RU2241018C1 - Состав для нейтрализации сероводорода и легких меркаптанов в нефтяных средах - Google Patents

Состав для нейтрализации сероводорода и легких меркаптанов в нефтяных средах Download PDF

Info

Publication number
RU2241018C1
RU2241018C1 RU2003116365/04A RU2003116365A RU2241018C1 RU 2241018 C1 RU2241018 C1 RU 2241018C1 RU 2003116365/04 A RU2003116365/04 A RU 2003116365/04A RU 2003116365 A RU2003116365 A RU 2003116365A RU 2241018 C1 RU2241018 C1 RU 2241018C1
Authority
RU
Russia
Prior art keywords
oil
hydrogen sulfide
mercaptans
composition
light
Prior art date
Application number
RU2003116365/04A
Other languages
English (en)
Other versions
RU2003116365A (ru
Inventor
А.М. Фахриев (RU)
А.М. Фахриев
Р.А. Фахриев (RU)
Р.А. Фахриев
Т.Р. Фахриев (RU)
Т.Р. Фахриев
Original Assignee
Фахриев Ахматфаиль Магсумович
Фахриев Рустем Ахматфаилович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Фахриев Ахматфаиль Магсумович, Фахриев Рустем Ахматфаилович filed Critical Фахриев Ахматфаиль Магсумович
Priority to RU2003116365/04A priority Critical patent/RU2241018C1/ru
Application granted granted Critical
Publication of RU2003116365A publication Critical patent/RU2003116365A/ru
Publication of RU2241018C1 publication Critical patent/RU2241018C1/ru

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к химическим составам, в частности к средствам для нейтрализации сероводорода и легких метил-, этилмеркаптанов в нефтяных средах, и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности. Состав для нейтрализации сероводорода и легких меркаптанов содержит 16-35% нитрита щелочного металла, 3-30% азотсодержащего основного и/или щелочного реагента и до 100% воды. В качестве нитрита щелочного металла он преимущественно содержит нитрит натрия, а в качестве азотсодержащего основного и щелочного реагентов - алканоламин (моно-, триэтаноламин, метилдиэтаноламин), и/или аммиак, и/или гидроксид натрия, калия. Техническим результатом является повышение эффективности нейтрализации сероводорода и одновременно легких метил-, этилмеркаптанов в нефти и нефтепродуктах, снижение кислотности и коррозионности очищенного сырья, а также расширение ассортимента доступных, дешевых и технологичных (некоррозионных и стабильных при транспортировании и хранении) химических реагентов-нейтрализаторов для промысловой очистки сероводород- и меркаптансодержащих нефтей. 3 з. п. ф-лы.

