RU2265009C2 - Предотвращение проскока аммиака в процессе аммоксидирования алкана - Google Patents

Предотвращение проскока аммиака в процессе аммоксидирования алкана Download PDF

Info

Publication number
RU2265009C2
RU2265009C2 RU2003106704/04A RU2003106704A RU2265009C2 RU 2265009 C2 RU2265009 C2 RU 2265009C2 RU 2003106704/04 A RU2003106704/04 A RU 2003106704/04A RU 2003106704 A RU2003106704 A RU 2003106704A RU 2265009 C2 RU2265009 C2 RU 2265009C2
Authority
RU
Russia
Prior art keywords
reactor
propane
ammonia
acrylonitrile
propylene
Prior art date
Application number
RU2003106704/04A
Other languages
English (en)
Other versions
RU2003106704A (ru
Inventor
Джеймс Ф. мл. БРЭЗДИЛ (US)
Джеймс Ф. Мл. БРЭЗДИЛ
Джозеф П. ПАДОЛЕВСКИ (US)
Джозеф П. ПАДОЛЕВСКИ
Original Assignee
Дзе Стэндард Ойл Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дзе Стэндард Ойл Компани filed Critical Дзе Стэндард Ойл Компани
Publication of RU2003106704A publication Critical patent/RU2003106704A/ru
Application granted granted Critical
Publication of RU2265009C2 publication Critical patent/RU2265009C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Alcoholic Beverages (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Настоящее изобретение относится к способу снижения проскока аммиака в процессе производства акрилонитрила, включающему введение углеводорода, выбранного из группы, состоящей из пропана и изобутана; аммиака и кислородсодержащего газа в нижнюю часть реактора с псевдоожиженным слоем, содержащим катализатор аммоксидирования, с последующим взаимодействием в присутствии указанного катализатора, с образованием акрилонитрила. Способ включает введение в реактор в точке ниже по потоку от подачи алкана по крайней мере один из от С2 до С5 олефинов, который реагирует с по крайней мере частью непрореагировавшего аммиака и присутствующего в реакторе кислорода, что позволяет провести существенное снижение количества аммиака, находящегося в реакционном потоке, выходящем из реактора. Кроме того, изобретение относится к способу перевода производства акрилонитрила на основе пропиленового сырья, в котором пропилен, аммиак и кислород реагируют в реакторе в присутствии катализатора для производства акрилонитрила в процесс производства акрилонитрила на основе пропанового сырья, в котором пропан, аммиак и кислород реагируют в присутствии катализатора для получения акрилонитрила. Данный способ включает: (а) замещение исходным сырьем на основе пропана исходного сырья на основе пропилена; (b) введение в реактор в точке ниже по потоку от подачи алкана по крайней мере одного от С2 до C5 олефина, который реагирует с по крайней мере частью непрореагировавшего аммиака и присутствующего кислорода в реакторе, снижая то количество аммиака, которое присутствует в реакционном потоке, выходящем из реактора, и (с) добавление к процессу средств для отделения, улавливания и рецикла непрореагировавшего пропана. 2 н. и 11 з.п. ф-лы.

