stack, and fuel cell system
RU2289177C2 (en) Fuel cell
JP2003077495A (en) Fuel cell
US20220376281A1 (en) Fuel cell membrane humidifier and fuel cell system having same
CN115425257A (en) Self-adjusting compact type proton exchange membrane fuel cell self-humidifying device
JP3736475B2 (en) Fuel cell
JP4340417B2 (en) Polymer electrolyte fuel cell
JP2004039483A (en) Fuel cell
US7063907B2 (en) Passive water management system for a fuel cell power plant
US20240055626A1 (en) Fuel cell membrane humidifier and fuel cell system comprising same
JPH0992309A (en) Solid polymer electrolyte fuel cell
JP2000357530A (en) Fuel cell system
JP2004186008A (en) Solid polymer fuel cell, solid polymer fuel cell system and mobile body

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130129