Description

Изобретение относится к химическим составам, в частности к средствам для нейтрализации сероводорода и/или легких метил-, этилмеркаптанов в нефтяных средах, и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности.
Известен состав для нейтрализации сероводорода в продукции нефтяных скважин, включающий полиглицерины - продукты отходов производства глицерина и водный раствор хлористого натрия при следующем соотношении компонентов, об. %: полиглицерины 60-90 и водный раствор хлористого натрия 10-40 (пат. РФ №2136864, Е 21 В 43/22, 37/06, 1999 г.).
Недостатком указанного состава является недостаточно высокая нейтрализующая способность по отношению к сероводороду (3,7 объема сероводорода на 1 объем нейтрализатора) и легким меркаптанам, в результате чего требуется применение больших объемов нейтрализатора, что приводит к увеличению материальных затрат и снижению эффективности процесса в целом.
Известно применение около 40%-ного водного раствора гексаметилентетрамина (ГМТА), предварительно полученного взаимодействием ~37%-ного водного раствора формальдегида (формалина) с аммиаком для нейтрализации сероводорода и меркаптанов в нефти и нефтепродуктах (пат. США №5213680, C 10 G 29/20, 1993 г.).
Однако указанный состав не обеспечивает эффективную нейтрализацию сероводорода и особенно легких меркаптанов в нефти и нефтепродуктах из-за низкой реакционной способности ГМТА по отношению к сероводороду и легким меркаптанам при обычных температурах, в результате чего требуется проведение процесса при повышенных температурах (выше 82-100°С) и высоком расходе применяемого нейтрализатора (до 100 тыс. ррm). Это приводит к повышенным энергозатратам на нагрев исходного сырья и снижению эффективности процесса в целом.
Известно применение смеси 50-100%-ной азотной кислоты с железом, взятым в количестве 0,1-1,0% для окислительной очистки нефти, нефтепродуктов и газоконденсата от сернистых соединений, в т.ч. от сероводорода и легких меркаптанов (пат. РФ №2134285, C 10 G 17/02, 1999 г.).
Основным недостатком указанной окислительной смеси является ее высокая коррозионная агрессивность по отношению к обычным конструкционным материалам. Кроме того, применение смеси 50-100%-ной азотной кислоты с железом для нейтрализации сероводорода и меркаптанов приводит к загрязнению очищенной нефти железом и повышению ее кислотного числа. Повышение кислотности (до 20 мг КОН/100 мл нефти) и, следовательно, коррозионности нефти требует проведения последующей промывки очищенной нефти водным раствором щелочи, что приводит к усложнению и удорожанию процесса очистки в целом (Саппаева А.М. Жидкофазная демеркаптанизация нефтей и газовых конденсатов. Автореферат дисс. на соискание уч. степени канд. техн. наук. М.: РГУ им И.М.Губкина, 1999. - 25 с.).
Известен состав для окислительной очистки нефти от сернистых соединений, включающий 50-96%-ный водный раствор муравьиной кислоты и 30-90%-ный водный раствор пероксида водорода, взятые в мольном соотношении НСООН: H2O2 в пределах от 1:4 до 4:1, предпочтительно 1:1 (пат. США №5310479, C 10 G 19/02, 1994 г.). Указанный состав обладает высокой окислительной способностью по отношению к сернистым соединениям, в т.ч. к сероводороду и легким меркаптанам. Однако, как и смесь азотной кислоты с железом, он обладает чрезвычайно высокой коррозионной агрессивностью, а также низкой химической стабильностью при хранении (из-за быстрого самопроизвольного разложения пероксида водорода и содержащейся надмуравьиной кислоты).
В качестве прототипа был взят нейтрализатор сероводорода, состоящий из пероксида водорода и воды. В преимущественном варианте применения он представляет собой 20-50%-ный водный раствор пероксида водорода, который берут из расчета не менее 20 мл (в расчете на 35%-ный раствор Н2О2) на 1 г нейтрализуемого сероводорода (пат. ФРГ №3151133, C 10 G 27/12, 1983 г.; РЖ "Химия", 9П246П, 1984 г.).
Основным недостатком указанного нейтрализатора является недостаточно высокая эффективность, особенно по отношению к легким меркаптанам, что не позволяет получить товарную нефть с низким остаточным содержанием сероводорода и легких метил-, этилмеркаптанов, удовлетворяющую современным требованиям в соответствии с ГОСТ Р 51858-2002 на подготовленную нефть. Кроме того, пероксид водорода является малостабильным продуктом, самопроизвольно разлагающимся на воду и кислород при транспортировании и хранении, поэтому требуется транспортирование и хранение его в специальных, предварительно пассивированных алюминиевых цистернах при температуре не выше 30°С и не ниже минус 30°С; при работе с ним не допускается использование аппаратуры и трубопроводов из нелегированной и низколегированной стали, чугуна и других конструкционных материалов, являющихся катализаторами разложения пероксида водорода (см. ГОСТ 177-88. Водорода перекись. М.: Изд-во стандартов. 1988. С. 2, 3, 5 и 12). Эти недостатки, а также сравнительно большой расход и высокая стоимость пероксида водорода, загрязнение очищенной нефти образующейся коррозионной элементной серой, препятствуют практическому применению водных растворов пероксида водорода в качестве нейтрализатора для дезодорирующей очистки сероводородсодержащих нефтей в промысловых условиях.