Description

Уровень техники
Область изобретения
Настоящее изобретение относится к способу получения акрилонитрила прямым аммоксидированием насыщенного углеводорода (например, пропана), аммиака и кислорода в реакторе, содержащем катализатор аммоксидирования. В особенности, настоящее изобретение относится к существенному снижению непрореагировавшего аммиака, аммонийных солей и полученных из непрореагировавшего аммиака побочных продуктов. В частности, настоящее изобретение заключается во введении в реактор С25 олефина, который вступает в реакцию с непрореагировавшим аммиаком, что, таким образом, приводит к снижению и/или удалению непрореагировавшего аммиака из реакционного потока. Такое существенное снижение аммиака в сточных водах обеспечивает значительные экологические и экономические преимущества.
Настоящее изобретение имеет особенную применимость при переводе химических предприятий по получению акрилонитрила из сырья на основе пропилена в предприятие по получению акрилонитрила из сырья на основе пропана.
Описание уровня техники
Производство акрилонитрила из пропана представляет собой второстепенную технологию. Несмотря на то, что имеются многочисленные патенты, раскрывающие схемы синтеза и катализаторы указанного процесса, коммерциализация этой технологии, однако, не произошла, и акрилонитрил продолжают вырабатывать во всем мире через аммоксидирование пропилена (который является более дорогим исходным сырьем, чем пропан).
В случае обеих технологий как аммоксидирования пропилена, так и пропана в акрилонитрил, аммиак является необходимым исходным сырьем. Обычно непрореагировавший аммиак остается в реакционном потоке, явление, известное как «проскок аммиака». Для того чтобы удалить непрореагировавший аммиак в коммерческом производстве, основанном на пропилене, реакционный поток вводят в контакт с серной кислотой, нейтрализуя аммиак с образованием сульфата аммония, который затем удаляют из процесса в виде потока отходящих вод, а затем собирают в глубоком резервуаре или подвергают биологической обработке.
В процессах псевдоожиженного аммоксидирования пропилена в акрилонитрил, описанных в US 5 288 473 и 5 457 223, раскрывается способ существенного снижения аммиака в реакционном потоке путем введения в реактор насыщенного кислородом соединения, предпочтительно, метанола.
Задачей настоящего изобретения является разрешение проблемы проскока аммиака в процессах аммоксидирования пропана или изобутана в акрилонитрил.
Другой задачей настоящего изобретения является разработка экономичной схемы процесса перевода предприятия по производству акрилонитрила из пропиленового сырья в предприятие, основанное на пропановом или изобутановом сырье.
Сущность изобретения
Изобретение представляет собой способ снижения проскока аммиака в процессе производства акрилонитрила из пропана и/или изобутана. В особенности, изобретение представляет собой процесс производства акрилонитрила, включающий введение углеводорода, выбранного из группы, состоящей из пропана и изобутана; аммиака и кислородсодержащего газа в нижнюю часть реактора с псевдоожиженным слоем, содержащим катализатор аммоксидирования, с последующим взаимодействием углеводорода, аммиака и кислорода в присутствии указанного катализатора, с образованием акрилонитрила, при этом усовершенствование заключается во введении в реактор в точке ниже по потоку от подачи алкана по крайней мере одного от С2 до С5 олефина, который реагирует с по крайней мере частью непрореагировавшего аммиака и присутствующего в реакторе кислорода, чтобы провести существенное снижение аммиака, находящегося в реакционном потоке, выходящем из реактора.
Преимущество процесса в соответствии с настоящим изобретением заключается в том, что он обеспечивает простой и экономичный способ существенного предотвращения проскока аммиака (т.е. непрореагировавшего аммиака) в реакторе с псевдоожиженным слоем наряду с дополнительным преимуществом по ликвидации такого побочного продукта как сульфат аммония в процессе производства акрилонитрила. Удаление сульфата аммония из отходящего потока в производстве акрилонитрила означает, что отходящий поток не содержит какого-либо или содержит минимальное количество аммонийных солей. Это ведет к значительному экономическому преимуществу процесса производства акрилонитрила, в особенности в случае, если невозможно провести вливание в глубокий резервуар. Без существенного снижения аммиака в реакционном потоке поток сточных вод, выходящих из колонны закалки, будет содержать сульфат аммония (NH4)2SO4 в довольно высокой концентрации, затрудняя процесс ликвидации указанных сточных вод. Снижение уровня или исключение сульфата аммония из указанного потока может сделать эти воды пригодными для процесса переработки отходов, который не требует жестких условий или дорогих материалов для оборудования, что также ведет к значительным экономическим преимуществам и сохранению окружающей среды.
Таким образом, в соответствии с настоящим изобретением снижают или исключают такое количество аммиака, что он исчезает из реакционного потока и, соответственно снижаются или предотвращаются затраты, требуемые на закалку, регенерирование, уничтожение, или рецикл непрореагировавшего аммиака. Кроме того, изобретение обеспечивает дополнительное преимущество, связанное с получением дополнительных полезных продуктов из олефина.
Другое воплощение настоящего изобретения заключается в способе перевода производства по получению акрилонитрила на основе пропиленового сырья, в котором пропилен, аммиак и кислород реагируют в реакторе в присутствии катализатора для получения акрилонитрила, в процесс по получению акрилонитрила на основе из пропанового сырья, в котором пропан, аммиак и кислород реагируют в присутствии катализатора для получения акрилонитрила. Указанный способ включает:
(a) замещение исходным сырьем на основе пропана исходного сырья на основе пропилена,
(b) введение в реактор по крайней мере одного от С2 до С5 олефина, который будет реагировать с по крайней мере частью непрореагировавшего аммиака и присутствующего кислорода в реакторе, чтобы по существу провести снижение всего количества аммиака в реакционном потоке, выходящем из реактора, и
(с) добавление к процессу средств для отделения, улавливания и рецикла непрореагировавшего пропана.
