RU2279737C1 - Магниторезистивный датчик - Google Patents

Магниторезистивный датчик Download PDF

Info

Publication number
RU2279737C1
RU2279737C1 RU2005104408/28A RU2005104408A RU2279737C1 RU 2279737 C1 RU2279737 C1 RU 2279737C1 RU 2005104408/28 A RU2005104408/28 A RU 2005104408/28A RU 2005104408 A RU2005104408 A RU 2005104408A RU 2279737 C1 RU2279737 C1 RU 2279737C1
Authority
RU
Russia
Prior art keywords
magnetoresistive
strips
sensor
thin
variable
Prior art date
Application number
RU2005104408/28A
Other languages
English (en)
Inventor
гилев Владимир Владимирович Д (RU)
Владимир Владимирович Дягилев
Сергей Иванович Касаткин (RU)
Сергей Иванович Касаткин
Андрей Михайлович Муравьев (RU)
Андрей Михайлович Муравьев
Алексей Алексеевич Резнев (RU)
Алексей Алексеевич Резнев
Александр Николаевич Сауров (RU)
Александр Николаевич Сауров
Юрий Александрович Чаплыгин (RU)
Юрий Александрович Чаплыгин
Original Assignee
Государственное учреждение Научно-производственный комплекс "Технологический центр" Московского государственного института электронной техники (ГУ НПК "ТЦ" МИЭТ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное учреждение Научно-производственный комплекс "Технологический центр" Московского государственного института электронной техники (ГУ НПК "ТЦ" МИЭТ) filed Critical Государственное учреждение Научно-производственный комплекс "Технологический центр" Московского государственного института электронной техники (ГУ НПК "ТЦ" МИЭТ)
Priority to RU2005104408/28A priority Critical patent/RU2279737C1/ru
Application granted granted Critical
Publication of RU2279737C1 publication Critical patent/RU2279737C1/ru

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

Изобретение относится к области автоматики и может быть использовано в тахометрах, устройствах неразрушающего контроля, датчиках перемещения, датчиках для измерения постоянного и переменного магнитного поля, электрического тока. Техническим результатом изобретения является получение магниторезистивного датчика с уменьшенными размерами, что позволит понизить стоимость датчика и расширит область его применения. Сущность изобретения: в магниторезистивном датчике все тонкопленочные магниторезистивные полоски ориентированны под углом 45° относительно оси легкого намагничивания, а рабочие части проводника управления соединены в виде меандра. 4 ил.