В основу настоящего изобретения положена задача создания состава для нейтрализации сероводорода и легких меркаптанов в нефтяных средах, обладающего высокой эффективностью по отношению к сероводороду и одновременно к легким метил-, этилмеркаптанам, и обеспечивающего получение товарной нефти в соответствии с ГОСТ Р 51858-2002 при снижении его расхода, а также технологичностью для практического применения в промысловых условиях. Изобретение одновременно решает задачу снижения кислотности и коррозионности очищенного сырья за счет применения состава, обладающего нейтрализующей способностью по отношению к содержащимся в сырье нефтяным (нафтеновым) кислотам.
Поставленная задача решается тем, что состав для нейтрализации сероводорода и легких меркаптанов в нефтяных средах, включающий окислитель и воду, в качестве окислителя содержит нитрит щелочного металла и дополнительно содержит азотсодержащий основной и/или щелочной реагент при следующем соотношении компонентов, мас.%:
Нитрит щелочного металла 16-35
Азотсодержащий основной и/или щелочной реагент 3-30
Вода До 100
В качестве нитрита щелочного металла предлагаемый состав преимущественно содержит нитрит натрия, а в качестве азотсодержащего основного и щелочного реагентов - алканоламин, и/или аммиак, и/или гидроксид щелочного металла (натрия и/или калия). В качестве алканоламина состав преимущественно содержит моно-, триэтаноламин, метилдиэтаноламин или их смеси.
Заявляемый нейтрализатор сероводорода и легких меркаптанов вышеуказанного состава представляет собой подвижную прозрачную жидкость от желтого до светло-коричневого цвета с температурой застывания не выше минус 20°С, плотностью в пределах 1,13-1,35 г/см3 (в зависимости от соотношения компонентов) и величиной показателя рН от 11 до 14. В качестве исходного сырья для приготовления предлагаемого состава преимущественно используют нитрит натрия технический по ГОСТ 19906 или натрий азотистокислый в растворе по ТУ 38-1021278-90 (выпускаемые в крупнотоннажном масштабе для применения в качестве ингибитора атмосферной коррозии и для других целей), а в качестве азотсодержащего основного реагента преимущественно используют моноэтаноламин технический по ТУ 6-02-918-84 или триэтаноламин технический по ТУ 6-02-916-79, а в качестве щелочного реагента - гидроксид натрия по ГОСТ 2263 или ГОСТ 11078, или калия по ГОСТ 9285. Указанные виды исходного сырья производятся отечественной промышленностью в крупнотоннажном масштабе и являются доступными, недорогими продуктами, т.е. с точки зрения обеспеченности исходным сырьем, предлагаемый состав является промышленно применимым.
Технология приготовления состава проста и заключается в растворении найденных оптимальных количеств исходных компонентов (нитрита щелочного металла и щелочного реагента) в пресной или химочищенной воде, или паровом конденсате при обычных температурах и атмосферном давлении, поэтому может быть реализована в реагентном цехе нефтедобывающего предприятия. Технология применения предлагаемого состава заключается в непрерывной дозировке найденного оптимального количества нейтрализатора, предпочтительно из расчета 4-9 г на 1 г нейтрализуемых сероводорода и легких метил-, этилмеркаптанов, в поток сернистой нефти с температурой в пределах 20-100°С, предпочтительно 30-70°С, при атмосферном или повышенном давлении (давление не оказывает влияния на скорость реакций окисления и степень нейтрализации сероводорода и легких меркаптанов). На установках подготовки сернистых нефтей после ступени термохимического обезвоживания потоки нефти обычно имеют температуру в пределах 40-70°С, поэтому дополнительный подогрев очищаемой нефти при применении предлагаемого нейтрализатора не требуется. Поскольку предлагаемый нейтрализатор является водно-солевым раствором и практически нерастворим в нефти и нефтепродуктах, для улучшения диспергирования его в очищаемом сырье целесообразно дозировать нейтрализатор в поток нефти перед центробежным нефтеперекачивающим насосом, являющимся эффективным смесительным устройством, или вводить в трубопровод в поток нефти с турбулентным движением через эффективное распыливающее устройство. Следует указать, что для улучшения диспергирования нейтрализатора в нефти и ускорения реакций окисления в состав нейтрализатора может быть дополнительно введено эффективное количество (до 1%) водорастворимого поверхностно-активного вещества (ПАВ) типа сульфонола, ОП-10 или водорастворимого межфазного катализатора типа четвертичной аммониевой соли и т.п.