Преимущество этого воплощения изобретения заключается в возможности переоборудования завода, использующего сырье на основе пропилена, в завод, использующий более дешевое сырье на основе пропана при общей более низкой цене капитальных затрат, которые требуются для строительства нового предприятия по использованию исходного сырья на основе пропана и при максимальном использовании существующего оборудования.
Детальное описание изобретения
В соответствии с настоящим изобретением снижается образование сульфата аммония, вырабатываемого при производстве акрилонитрила по реакции пропана и/или изобутана, аммиака и кислорода, путем добавлении по крайней мере одного С25 олефина в реактор. Введение С25 олефина позволяет провести по существу полное взаимодействие избытка аммиака с олефином, что в свою очередь ведет по существу к полному исчезновению сульфата аммония из потока сточных вод, выходящих из колонны закалки на заводе по производству акрилонитрила. Более того, реакция С25 олефина с избытком аммиака обеспечивает дополнительное получение нужных продуктов (например, реакция превращения пропилена в акрилонитрил).
В предпочтительном воплощении настоящего изобретения пропан, аммиак и воздух вступают в реакцию в присутствии катализатора, находящегося в реакторе с псевдоожиженным слоем, чтобы получить акрилонитрил. В таких реакторах пропан, аммиак и воздух вводят в основание или близкое к основанию место реактора, газообразные реагенты поднимаются через слой катализатора, взаимодействуя друг с другом, при этом получают акрилонитрил. Продукты реакции, побочные продукты и непрореагировавшее исходное сырье выходят из верхней или практически верхней части реактора.
Любой катализатор, способный катализировать реакцию пропана и/или изобутана при контакте с аммиаком и кислородом, с образованием акрилонитрила и/или метакрилонитрила, пригоден для настоящего изобретения. Одним из таких катализаторов является катализатор, который имеет следующую общую формулу:
VvSbmAaDdOx
где А, когда он присутствует, представляет собой по крайней мере один из Sn, Ti, и Fe,
D, когда он присутствует, представляет собой по крайней мере один из Li, Mg, Na, Ca, Sr, Ва, Со, Cr, Ga, Ni, Zn, Ge, Nb, Zr, Mo, W, Cu, Те, Та, Se, Bi, Ce, In, As, В, Al и Mn.
V имеет значение 1
m имеет значение от 0.5 до 10
а имеет значение от 0 до 10
d имеет значение от 0 до 10
х представляет собой величину, необходимую для удовлетворения требований по валентности для других присутствующих элементов.
Указанные катализаторы могут находиться как на подложке из подходящего носителя, так и без него. Обычно пригодные носители, которые известны как «подложки», включают диоксид кремния, оксид алюминия, диоксид циркония, титан и их комбинации. Диокид кремния является предпочтительной подложкой.
При воплощении настоящего изобретения С25 олефин может быть введен в реактор в любой подходящей точке потока, ниже по потоку от точки, в которой пропан и/или изобутан подают в реактор. Предпочтительно, олефин вводят в точке ниже по потоку от подачи алкана, где олефин будет иметь возможность вступить в реакцию по существу со всем или со всем избытком аммиака, но не быть конкурентным главной реакции аммоксидирования алкана, происходящей в нижней части каталитического слоя. В одном из воплощений в отношении реакторов с псевдоожиженным слоем локализация олефинового сырья должна быть более чем на 20% от уровня высоты расширенного слоя катализатора, предпочтительно локализация составляет более чем на 50% от уровня высоты расширенного слоя катализатора, более предпочтительно локализация составляет более чем на 80% уровня высоты расширенного слоя катализатора.
Любой из от С2 до С5 олефин может обеспечить преимущества настоящего изобретения. Пропилен является предпочтительным из-за его доступности и способности реагировать с кислородом и аммиаком с образованием акрилонитрила.
Количество олефина может варьироваться, но оно должно быть достаточно, для того чтобы вступить в реакцию с любым избыточным аммиаком, проскакивающим в реакционный поток. Любой непрореагировавший олефин, так же как любой непрореагировавший алкан, попадающий в реакционный поток, может улавливаться и рециркулироваться в реактор. Система рецикла углеводорода может основываться на любом известном из уровня техники способе отделения газообразных углеводородов от других газообразных компонентов. Пригодные технологии включают, но не ограничиваются, охлаждением и компрессией (то есть фракционированием) или адсорбцией при переменном давлении и десорбцией, как раскрыто в US 5 532 384, или адсорбцией при переменной температуре и десорбцией среди других.
Олефин может быть инжектирован вслед за или в присутствии соответствующего газа-разбавителя типа азота, пара, воздуха, СО, СО2, отходящего газа из рецикла или их комбинации.
Большее количество произведенного в мире акрилонитрила получено в реакторах с псевдоожиженным слоем. Однако, настоящее изобретение может быть осуществлено не только в реакторах с псевдоожиженным слоем, но также и в любом реакторе, способном к поддержанию катализатора в жидком состоянии, таком как реактор с транспортными линиями, реактор с вертикальным трубопроводом или реактор с повторным использованием сырья. Настоящее изобретение может также использовать реакторы с неподвижным слоем.
Каждый катализатор аммоксидирования пропана действует в некоторой степени при различных сырьевых соотношениях и эксплуатационных условиях с точки зрения максимального выхода акрилонитрила и/или экономических условий. Количество избыточного аммиака в реакционном потоке, выходящем из реактора аммоксидирования пропана, в некоторой степени зависит от использованного катализатора. Уровень олефина, который должен быть добавлен, будет варьироваться в зависимости от типов катализатора и природы реактора. Соответственно, при осуществлении настоящего изобретения количество олефина, вводимого в реактор, будет диктоваться условиями и используемым катализатором. В зависимости от катализатора, который действует в фазе обедненной кислородом, может быть необходимо добавить дополнительное количество кислорода в реактор. Однако, катализатор, который будет действовать в избытке кислорода, не имеет потребности во введении дополнительного количества кислорода в реактор. Обычно любой катализатор аммоксидирования может быть использован при осуществлении настоящего изобретения.
