RU2193291C2 - Способ обеспечения высокоскоростной передачи данных в оборудовании сотовой связи и устройство для его осуществления - Google Patents

Способ обеспечения высокоскоростной передачи данных в оборудовании сотовой связи и устройство для его осуществления Download PDF

Info

Publication number
RU2193291C2
RU2193291C2 RU99111318/09A RU99111318A RU2193291C2 RU 2193291 C2 RU2193291 C2 RU 2193291C2 RU 99111318/09 A RU99111318/09 A RU 99111318/09A RU 99111318 A RU99111318 A RU 99111318A RU 2193291 C2 RU2193291 C2 RU 2193291C2
Authority
RU
Russia
Prior art keywords
transmission
format
data
digital data
communication station
Prior art date
Application number
RU99111318/09A
Other languages
English (en)
Other versions
RU99111318A (ru
Inventor
Эфраим Зехави
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24980247&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2193291(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU99111318A publication Critical patent/RU99111318A/ru
Application granted granted Critical
Publication of RU2193291C2 publication Critical patent/RU2193291C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Near-Field Transmission Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Communication Control (AREA)
  • Computer And Data Communications (AREA)

Abstract

Изобретение относится к системам связи, в частности к высокоскоростной передаче данных в оборудовании беспроводной сотовой связи. Технический результат - повышение скорости передачи данных за счет выбора скорости кодирования передаваемых сигналов при поддержании скорости передачи постоянной и за счет выбора формата модуляции передаваемого сигнала, который непосредственно измеряет скорость передачи на абонентскую станцию. Соседним ячейкам сотовой системы запрещено передавать данные одновременно. Поскольку главным источником помех является шум от передачи соседних ячеек, то скорость передачи базовых станций с ограниченной мощностью можно резко увеличить, если исключить шум от соседних ячеек. Передачи на каждую абонентскую станцию выполняются с фиксированным уровнем мощности передачи. Однако скорость передачи данных передаваемых сигналов изменяется от одной абонентский станции к другой в зависимости от различий в потерях на трассе. 4 с. и 20 з.п.ф-лы, 7 ил.