Необходимость и целесообразность дополнительного введения в состав нейтрализатора азотсодержащего основного и/или щелочного реагента обусловлена тем, что в кислой и нейтральной средах, т.е. в среде нефти и нефтепродуктов нитриты окисляют сероводород и легкие меркаптаны с низкой скоростью и выделением нежелательных оксидов азота (NO и NO2), а в присутствии найденного оптимального количества щелочного агента - с достаточно высокой скоростью и с образованием аммиака, который далее взаимодействует с содержащимися в нефти нефтяными (карбоновыми) кислотами, тем самым достигается снижение кислотности очищенной нефти. Следует указать, что эффективное снижение кислотности и коррозионности сырой нефти при обработке ее газообразным или жидким аммиаком при температурах 20-50°С и выше описано в пат. США №6258258, C 10 G 17/00, 2001 г. При применении предлагаемого состава аммиак образуется в результате протекания реакций окисления сероводорода нитритом непосредственно в нефти и далее расходуется на нейтрализацию нефтяных кислот и других кислых примесей (диоксида углерода, фенолов и т.п.), в результате чего отпадает необходимость специальной обработки нефти аммиаком с целью снижения ее кислотности и коррозионности. Дополнительное введение азотсодержащего основного реагента обусловлено также тем, что нитриты селективно окисляют сероводород в элементную серу, которая в присутствии амина в качестве катализатора далее взаимодействует с содержащимися в нефти меркаптанами, в т.ч. легкими метил-, этилмеркаптанами, в результате чего исключается загрязнение очищенной нефти коррозионной элементной серой. Гидроксиды, карбонаты, фосфаты щелочных металлов не обладают каталитической активностью в реакции элементной серы с меркаптанами, поэтому целесообразно вводить их в состав совместно с амином (с целью снижения расхода алканоламина). Предлагаемая концентрация амина и/или щелочи (3-30%) является оптимальной, т.к. снижение ее менее 3% приводит к снижению скорости реакций окисления, а увеличение выше 30% - к уменьшению растворимости нитрита и кристаллизации при применении нейтрализатора в зимнее время. Предлагаемая концентрация нитрита (16-35%) также является оптимальной, т.к. применение более разбавленного состава (менее 16%) приводит к увеличению затрат на транспортирование и хранение больших объемов нейтрализатора и увеличению содержания воды в очищенной нефти, а увеличение концентрации выше 35% нецелесообразно из-за выпадения осадка при применении нейтрализатора в зимнее время.
Анализ отобранных в процессе поиска известных технических решений показал, что в науке и технике нет объекта, аналогичного по заявляемой совокупности признаков и наличием свойств, что позволяет сделать вывод о соответствии его критериям "новизна" и "изобретательский уровень".
Для доказательства соответствия заявленного объекта критерию "промышленная применимость" ниже приведены конкретные примеры приготовления нейтрализатора (примеры 1-3) и испытания его на эффективность нейтрализации сероводорода и легких меркаптанов в нефти и нефтяной фракции (примеры 4-7).
Пример 1. В емкость, снабженную механической мешалкой, загружают 75 г натрия азотистокислого в растворе по ТУ 38.1021278-90 марки Б с массовой концентрацией нитрита 295 г/дм3 и при перемешивании порциями добавляют 25 г моноэтаноламина (МЭА) технического по ТУ 6-02-915-84, и полученный водно-щелочной раствор нитрита натрия перемешивают 0,5 ч при комнатной температуре для получения однородного продукта. Полученную композицию состава, мас.%: нитрит натрия - 18,5, МЭА -25 и вода - остальное с величиной рН 11,7 и плотностью 1,15 г/см3 применяют для нейтрализации сероводорода и легких меркаптанов в нефти (пример 4) и нефтяной фракции (пример 7).
Пример 2. В емкость по примеру 1 загружают 52 г воды и 35 г кристаллического нитрита натрия технического по ГОСТ 19906. После полного растворения нитрита в полученный раствор при перемешивании добавляют 5 г гидроксида натрия по ГОСТ 2263, а затем - 8 г моноэтаноламина. Полученный раствор перемешивают в течение 0,5 ч для получения однородного продукта. Полученную композицию состава, мас.%: нитрит натрия - 35, гидроксид натрия - 5, МЭА -8 и вода -52 с плотностью 1,31 г/см3 применяют для нейтрализации сероводорода и легких меркаптанов в нефти (пример 5).
Пример 3. В емкость по примеру 1 загружают 50 г воды, 30 г нитрита натрия технического и 5 г гидроксида натрия. После полного растворения нитрита и гидроксида натрия в полученный раствор при перемешивании добавляют 15 г триэтаноламина технического (ТЭА) по ТУ 6-02-916-79 и перемешивают в течение 0,5 ч для получения однородного продукта.
Полученную композицию состава, мас.%: нитрит натрия - 30, гидроксид натрия - 5, ТЭА - 15 и вода - 50 с плотностью 1,31 г/см3 применяют для нейтрализации сероводорода и легких меркаптанов в нефти (пример 6).