Как заявлено ранее, каждый катализатор аммоксидирования пропилена/пропана будет работать в некоторой степени при различных соотношениях сырья и условий проведения процесса. Пригодные условия проведения процесса и соотношения сырья для производства акрилонитрила описаны в US 3,911,089, и 4 873 215. Типичные параметры реакции следующие. Температура в реакторе находится между 300 и 600°С. Давление внутри реактора находится приблизительно между 1 и приблизительно 10 атмосферами. Аммиак подают в реактор при мольном отношении к пропану от 0.01 до 5 к 1, предпочтительно от 0.01 до 1 к 1, более предпочтительно от 0.06 до 0.4 к 1. Кислород подают к реактор при мольном отношении к пропану от 0.1 до 5 к 1, предпочтительно от 0.1 до 2 к 1, более предпочтительно от 0.1 до 1 к 1. Газ-разбавитель может быть подан в реактор при мольном отношении к пропану от 0 до 100 к 1, предпочтительно от 0 до 10 к 1. Олефин от С2 до С5 подают в реактор при мольном отношении к пропану от 0.001 до 100 к 1, предпочтительно от 0.01 до 1 к 1, более предпочтительно от 0.01 до 0.1 к 1.
При осуществлении процесса по настоящему изобретению стандартное условие его проведения при загруженном катализаторе для пропилена/пропана, на котором его проводят, не должно меняться, но условия могут быть изменены в зависимости от катализатора и сырья. Например, если используемый катализатор работает при низком или минимальном содержании кислорода в окружающей среде, то может появиться потребность в увеличении количества кислорода в реакторе, чтобы быть уверенным, что процесс по настоящему изобретению протекает наиболее эффективно. Это может быть достигнуто за счет увеличения соотношения кислорода в сырье или путем прямого введения кислорода в реактор отдельными средствами.
Настоящее изобретение, в частности, является пригодным для перевода предприятия по производству акрилонитрила из сырья на основе пропилена на сырье на основе пропана. Замена сырья на основе пропилена на более дешевое сырье на основе пропана значительно снижает коммерческую стоимость производства акрилонитрила на существующем коммерческом производстве. Далее ключевое преимущество описанного здесь процесса заключается в способности перевода завода с сырья на основе пропилена на сырье на основе пропана, при более низких капиталовложениях, чем те, которые требуются для строительства нового завода на основе пропанового сырья, при максимальном использовании существующего оборудования.
Поскольку с текущими катализаторами и технологией отдельный проход превращения пропана в акрилонитрил является меньшим, чем отдельный проход превращения пропилена в акрилонитрил, непрореагировавший пропан обычно отделяют и улавливают из реакционного потока и затем рециркулируют в реактор. Раз так, то ключевой компонент при переводе предприятия, базирующегося на пропилене, в предприятие, базирующегося на пропане, представляет собой дополнительную систему трубопроводов и технических средств, связанных с разделением, улавливанием и рециклом пропана. Как правило, катализатор, используемый в реакторе, должен быть также заменен на катализатор, более пригодный для аммоксидирования пропана в акрилонитрил. Преимущество процесса, описанного в настоящем изобретении для таких заводских переводов, заключается в том, что использование небольших количеств пропилена для снижения или ликвидации всего количества непрореагировавшего аммиака из реактора предотвращает необходимость делать другие модификации узлов при закалке, улавливания и очистки на существующем заводе по переработке акрилонитрила из пропилена. Таким образом, существующий завод по получению в один проход акрилонитрила из пропиленового сырья может быть экономично превращен в завод, на котором осуществлен процесс с рециклом алканового сырья с только минимальным добавлением капитального оборудования. Более того, такой перевод может быть проведен без неблагоприятного воздействия на качественные и коммерческие качества продукции предприятия.
И последнее, процесс и способ действия, описанный в настоящем изобретении, является в особенности пригодным для предприятий по производству акрилонитрила на основе пропилена, которые были переведены на пропановое сырье и на которых, вероятно, будет храниться пропиленовый запас на месте или он будет каким-то образом доступен для предприятия.
Примеры осуществления изобретения
Следующие примеры приведены только для целей иллюстрации процесса по настоящему изобретению.
Сравнительный Пример А
Используя реактор в виде титановой U-образной трубки, диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей азота/ /0.78 аммиака/2.2 частей кислорода/2.2 частей азота/1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования, разбавленный 50% мас. толченым кварцем. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.42 час-1. Конверсия пропана составила 18.2%. Селективность по акрилонитрилу составила 58.1%. Общая селективность полезных продуктов (то есть акрилонитрила, акролеина и акриловой кислоты) составило приблизительно 58.1%. Количество проскочившего аммиака составило 22.3% от количества введенного аммиака.
Пример 1
Используя реактор в виде титановой U-образной трубки, диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.72 частей аммиака/2.2 частей кислорода/2.2 частей азота/1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования, разбавленный 50% мас. толченого кварца. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.45 час-1. Пропилен вводят в реактор на 81.4% от уровня высоты слоя катализатора. Общее соотношение пропилена к пропану, вводимых в реактор, составляет 0.037/1. Конверсия пропилена плюс пропана составила 18.6%. Селективность полезных продуктов из пропана и пропилена составила 57.6% по акрилонитрилу, 0.1% по акролеину и 0.3% по акриловой кислоте (общая селективность по полезному продукту составила 58.1%). Количество проскочившего аммиака снижено до 14.7% от количества введенного аммиака.
Пример 2
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.74 частей аммиака/2.2 частей кислорода/2.2 частей азота/1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования, разбавленный 50% мас. толченого кварца. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.44 час-1. Пропилен вводят в реактор на 81.4% от уровня высоты слоя катализатора. Общее соотношение пропилена к пропану, вводимых в реактор, составляет 0.053/1. Конверсия пропилена плюс пропана составила 19.1%. Селективность полезных продуктов из пропана и пропилена составила 57.6% в акрилонитрил, 0.3% в акролеин и 1.2% в акриловую кислоту (общая селективность по полезному продукту составила 59.0%). Количество проскочившего аммиака снижено до 14.0% от количества введенного аммиака.