Description

Изобретение относится к области автоматики и может быть использовано в тахометрах, устройствах неразрушающего контроля, датчиках перемещения, датчиках для измерения постоянного и переменного магнитного поля, электрического тока.
Известны магниторезистивные датчики, чувствительный элемент которых состоит из магниторезистивной полоски (Pat USA №4847568, 1989) с так называемыми полюсами Барбера. Полюс Барбера представляет собой низкорезистивный шунт, сформированный на поверхности магниторезистивной полоски под углом 45° к ее длине. В соседних плечах мостовой схемы полюс Барбера в магниторезистивных полосках имеет противоположное направление (±45°) для формирования нечетной вольт-эрстедной характеристики (ВЭХ).
Недостатки такого датчика связаны с самими полюсами Барбера, которые необходимы для создания характеристики вход-выход. Кроме технологических сложностей, связанных с созданием полюсов Барбера, в таких магниторезистивных датчиках принципиально невозможно использовать магнитные сплавы с повышенной величиной поля магнитной анизотропии для сдвига диапазона измеряемых магнитных полей в область больших значений. Магниторезистивные датчики с магнитными сплавами с пониженным полем анизотропии, в которых применяются полюса Барбера, обладают повышенным гистерезисом, магнитным шумом и ТКС. Для устранения влияния гистерезиса на результаты измерения магнитного поля в таком датчике необходимо сформировать планарную катушку большого размера. При пропускании через нее импульса тока в катушке создается магнитное поле вдоль оси легкого намагничивания (ОЛН).
Недостаток, связанный с созданием полюсов Барбера, устранен в магниторезистивном датчике, все магниторезистивные полоски которого в соседних плечах мостовой схемы расположены под углами ±45° к ОЛН (В.И.Левашов и др. Квазимонодоменный магниторезистивный датчик // Микроэлектроника. Т.28. №2, С.131, 1999). При такой конструкции магниторезистивного датчика полюса Барбера не требуются, а ВЭХ формируется благодаря асимметрии топологии соседних плеч мостовой схемы. Недостатком такого датчика является сохранение необходимости формировать планарную катушку большого размера для создания магнитного поля вдоль ОЛН для устранения влияния гистерезиса.
Задачей, поставленной и решаемой настоящим изобретением, является создание магниторезистивного датчика с уменьшенными размерами, что позволит понизить стоимость датчика и расширит область его применения.
Указанный технический результат достигается тем, что в магниторезистивном датчике, содержащем подложку с диэлектрическим слоем, на котором расположены соединенные в мостовую схему немагнитными низкорезистивными перемычками четыре ряда последовательно соединенных этими перемычками тонкопленочных магниторезистивных полосок, с верхним и нижним защитными слоями, первый изолирующий слой поверх тонкопленочных магниторезистивных полосок, на котором сформирован проводник управления с рабочими частями, расположенными над тонкопленочными магниторезистивными полосками вдоль каждого их ряда перпендикулярно оси легкого намагничивания, второй изолирующий слой, планарная катушка, рабочие части которой расположены вдоль оси легкого намагничивания и защитный слой, все тонкопленочные магниторезистивные полоски ориентированны под 45° относительно оси легкого намагничивания, а рабочие части проводника управления соединены в виде меандра.
Сущность предлагаемого технического решения заключается в том, что все магниторезистивные полоски в датчике расположены под углом 45° относительно ОЛН, а проходящий над ними проводник управления имеет компактную форму меандра. Это означает, что при прохождении через проводник управления перед измерением магнитного поля импульсы тока для устранения влияния гистерезиса на результаты измерения, называемые в литературе импульсами set/reset, будут перемагничивать магниторезистивные полоски в соседних плечах мостовой схемы в противоположные стороны. Как будет показано ниже, такое направление векторов намагниченности в мостовой схеме магниторезистивного датчика в совокупности с направлением самих полосок относительно ОЛН создает нечетную ВЭХ.
Изобретение поясняется чертежами: на фиг.1 представлена структура магниторезистивного датчика в разрезе; на фиг.2 показана топология магниторезистивного датчика (вид сверху); на фиг.3 приведены теоретические ВЭХ V(H) магниторезистивного датчика с 1) пермаллоевыми магниторезистивными полосками, 2) FeNiCo магниторезистивными полосками; на фиг.4 приведены теоретические зависимости чувствительности S(H) магниторезистивного датчика с 1) пермаллоевыми магниторезистивными полосками, 2) FeNiCo магниторезистивными полосками.
Магниторезистивный датчик содержит подложку 1 (фиг.1) с диэлектрическим слоем 2, на котором расположены четыре ряда магниторезистивных полосок, состоящие каждая из защитных слоев 3, 4 и ферромагнитной пленки 5. Сверху расположен первый изолирующий слой 6, на котором над магниторезистивными полосками вдоль каждого ряда сформирован проводник управления 7 со вторым изолирующим слоем 8. Далее расположена планарная катушка 9 с верхним защитным слоем 10.