Пример 4. Испытание композиции на эффективность нейтрализации сероводорода и легких метил-, этилмеркаптанов в нефти. В термостатированную реакционную колбу с мешалкой вводят 0,26 мл (0,3 г) нейтрализатора по примеру 1, затем загружают 100 мл (92 г) высокосернистой карбоновой нефти, содержащей 0,2 мас.% эмульсионной воды, 0,025 мас.% (250 ppm) сероводорода и 0,082 мас.% меркаптановой серы, в т.ч. 0,011 мас.% (110 ppm) легких метил-, этилмеркаптанов. Массовое соотношение нейтрализатор: сероводород + метил-, этил-меркаптаны в реакционной смеси составляет 9:1, т.е. удельный расход нейтрализатора (расходный коэффициент) составляет 9 г/г. Реакционную смесь интенсивно перемешивают при температуре 50°С в течение 3 ч и проводят количественный анализ очищенной нефти на содержание остаточного сероводорода и легких меркаптанов, и рассчитывают степень очистки нефти. Степень очистки нефти от сероводорода составляет 100% и от легких метил-, этилмеркаптанов - 87%, т.е. предлагаемый нейтрализатор по примеру 1 при расходном коэффициенте 9 г/г обеспечивает эффективную нейтрализацию сероводорода и легких метил-, этилмеркаптанов и позволяет получить товарную нефть, соответствующую нормам ГОСТ Р 51858-2002 по содержанию сероводорода и метил-, этилмеркаптанов.
Пример 5. Испытание нейтрализатора по примеру 2 на эффективность нейтрализации сероводорода и легких метил-, этилмеркаптанов в нефти проводят аналогично и в условиях примера 4, но при удельном расходе (расходном коэффициенте) нейтрализатора 4,5 г/г. Степень очистки нефти от сероводорода составляет 100% и от легких метил-, этилмеркаптанов - 89%, т.е. нейтрализатор по примеру 2 при расходном коэффициенте 4,5 г/г обеспечивает эффективную нейтрализацию сероводорода и легких метил-, этилмеркаптанов и позволяет получить товарную нефть по ГОСТ Р 51858.
Пример 6. Испытание нейтрализатора по примеру 3 на эффективность нейтрализации сероводорода и метил-, этилмеркаптанов в нефти проводят аналогично и в условиях примера 4, но при удельном расходе нейтрализатора 7 г/г. Степень очистки нефти от сероводорода составляет 100% и от легких меркаптанов - 98%, т.е. нейтрализатор по примеру 3 при расходном коэффициенте 7 г/г обеспечивает эффективную нейтрализацию сероводорода и легких меркаптанов, и позволяет получить товарную нефть по ГОСТ Р 51858.
Пример 7. В реакционную колбу по примеру 4 вводят 0,12 мл нейтрализатора по примеру 1, затем загружают 100 мл прямогонной нефтяной фракции н.к. - 300°С, применяемой в качестве растворителя парафина в нефтедобыче и содержащей 0,01 мас.% сероводорода, 0,01 мас.% легких метил-, этилмеркаптанов, с кислотностью 9,9 мг КОН/100 мл. Массовое соотношение нейтрализатор: сероводород + метил-, этилмеркаптаны в реакционной смеси составляет 9:1, т.е. расходный коэффициент составляет 9 г/г. Реакционную массу перемешивают при 50°С в течение 3 ч, и затем проводят количественный анализ очищенной фракции на содержание остаточных сероводорода и легких меркаптанов, определяют ее кислотность по ГОСТ 5985 и коррозионность испытанием на медной пластинке. Степень очистки сырья от сероводорода составляет 100%, от легких меркаптанов - 98%, и его кислотность - 1,9 мг КОН/100 мл. При этом очищенная фракция испытание на медной пластинке выдерживает, т.е. достигается снижение кислотности, а также токсичности продукта для применения в качестве растворителя парафина в нефтедобыче.
Сравнительный эксперимент показал, что при применении известного нейтрализатора - 30%-ного водного раствора пероксида водорода (прототипа), степень очистки высокосернистой карбоновой нефти от сероводорода составляет 90%, от легких меркаптанов - 35%, т.е. известный нейтрализатор не обеспечивает эффективную нейтрализацию сероводорода и легких меркаптанов, и не позволяет получить товарную нефть по ГОСТ Р 51858. Сравнительный эксперимент по очистке прямогонной нефтяной фракции н.к. -300°С показал, что очищенное сырье содержит элементную серу, и испытание на медной пластинке не выдерживает, т.е. известный нейтрализатор не обеспечивает снижение кислотности и коррозионности очищенного продукта.
Данные, представленные в примерах 4-6 показывают, что предлагаемый состав обладает высокой эффективностью нейтрализации сероводорода и одновременно легких метил-, этилмеркаптанов в нефтяных средах и обеспечивает получение товарной нефти, удовлетворяющей современным требованиям ГОСТ Р 51858 по содержанию сероводорода и метил-, этилмеркаптанов при снижении расхода нейтрализатора. Данные примера 7 показывают, что предлагаемый нейтрализатор обеспечивает также снижение кислотности и коррозионности очищенного сырья. Кроме того, предлагаемый нейтрализатор, в отличие от известного, является некоррозионным и стабильным при транспортировании и хранении продуктом, что позволяет использовать его для промысловой очистки сероводород и меркаптансодержащих нефтей.