Пример 3
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.74 частей аммиака/2.2 частей кислорода/2.2 частей азота /1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования, разбавленный 50% мас. толченого кварца. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.46 час-1. Пропилен вводят в реактор на 81.4% от уровня высоты слоя катализатора. Общее соотношение пропилена к пропану, вводимых в реактор, составляет 0.097/1. Конверсия пропилена плюс пропана составила 18.6%. Селективность полезных продуктов из пропана и пропилена составила 58.6% в акрилонитрил, 1.1% в акролеин и 2.9% в акриловую кислоту (общая селективность по полезному продукту составила 62.6%). Количество проскочившего аммиака снижено до 13.9% от количества введенного аммиака.
Пример 4
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.71 частей аммиака/2.2 частей кислорода/2.2 частей азота /1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования, разбавленный 50% мас. толченого кварца. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.45 час-1. Пропилен вводят в реактор на 49.1% от уровня высоты слоя катализатора. Общее соотношение пропилена к пропану, вводимых в реактор, составляет 0.073/1. Конверсия пропилена плюс пропана составила 20.4%. Селективность полезных продуктов из пропана и пропилена составила 55.3% в акрилонитрил, 0.2% в акролеин и 4.0% в акриловую кислоту (общая селективность по полезному продукту составила 59.5%). Количество проскочившего аммиака снижено до 11,1% от количества введенного аммиака.
Пример 5
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.69 частей аммиака/2.2 частей кислорода/2.2 частей азота /1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования, разбавленный 50% мас. толченого кварца. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.47 час-1. Пропилен вводят в реактор на 49.1% от уровня высоты слоя катализатора. Общее соотношение пропилена к пропану, вводимых в реактор, составляет 0.103/1. Конверсия пропилена плюс пропана составила 21.2%. Селективность полезных продуктов из пропана и пропилена составила 50.8% в акрилонитрил, 3.9% в акролеин и 6.5% в акриловую кислоту (общая селективность по полезному продукту составила 61.3%). Количество проскочившего аммиака снижено до 8.1% от количества введенного аммиака.
Пример 6
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.69 частей аммиака/2.2 частей кислорода/2.2 частей азота /1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования, разбавленный 50% мас. толченого кварца. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.50 час-1. Пропилен вводят в реактор на 49.1% от уровня высоты слоя катализатора. Общее соотношение пропилена к пропану, вводимых в реактор, составляет 0.140/1. Конверсия пропилена плюс пропана составила 23.1%. Селективность полезных продуктов из пропана и пропилена составила 43.4% в акрилонитрил, 15.7% в акролеин и 7.8% в акриловую кислоту (общая селективность по полезному продукту составила 66.9%). Количество проскочившего аммиака снижено до 5.6% от количества введенного аммиака.
Сравнительный Пример В
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.69 частей аммиака/2.2 частей кислорода/2.2 частей азота /1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования, разбавленный 50% мас. толченого кварца. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.37 час-1. Конверсия пропана составила 19.7%. Селективность по акрилонитрилу составила 54.3%. Общая селективность по полезному продукту (т.е. по акрилонитрилу, акролеину и акриловой кислоте) составила 56.1%. Количество проскочившего аммиака снижено до 16.8% от количества введенного аммиака.
Сравнение указанного Сравнительного Примера В с примерами с 7 по 10 показало, что проведение процесса в зависимости от сырья и условий, которые обеспечивают низкий проскок аммиака (то есть Сравнительный Пример В), также приводит к более низкой общей селективности по акрилонитрилу. Напротив при добавлении пропилена в реактор и проведении процесса в соответствии с настоящим изобретением (то есть примеры с 7 по 10) общая селективность по акрилонитрилу увеличивается и количество проскочившего аммиака затем снижается.
Пример 7
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.68 частей аммиака/2.2 частей кислорода/2.2 частей азота /1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования, разбавленный 50% мас. толченого кварца. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.38 час-1. Пропилен вводят в реактор на 23.6% от уровня высоты слоя катализатора. Общее соотношение пропилена к пропану, вводимых в реактор, составляет 0.032/1. Конверсия пропилена плюс пропана составила 19.8%. Селективность в полезные продукты из пропана и пропилена составила 55.7% в акрилонитрил, 0.2% в акролеин и 1.7% в акриловую кислоту (общая селективность по полезному продукту составила 57.6%). Количество проскочившего аммиака снижено до 14.3% от количества введенного аммиака.
Пример 8
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.67 частей аммиака/2.2 частей кислорода/2.2 частей азота /1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования, разбавленный 50% мас. толченого кварца. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.52 час-1. Пропилен вводят в реактор на 23.6% от уровня высоты слоя катализатора. Общее соотношение пропилена к пропану, вводимых в реактор, составляет 0.105/1. Конверсия пропилена плюс пропана составила 20.0%. Селективность в полезные продукты из пропана и пропилена составила 53.5% в акрилонитрил, 0.6% в акролеин и 3.7% в акриловую кислоту (общая селективность по полезному продукту составила 57.8%). Количество проскочившего аммиака снижено до 10.0% от количества введенного аммиака.
Пример 9
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.68 частей аммиака/2.2 частей кислорода/2.1 частей азота /1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования, разбавленный 50% мас. толченого кварца. Верхний слой содержал 70% полной загрузки катализатора, нижний слой содержал 30% полной загрузки катализатора. Пропилен был введен между двумя слоями в слой кварца, который служил камерой смешения для пропилена и газовой смеси в реакторе. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.35 час-1. Общее соотношение пропилена к пропану, вводимых в реактор, составляет 0.034/1. Конверсия пропилена плюс пропана составила 18.6%. Селективность полезных продуктов из пропана и пропилена составила 60.3% в акрилонитрил, 0% акролеин и 0.2% акриловую кислоту (общая селективность по полезному продукту составила 60.5%). Количество проскочившего аммиака снижено до 14.8% от количества введенного аммиака.