Магниторезистивный датчик представляет собой мостовую схему (фиг.2) из четырех рядов магниторезистивных полосок 11-14, перемычек 15, соединяющих магниторезистивные полоски в мостовую схему. Проводник управления выполнен в виде меандра, рабочие части которого 16-19 проходят над рядами 11-14 магниторезистивных полосок, и имеет контактные площадки 20 и 21.
Заявляемое изобретение относится к магниторезистивным датчикам с анизотропным магниторезистивным эффектом.
Работа магниторезистивного датчика происходит следующим образом. При отсутствии внешнего магнитного поля, тока в проводнике управления (фиг.2) и сенсорного тока в мостовой схеме векторы намагниченности магнитной пленки 5 (фиг.1) в рядах магниторезистивных полосок 11-14 (фиг.2) устанавливаются вдоль ОЛН. При подаче через контактные площадки 20 и 21 в проводник управления импульса тока создаваемое им магнитное поле будет действовать вдоль ОЛН на ряды магниторезистивных полосок 11 и 13 в одном направлении, а на ряды магниторезистивных полосок 12 и 14 - в противоположном. Под действием магнитного поля, создаваемого импульсом тока в проводнике управления, векторы намагниченности в рядах магниторезистивных полосок 11 и 13, 12 и 14 перемагнитятся в противоположные стороны. В реальных условиях всегда существует технологический разбаланс, достигающий приблизительно ±1% от сопротивления мостовой схемы, влияние которого можно устранить в усилителе считывания. Но лучшим решением является устранение технологического разбаланса с помощью подачи постоянного тока в планарную катушку 9. Полярность и величина тока определяется знаком и величиной разбаланса мостовой схемы магниторезистивного датчика. При этом упрощаются требования к усилителю считывания. Поскольку при анизотропном магниторезистивном эффекте знак угла отклонения вектора намагниченности не влияет на характер изменения сопротивления магниторезистивных полосок, то перемагничивание магниторезистивных полосок при подаче импульса тока в проводник управления к дополнительному разбалансу мостовой схемы датчика не приведет.
Магниторезистивный датчик измеряет магнитное поле, перпендикулярное ОЛН. Под действием этого магнитного поля все вектора намагниченности рядов магниторезистивных полосок 11-14 повернутся в его направлении, причем в двух рядах магниторезистивных полосок угол поворота векторов относительно ОЛН увеличится, а в двух других - уменьшится. Это означает, что сопротивления одной пары противоположных плеч мостовой схемы датчика увеличатся, а другой - уменьшатся. Таким образом, мостовая схема разбалансируется, и на выходе магниторезистивного датчика магнитного поля появится выходной сигнал, полярность которого зависит от направления измеряемого магнитного поля, при этом, как будет показано ниже, ВЭХ магниторезистивного датчика - нечетная. Для устранения влияния гистерезиса на результаты измерения магнитного поля необходимо применять тот же алгоритм, что и для магниторезистивных датчиков с полюсами Барбера. Полный цикл измерения магнитного поля состоит из двух измерений, при этом перед каждым измерением в проводник управления подается импульс set/reset противоположной полярности, перемагничивающий магниторезистивные полоски.
В настоящее время в анизотропных магниторезистивных датчиках применяются пермаллоевые (FeNi) и FeNiCo магниторезистивные полоски. Пермаллой позволяет уменьшить пороговые значения измеряемого магнитного поля до приблизительно 0,1 мЭ, достигнуть величин чувствительности порядка 1-3 мВ/(В·Э). Верхний диапазон измеряемого магнитного поля достигает 2-6 Э. Использование FeNiCo сплава позволяет сдвинуть диапазон измеряемого магнитного поля в область более высоких полей приблизительно до 3-5 раз. При этом во столько же раз падает чувствительность, но уменьшаются магнитные шумы и ТКС. На фиг.3 приведены теоретические ВЭХ магниторезистивного датчика с пермаллоевыми (1) и с FeNiCo магниторезистивными полосками (2). Параметры магниторезистивного датчика следующие: величина анизотропного магниторезистивного эффекта - 1,5%, ширина и длина магниторезистивной полоски 20 и 300 мкм соответственно, толщина ферромагнитной пленки 20 нм, поле магнитной анизотропии пермаллоевой и FeNiCo пленок 3 и 15 Э соответственно, величина напряжения питания 5 В. Видно (фиг.3, 4), что ВЭХ пермаллоевого датчика линейна только при малых полях (до 1 Э), но чувствительность пермаллоевого датчика приблизительно втрое выше FeNiCo датчика.
При Н>1 Э ВЭХ пермаллоевого датчика становится нелинейной и падает чувствительность. У FeNiCo датчика ВЭХ линейна до 5 Э. Проведенный анализ показывает, что чувствительность обоих типов магниторезистивных датчиков пропорциональна ширине полоски и обратно пропорциональна толщине ферромагнитной пленки.
Таким образом, теоретический анализ показывает, что предложенный магниторезистивный датчик с рядами магниторезистивных полосок, направленных под углом 45° к ОЛН, обладает нечетной ВЭХ с линейным участком при малых магнитных полях. При этом, ввиду того что проводник управления имеет компактную форму меандра вместо планарной катушки для магниторезистивного датчика с рядами полосок под углами ±45° к ОЛН, предлагаемый магниторезистивный датчик существенно меньше в размерах. Это позволит значительно увеличить число магниторезистивных датчиков на пластине, что уменьшит стоимость их производства и расширит области применения, в первую очередь, из-за компактности расположения таких датчиков в линейках и матрицах.