Claims (4)

1. Состав для нейтрализации сероводорода и легких меркаптанов в нефтяных средах, включающий окислитель и воду, отличающийся тем, что в качестве окислителя он содержит нитрит щелочного металла и дополнительно содержит азотсодержащий основной и/или щелочной реагент при следующем соотношении компонентов, мас.%:
Нитрит щелочного металла 16-35
Азотсодержащий основной и/или
щелочной реагент 3-30
Вода До 100
2. Состав по п.1, отличающийся тем, что в качестве нитрита щелочного металла он содержит нитрит натрия.
3. Состав по пп.1 и 2, отличающийся тем, что в качестве азотсодержащего основного реагента он содержит алканоламин и/или аммиак, а в качестве щелочного реагента - гидроксид натрия и/или калия.
4. Состав по п.3, отличающийся тем, что в качестве алканоламина он содержит моно-, триэтаноламин, метилдиэтаноламин или их смеси.
RU2003116365/04A 2003-05-26 2003-05-26 Состав для нейтрализации сероводорода и легких меркаптанов в нефтяных средах RU2241018C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003116365/04A RU2241018C1 (ru) 2003-05-26 2003-05-26 Состав для нейтрализации сероводорода и легких меркаптанов в нефтяных средах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003116365/04A RU2241018C1 (ru) 2003-05-26 2003-05-26 Состав для нейтрализации сероводорода и легких меркаптанов в нефтяных средах

Publications (2)

Publication Number Publication Date
RU2003116365A RU2003116365A (ru) 2004-11-27
RU2241018C1 true RU2241018C1 (ru) 2004-11-27

Family

ID=34310944

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003116365/04A RU2241018C1 (ru) 2003-05-26 2003-05-26 Состав для нейтрализации сероводорода и легких меркаптанов в нефтяных средах

Country Status (1)