Пример 10
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.67 частей аммиака/2.2 частей кислорода/2.2 частей азота /1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования, разбавленный 50% мас. толченого кварца. Верхний слой содержал 70% полной загрузки катализатора, нижний слой содержал 30% полной загрузки катализатора. Пропилен был введен между двумя слоями в слой кварца, который служил камерой смешения для пропилена и газовой смеси в реакторе. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.35 час-1. Общее соотношение пропилена к пропану, вводимых в реактор, составляет 0.071/1. Конверсия пропилена плюс пропана составила 20.3%. Селективность полезных продуктов из пропана и пропилена составила 56.3% в акрилонитрил, 0.1% в акролеин и 0.4% в акриловую кислоту (общая селективность по полезному продукту составила 56.8%). Количество проскочившего аммиака снижено до 9.6% от количества введенного аммиака.
Сравнительный Пример С
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.81 частей аммиака/2.2 частей кислорода/2.2 частей азота /1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.45 час-1. Конверсия пропана составила 20.4%. Селективность по акрилонитрилу составила 55.1%. Общая селективность по полезному продукту (т.е. по акрилонитрилу, акролеину и акриловой кислоте) составила 55.9%. Количество проскочившего аммиака снижено до 21.7% от количества введенного аммиака.
Пример 11
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.84 частей аммиака/2.2 частей кислорода/2.2 частей азота /1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования. Верхний слой содержал 20% полной загрузки катализатора, нижний слой содержал 80% полной загрузки катализатора. Пропилен был введен между двумя слоями в слой кварца, который служил камерой смешения для пропилена и газовой смеси в реакторе. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.36 час-1. Общее соотношение пропилена к пропану, вводимых в реактор, составляет 0.032/1. Конверсия пропилена плюс пропана составила 22.4%. Селективности полезных продуктов из пропана и пропилена составили 54.5% в акрилонитрил, 0.6% в акролеин и 1.6% в акриловую кислоту (общая селективность по полезному продукту составила 56.7%). Количество проскочившего аммиака снижено до 16.9% от количества введенного аммиака.
Сравнительный Пример D
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.82 частей аммиака/2.2 частей кислорода/2.2 частей азота /1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.41 час-1. Конверсия пропана составила 19.9%. Селективность по акрилонитрилу составила 58.1%. Общая селективность по полезному продукту (т.е. по акрилонитрилу, акролеину и акриловой кислоте) составила 58.6%. Количество проскочившего аммиака снижено до 23.5% от количества введенного аммиака.
Сравнительный Пример Е
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.83 частей аммиака/2.2 частей кислорода/2.2 частей азота /1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.41 час-1. Конверсия пропана составила 20.1%. Селективность по акрилонитрилу составила 58.0%. Общая селективность по полезному продукту (т.е. по акрилонитрилу, акролеину и акриловой кислоте) составила 58.6%. Количество проскочившего аммиака снижено до 22.5% от количества введенного аммиака.
Пример 12
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.79 частей аммиака/2.2 частей кислорода/2.2 частей азота /1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования. Верхний слой содержал 40% полной загрузки катализатора, нижний слой содержал 60% полной загрузки катализатора. Пропилен был введен между двумя слоями в слой кварца, который служил камерой смешения для пропилена и газовой смеси в реакторе. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.36 час-1. Общее соотношение пропилена к пропану, вводимых в реактор, составляет 0.047/1. Конверсия пропилена плюс пропана составила 22.2%. Селективности полезных продуктов из пропана и пропилена составили 56.3% в акрилонитрил, 0.1% в акролеин и 1.6% в акриловую кислоту (общая селективность по полезному продукту составила 57.9%). Количество проскочившего аммиака снижено до 14.0% от количества введенного аммиака.
Пример 13
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.79 частей аммиака/2.2 частей кислорода/2.2 частей азота /1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования. Верхний слой содержал 40% полной загрузки катализатора, нижний слой содержал 60% полной загрузки катализатора. Пропилен был введен между двумя слоями в слой кварца, который служил камерой смешения для пропилена и газовой смеси в реакторе. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.36 час-1. Общее соотношение пропилена к пропану, вводимых в реактор, составляет 0.052/1. Конверсия пропилена плюс пропана составила 22.3%. Селективности полезных продуктов из пропана и пропилена составили 56.2% в акрилонитрил, 0.2% в акролеин и 1.9% в акриловую кислоту (общая селективность по полезному продукту составила 58.3%). Количество проскочившего аммиака снижено до 13.2% от количества введенного аммиака.
Пример 14
Используя реактор в виде титановой U-образной трубки диаметром 0.5 дюймов (1 дюйм = 2.56 см), помещенной в песочную баню с контролируемой температурой 480°С, вводят газообразное сырье, состоящее из 3 частей пропана/0.78 частей аммиака/2.2 частей кислорода/2.2 частей азота /1 части воды, в основание реактора, содержащего промотированный ванадием оксид сурьмы пропановый катализатор аммоксидирования. Верхний слой содержал 40% полной загрузки катализатора, нижний слой содержал 60% полной загрузки катализатора. Пропилен был введен между двумя слоями в слой кварца, который служил камерой смешения для пропилена и газовой смеси в реакторе. Реактор действует при атмосферном давлении и среднечасовая объемно-массовая скорость пропанового сырья составила 0.44 час-1. Общее соотношение пропилена к пропану, вводимых в реактор, составляет 0.052/1. Конверсия пропилена плюс пропана составила 19.4%. Селективности полезных продуктов из пропана и пропилена составили 57.0% в акрилонитрил, 0.4% в акролеин и 1.3% в акриловую кислоту (общая селективность по полезному продукту составила 58.7%). Количество проскочившего аммиака снижено до 15.5% от количества введенного аммиака.