Claims (1)

  1. Магниторезистивный датчик, содержащий подложку с диэлектрическим слоем, на котором расположены соединенные в мостовую схему немагнитными низкорезистивными перемычками четыре ряда последовательно соединенных этими перемычками тонкопленочных магниторезистивных полосок, с верхним и нижним защитными слоями, первый изолирующий слой поверх тонкопленочных магниторезистивных полосок, на котором сформирован проводник управления с рабочими частями, расположенными над тонкопленочными магниторезистивными полосками вдоль каждого их ряда перпендикулярно оси легкого намагничивания, второй изолирующий слой, планарная катушка, рабочие части которой расположены вдоль оси легкого намагничивания, и защитный слой, отличающийся тем, что все тонкопленочные магниторезистивные полоски ориентированы под углом или +45° или -45° относительно оси легкого намагничивания, а рабочие части проводника управления соединены в виде меандра.
RU2005104408/28A 2005-02-18 2005-02-18 Магниторезистивный датчик RU2279737C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005104408/28A RU2279737C1 (ru) 2005-02-18 2005-02-18 Магниторезистивный датчик

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005104408/28A RU2279737C1 (ru) 2005-02-18 2005-02-18 Магниторезистивный датчик

Publications (1)

Publication Number Publication Date
RU2279737C1 true RU2279737C1 (ru) 2006-07-10

Family

ID=36830801

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005104408/28A RU2279737C1 (ru) 2005-02-18 2005-02-18 Магниторезистивный датчик

Country Status (1)

Country Link
RU (1) RU2279737C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2495514C1 (ru) * 2012-05-03 2013-10-10 Открытое акционерное общество "Научно-производственное объединение измерительной техники" Магниторезистивный датчик
RU2533747C1 (ru) * 2013-03-19 2014-11-20 Открытое акционерное общество "Научно-производственное объединение измерительной техники" Магниторезистивный датчик тока
RU2561339C1 (ru) * 2014-05-19 2015-08-27 федеральное государственное бюджетное учреждение "Научно-производственный комплекс "Технологический центр" МИЭТ Магниторезистивный преобразователь магнитного поля (варианты)
RU2561762C1 (ru) * 2014-04-30 2015-09-10 Акционерное общество "Научно-производственное объединение измерительной техники" Магниторезистивный датчик

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2495514C1 (ru) * 2012-05-03 2013-10-10 Открытое акционерное общество "Научно-производственное объединение измерительной техники" Магниторезистивный датчик
RU2533747C1 (ru) * 2013-03-19 2014-11-20 Открытое акционерное общество "Научно-производственное объединение измерительной техники" Магниторезистивный датчик тока
RU2561762C1 (ru) * 2014-04-30 2015-09-10 Акционерное общество "Научно-производственное объединение измерительной техники" Магниторезистивный датчик
RU2561339C1 (ru) * 2014-05-19 2015-08-27 федеральное государственное бюджетное учреждение "Научно-производственный комплекс "Технологический центр" МИЭТ Магниторезистивный преобразователь магнитного поля (варианты)

Similar Documents

Publication Publication Date Title
JP3465059B2 (ja) 磁化反転導体と一又は複数の磁気抵抗レジスタとからなる磁界センサ
JP6220971B2 (ja) 多成分磁場センサー
US6642714B2 (en) Thin-film magnetic field sensor
EP2801834A1 (en) Current sensor
CN112082579B (zh) 宽量程隧道磁电阻传感器及惠斯通半桥
US6191581B1 (en) Planar thin-film magnetic field sensor for determining directional magnetic fields
JP2006208278A (ja) 電流センサ
JP2018518678A (ja) 櫛形y軸磁気抵抗センサ
WO2017173992A1 (zh) 一种无需置位/复位装置的各向异性磁电阻amr传感器
JP6320515B2 (ja) 磁界センサ装置
CN208026788U (zh) 一种基于线圈偏置的amr线性传感器
RU2279737C1 (ru) Магниторезистивный датчик
RU2436200C1 (ru) Магниторезистивный датчик
RU2533747C1 (ru) Магниторезистивный датчик тока
JP2002532894A (ja) 巨大磁気抵抗効果を有する磁界センサ
RU2453949C1 (ru) Магниторезистивный преобразователь-градиометр
RU2495514C1 (ru) Магниторезистивный датчик
JP2004340953A (ja) 磁界検出素子、その製造方法およびこれを利用した装置
RU2312429C1 (ru) Магниторезистивный датчик
RU2175797C1 (ru) Магниторезистивный датчик
CN109752678B (zh) 一种简易各向异性薄膜磁阻传感器
RU2561762C1 (ru) Магниторезистивный датчик
RU2601281C1 (ru) Магниторезистивный датчик тока
RU2433507C1 (ru) Магниторезистивный датчик
RU2307427C2 (ru) Магниторезистивный датчик поля