Country Link
RU (1) RU2241018C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490311C1 (ru) * 2012-03-12 2013-08-20 Ахматфаиль Магсумович Фахриев Нейтрализатор сероводорода
RU2619930C1 (ru) * 2016-07-08 2017-05-22 Игорь Валентинович Исиченко Способ очистки углеводородных сред от сероводорода и меркаптанов
RU2641910C1 (ru) * 2017-01-27 2018-01-23 Игорь Валентинович Исиченко Процесс очистки углеводородных сред от h2s и/или меркаптанов
US20180179451A1 (en) * 2016-12-27 2018-06-28 Lyra Energy SRL Neutralization of hydrogen sulfide and light mercaptanes in hydrocarbon media
CN111356514A (zh) * 2017-06-26 2020-06-30 利拉能源有限责任公司 用于消除硫化氢和硫醇的组合物和方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490311C1 (ru) * 2012-03-12 2013-08-20 Ахматфаиль Магсумович Фахриев Нейтрализатор сероводорода
RU2619930C1 (ru) * 2016-07-08 2017-05-22 Игорь Валентинович Исиченко Способ очистки углеводородных сред от сероводорода и меркаптанов
US20180179451A1 (en) * 2016-12-27 2018-06-28 Lyra Energy SRL Neutralization of hydrogen sulfide and light mercaptanes in hydrocarbon media
US20220177787A1 (en) * 2016-12-27 2022-06-09 Lyra Energy SRL Neutralization of hydrogen sulfide and light mercaptanes in hydrocarbon media
RU2641910C1 (ru) * 2017-01-27 2018-01-23 Игорь Валентинович Исиченко Процесс очистки углеводородных сред от h2s и/или меркаптанов
CN111356514A (zh) * 2017-06-26 2020-06-30 利拉能源有限责任公司 用于消除硫化氢和硫醇的组合物和方法
EP3645144A4 (en) * 2017-06-26 2021-03-24 Lyra Energy Srl COMPOSITION AND METHOD OF REMOVAL OF HYDROGEN SULFUR AND MERCAPTANES

Similar Documents

Publication Publication Date Title
US4220550A (en) Composition and method for removing sulfide-containing scale from metal surfaces
RU2510615C2 (ru) Нейтрализатор сероводорода и меркаптанов
RU2470987C1 (ru) Нейтрализатор сероводорода и способ его получения
EP0091392B1 (en) Sulfur removal from a gas stream
EP3362535B1 (en) A process for removing sulphur compounds from process streams
JP2002524651A (ja) 脱硫プロセス
EP2427257A2 (en) Method of scavenging hydrogen sulfide from hydrocarbon stream
US3932583A (en) Method of removing hydrogen sulfide from a gas containing carbon dioxide
US20180346825A1 (en) Composition of sequestrant for application to the elimination and/or reduction of hydrogen sulfide and/or mercaptans in fluid
US5601700A (en) Scavenging of hydrogen sulphide
RU2241018C1 (ru) Состав для нейтрализации сероводорода и легких меркаптанов в нефтяных средах
RU2430956C2 (ru) Нейтрализатор сероводорода и меркаптанов и способ его использования
RU2230095C1 (ru) Способ очистки нефти от сероводорода
RU2619930C1 (ru) Способ очистки углеводородных сред от сероводорода и меркаптанов
RU2370508C1 (ru) Нейтрализатор сероводорода и способ его использования
RU2318863C2 (ru) Нейтрализатор сероводорода и способ его использования
RU2349627C2 (ru) Средство для удаления сероводорода и/или низкомолекулярных меркаптанов и способ его использования
RU2196804C1 (ru) Способ подготовки сероводородсодержащей нефти
RU2753752C1 (ru) Состав для нейтрализации сероводорода и легких меркаптанов в углеводородных средах
RU2252949C1 (ru) Способ очистки нефти от сероводорода
RU2666354C2 (ru) Состав для нейтрализации сероводорода и легких меркаптанов в углеводородных средах и улучшения показателя медной пластинки в нефтяных дистиллятах
RU2283856C2 (ru) Способ подготовки сероводородсодержащей нефти
RU2641910C1 (ru) Процесс очистки углеводородных сред от h2s и/или меркаптанов
RU2167187C1 (ru) Способ очистки нефти, газоконденсата и нефтепродуктов от сероводорода
Norwitz et al. Determination of phenol in the presence of sulfite (sulfur dioxide) by the 4-aminoantipyrine spectro-photometric method

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Effective date: 20100118