Claims (13)

1. Способ снижения проскока аммиака в процессе производства акрилонитрила, включающий введение углеводорода, выбранного из группы, состоящей из пропана и изобутана, аммиака и кислородсодержащего газа в нижнюю часть реактора с псевдоожиженным слоем, содержащим катализатор аммоксидирования, с последующим взаимодействием в присутствии указанного катализатора, с образованием акрилонитрила, отличающийся тем, что в реактор вводят в точке ниже по потоку от подачи алкана по крайней мере один из от С2 до C5 олефинов, который реагирует с по крайней мере частью непрореагировавшего аммиака и присутствующего в реакторе кислорода.
2. Способ по п.1, отличающийся тем, что углеводород выбирают из пропана.
3. Способ по п.1, отличающийся тем, что С2-C5 олефин представляет собой пропилен.
4. Способ по п.1, отличающийся тем, что олефин вводят в реактор при локализации более чем по крайней мере 20% от высоты расширенного слоя катализатора.
5. Способ по п.1, отличающийся тем, что олефин вводят в реактор при локализации более чем по крайней мере 50% от высоты расширенного слоя катализатора.
6. Способ по п.1, отличающийся тем, что олефин вводят в реактор при локализации более чем по крайней мере 80% от высоты расширенного слоя катализатора.
7. Способ по п.1, отличающийся тем, что катализатор имеет формулу
VvSbmAaDdOx,
где А, когда он присутствует, представляет собой по крайней мере один из Sn, Ti, и Fe;
D, когда он присутствует, представляет собой по крайней мере один из Li, Mg, Na, Ca, Sr, Ва, Со, Cr, Ga, Ni, Zn, Ge, Nb, Zr, Mo, W, Cu, Те, Та, Se, Bi, Ce, In, As, В, Al и Mn;
V имеет значение 1;
m имеет значение от 0,5 до 10;
а имеет значение от 0 до 10;
d имеет значение от 0 до 10;
х представляет собой величину, необходимую для удовлетворения требований по валентности для других присутствующих элементов.
8. Способ перевода производства акрилонитрила на основе пропиленового сырья, в котором пропилен, аммиак и кислород реагируют в реакторе в присутствии катализатора для производства акрилонитрила, в процесс производства акрилонитрила на основе пропанового сырья, в котором пропан, аммиак и кислород реагируют в присутствии катализатора для получения акрилонитрила, включающий:
(a) замещение исходным сырьем на основе пропана исходного сырья на основе пропилена;
(b) введение в реактор в точке ниже по потоку от подачи алкана по крайней мере одного от С2 до С5 олефина, который реагирует с по крайней мере частью непрореагировавшего аммиака и присутствующего кислорода в реакторе, снижая то количество аммиака, которое присутствует в реакционном потоке, выходящем из реактора, и
(c) добавление к процессу средств для отделения, улавливания и рецикла непрореагировавшего пропана.
9. Способ по п.8, отличающийся тем, что катализатор в реакторе заменяют катализатором, имеющим формулу
VvSbmAaDdOx,
где А, когда он присутствует, представляет собой по крайней мере один из Sn, Ti, и Fe;
D, когда он присутствует, представляет собой по крайней мере один из Li, Mg, Na, Ca, Sr, Ba, Co, Cr, Ga, Ni, Zn, Ge, Nb, Zr, Mo, W, Cu, Те, Та, Se, Bi, Се, In, As, В, Al и Mn;
V имеет значение 1;
m имеет значение от 0,5 до 10;
а имеет значение от 0 до 10;
d имеет значение от 0 до 10;
х представляет собой величину, необходимую для удовлетворения требований по валентности для других присутствующих элементов.
10. Способ по п.8, отличающийся тем, что C2-C5 олефин представляет собой пропилен.
11. Способ по п.8, отличающийся тем, что олефин вводят в реактор при локализации более чем по крайней мере 20% от высоты расширенного слоя катализатора.
12. Способ по п.8, отличающийся тем, что олефин вводят в реактор при локализации более чем по крайней мере 50% от высоты расширенного слоя катализатора.
13. Способ по п.8, отличающийся тем, что олефин вводят в реактор при локализации более чем по крайней мере 80% от высоты расширенного слоя катализатора.
RU2003106704/04A 2000-08-07 2001-05-15 Предотвращение проскока аммиака в процессе аммоксидирования алкана RU2265009C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/633,243 US6262290B1 (en) 2000-08-07 2000-08-07 Amelioration of ammonia breakthrough in an alkane ammoxidation process
US09/633,243 2000-08-07

Publications (2)

Publication Number Publication Date
RU2003106704A RU2003106704A (ru) 2004-09-20
RU2265009C2 true RU2265009C2 (ru) 2005-11-27

Family

ID=24538840

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003106704/04A RU2265009C2 (ru) 2000-08-07 2001-05-15 Предотвращение проскока аммиака в процессе аммоксидирования алкана

Country Status (17)

Country Link
US (1) US6262290B1 (ru)
EP (1) EP1307428B1 (ru)
JP (1) JP4854172B2 (ru)
KR (2) KR100765156B1 (ru)
CN (1) CN1196674C (ru)
AT (1) ATE425137T1 (ru)
AU (1) AU2001261611A1 (ru)
BG (1) BG107495A (ru)
BR (1) BR0113040B1 (ru)
CA (1) CA2416712C (ru)
DE (1) DE60137937D1 (ru)
DZ (1) DZ3469A1 (ru)
ES (1) ES2321378T3 (ru)
MX (1) MXPA03000783A (ru)
RU (1) RU2265009C2 (ru)
WO (1) WO2002012174A1 (ru)
ZA (1) ZA200300650B (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010061814A1 (de) * 2010-11-23 2012-05-24 Wacker Chemie Ag Verfahren zum Aufarbeiten von flüssigen Rückständen der Direktsynthese von Organochlorsilanen
CN107252663A (zh) * 2014-06-27 2017-10-17 英尼奥斯欧洲股份公司 用于氨氧化反应器的氨进料的控制

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008414A (en) * 1988-12-08 1991-04-16 The Boc Group, Inc. Process for the production of oxides
US5288473A (en) * 1992-10-09 1994-02-22 The Standard Oil Company Process for elimination of waste material during manufacture of acrylonitrile
US5457223A (en) * 1992-10-09 1995-10-10 The Standard Oil Company Process for elimination of waste material during manufacture of acrylonitrile
US5466857A (en) 1994-08-10 1995-11-14 The Standard Oil Company Process for reduction of waste material during manufacture of acrylonitrile
US5576469A (en) * 1995-06-05 1996-11-19 The Standard Oil Co. Paraffin ammoxidation using vanadium antimony oxide based catalysts with halide promoters
JPH0940628A (ja) * 1995-07-28 1997-02-10 Mitsui Toatsu Chem Inc アクリロニトリルの製造方法
JPH0959239A (ja) * 1995-08-22 1997-03-04 Mitsui Toatsu Chem Inc アクリロニトリルの製造方法
UA54409C2 (ru) * 1997-07-16 2003-03-17 Асахі Касеі Кабусікі Кайся Способ получения акрилонитрила или метакрилонитрила из пропана или изобутана путем амоксидирования

Also Published As

Publication number Publication date
AU2001261611A1 (en) 2002-02-18
CA2416712A1 (en) 2002-02-14
CA2416712C (en) 2009-12-01
DE60137937D1 (de) 2009-04-23
ES2321378T3 (es) 2009-06-05
EP1307428A1 (en) 2003-05-07
BR0113040A (pt) 2003-07-08
BR0113040B1 (pt) 2012-07-24
CN1444560A (zh) 2003-09-24
DZ3469A1 (fr) 2002-02-14
EP1307428B1 (en) 2009-03-11
BG107495A (bg) 2003-12-31
CN1196674C (zh) 2005-04-13
ATE425137T1 (de) 2009-03-15
WO2002012174A1 (en) 2002-02-14
JP2004505945A (ja) 2004-02-26
MXPA03000783A (es) 2003-09-10
KR100765156B1 (ko) 2007-10-15
ZA200300650B (en) 2003-11-04
KR20070055623A (ko) 2007-05-30
US6262290B1 (en) 2001-07-17
KR20030029807A (ko) 2003-04-16
KR100844303B1 (ko) 2008-07-07
JP4854172B2 (ja) 2012-01-18

Similar Documents

Publication Publication Date Title
US3987100A (en) Cyclohexane oxidation in the presence of binary catalysts
US5288473A (en) Process for elimination of waste material during manufacture of acrylonitrile
US7071348B2 (en) Process for the purification of olefinically unsaturated nitriles
US5015756A (en) Process for the production of nitriles
EP0523728B1 (en) Continuous process for preparing dimethyl carbonate
EP0638546B1 (en) A process for reduction of waste material during manufacture of acrylonitrile
CN108025922B (zh) 来自丙烯腈共同制备的高纯度hcn
RU2154632C2 (ru) Способ уменьшения количества непрореагировавшего аммиака, выходящего из реактора в процессе получения акрилонитрила, и способ получения акрилонитрила
US4827043A (en) Impurity removal from carbon monoxide and/or hydrogen-containing streams
RU2311404C2 (ru) Аммоксидирование карбоновых кислот в смесь нитрилов
RU2265009C2 (ru) Предотвращение проскока аммиака в процессе аммоксидирования алкана
CN114957038B (zh) 一种芳烃经氨氧化合成腈化合物的方法
JP5648304B2 (ja) アクリロニトリルの製造方法
WO2003082810A1 (fr) Procede de purification de l'isophthalonitrile
TWI322798B (en) Ammoxidation of carboxylic acids to a mixture of nitriles
JP2001131135A (ja) アクリロニトリルの製造方法
JPH0940628A (ja) アクリロニトリルの製造方法
JPH0959239A (ja) アクリロニトリルの製造方法
RU2003106704A (ru) Предотвращение проскока аммиака в процессе аммоксидирования алкана
JP2002155039A (ja) 未反応炭化水素の分離・回収方法
JP2005154328A (ja) 不飽和ニトリル化合物の製造方法

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20080204

MM4A The patent is invalid due to non-payment of fees

Effective date: 20160516