Description

Настоящее изобретение относится к системам связи. В частности, настоящее изобретение относится к новому и улучшенному способу и устройству для обеспечения высокоскоростной передачи данных в оборудовании беспроводной сотовой связи.
Когда появилась технология беспроводной связи, резко возросли требования к высокоскоростным услугам по передаче данных в оборудовании беспроводной связи. Использование модуляции с множественным доступом с кодовым разделением каналов (МДКР) - один из нескольких способов обеспечения цифровой беспроводной передачи, который хорошо подходит для передачи цифровых данных. Другие способы цифровой беспроводной передачи включают множественный доступ с временным разделением каналов (МДВР) и множественный доступ с частотным разделением каналов (МДЧР).
Однако способ модуляции с расширенным спектром МДКР имеет значительные преимущества по сравнению с другими способами цифровой модуляции. Использование способов МДКР в системе связи с множественным доступом раскрыто в патенте US 4901307 на "Систему связи с множественным доступом с расширенным спектром, использующую спутники или наземные ретрансляторы. Использование способов МДКР в системе связи с множественным доступом, кроме того, раскрыто в патенте US 5103459 на "Систему и способ для генерации сигналов в сотовой телефонной системе с МДКР". Способ обеспечения цифровой беспроводной связи с использованием модуляции МДКР был стандартизован Ассоциацией промышленности средств электросвязи (TIA) в Стандарте совместимости "мобильная станция - базовая станция" для двухрежимной широкополосной сотовой системы с расширенным спектром TIA/EIA/IS-95-A (далее IS-95).
В современных беспроводных системах связи могут быть реализованы лишь относительно низкие скорости передачи. Кроме того, большинство беспроводных систем связи не обеспечивают оптимальные условия для передачи цифровых данных, а скорее оптимизируют передачу речевой информации. Следовательно в этой промышленной сфере имеется потребность в способе обеспечения высокоскоростных цифровых данных в оборудовании беспроводной связи.
Настоящее изобретение представляет собой новый и улучшенный способ и устройство для передачи цифровых данных в оборудовании сотовой связи. В настоящем изобретении не допускается одновременная передача данных в соседних ячейках сотовой системы. Так, если первая базовая станция, находящаяся по одну сторону границы ячейки осуществляет передачу, то тогда вторая базовая станция, находящаяся по другую сторону границы ячейки "молчит" в течение всего интервала передачи первой базовой станции. Поскольку шум от передач соседних ячеек является главным источником помех, скорость передачи базовых станций с ограниченной мощностью может быть резко увеличена, если будет устранен шум от соседних ячеек.
В настоящем изобретении все передачи от базовой станции передаются с фиксированным уровнем мощности, а передачи к каждой абонентской станции в ячейке осуществляются в неперекрывающихся пакетах. Таким образом, когда базовая станция ведет передачу, передаваемые ею данные направляются на одну абонентскую станцию внутри ячейки, позволяя использовать всю имеющуюся мощность для передачи данных на данную абонентскую станцию, что обеспечивает максимально возможную скорость передачи данных на абонентскую станцию.
Для ясности следует отметить, что здесь речь идет о двух разных, но связанных между собой скоростях. Одна - это скорость передачи данных (информации), которая относится к скорости передачи бит данных (бит информации), генерируемых пользователем. Вторая - это скорость передачи, которая представляет собой скорость бит, передаваемых по эфиру.
Когда передачи ведутся с фиксированным уровнем мощности, объем информации, который может быть передан между базовой станцией и абонентской станцией, изменяется в зависимости от показателей энергетического потенциала линии связи, известных специалистам в данной области техники.
Самый значимый показатель энергетического потенциала линии связи в беспроводной системе связи - это потери на трассе между базовой станицей и абонентской станцией. Потери на трассе строго зависят от расстояния между базовой станцией и абонентской станцией.
В настоящем изобретении данные на каждую абонентскую станции передаются с фиксированным уровнем мощности передачи. Однако скорость передачи данных передаваемых сигналов различается в зависимости от расстояния между абонентской станцией и базовой станцией. В первом иллюстративном варианте скорость передачи данных на абонентскую станцию определяется выбором скорости кодирования передаваемых сигналов при поддержании скорости передачи постоянной. Во втором иллюстративном варианте скорость передачи данных на абонентскую станцию определяется выбором формата модуляции передаваемого сигнала, который непосредственно изменяет скорость передачи на абонентскую станцию.
Признаки, задачи и преимущества настоящего изобретения станут более очевидными из приведенного ниже подробного описания вместе с чертежами, на которых одинаковые ссылочные позиции определяют соответствующие элементы на всех чертежах и где:
фиг.1 - пример типичной сотовой схемы для географической зоны;
фиг. 2 - иллюстрация взаимосвязи контроллера базовой станции, базовых станций и абонентских станций;
фиг. 3 - пример временной диаграммы и форматов блоков данных настоящего изобретения;
фиг.4 - блок-схема, показывающая ячейку в настоящем изобретении;
фиг.5 - блок-схема, показывающая базовую станцию настоящего изобретения;
фиг. 6 - блок-схема, показывающая абонентскую станцию настоящего изобретения;
фиг.7 - пример ячейки, разделенной на большое количество узких секторов.
В последующем описании для обозначения как ячейки, или зоны, обслуживаемой базовой станцией, так и самой базовой станции используется одна и та же цифровая ссылка. В настоящем изобретении запрещается одновременная передача двумя соседними ячейками. Так, на фиг.1, когда базовая станция 1 ведет передачу, то передача базовыми станциями 2А-2F не допускается. Шум (No), испытываемый базовой станцией, ведущей передачу в сотовой системе, описывается приведенным ниже уравнением (1)
N0=Nb+Nm+Nt+Nr, (1)
где Nb - шум от базовых станций в соседних ячейках, Nm - помехи от многолучевых отражений, Nt - тепловой шум в системе, a Nr учитывает все другие источники шума.
Значение шума (N0) ограничивает объем данных (информации), который может быть передан в беспроводной системе связи с ограниченной мощностью. Шум от соседних ячеек Nb исключается в настоящем изобретении путем запрета на одновременную передачу любыми двумя соседними ячейками. Кроме того, поскольку базовая станция ведет передачу в любой момент времени лишь на одну абонентскую станцию, вся имеющаяся у нее энергия может быть использована для передач на эту одну абонентскую станцию. Уменьшение суммарного шума (N0) и возрастание мощности, доступной для передачи на данную абонентскую станцию, существенно увеличивает возможную скорость передачи данных для передач на абонентскую станцию.
Обратимся к фиг.2, где контроллер базовой станции (КБС) 4 управляет работой большого числа базовых станций в географическом регионе. В настоящем изобретении КБС 4 координирует передачу, осуществляемую базовыми станциями 1, 2A-2F и 3A-3L, так что никакие две соседние ячейки одновременно не ведут передачу. В настоящем изобретении КБС 4 посылает сигнал на одну выбранную базовую станцию из базовых станций 1, 2A-2F и 3A-3L, давая команду выбранной базовой станции вести передачу в течение заданного временного интервала.
В предпочтительном варианте реализации ячейки объединяются в группы несоседних ячеек, где любая из ячеек в такой группе может одновременно вести передачу. Например, первая группа несоседних ячеек может состоять из ячеек 2А, 2С, 2Е, 3С, 3К и 3G. Вторая группа несоседних ячеек может состоять из ячеек 2В, 2D, 2F, 3А, 3Е и 3I. В этом предпочтительном варианте реализации КБС 4 выбирает подгруппу из несоседних ячеек, которые могут вести передачу, и любая либо все ячейки в этой группе несоседних ячеек могут вести передачу во время данного цикла блока данных.
Обратимся к временной диаграмме на фиг.3, где КБС 4 в момент времени 0 посылает на базовую станцию 1 сообщение о передаче. В предпочтительном варианте реализации КБС 4 посылает сообщение на все базовые станции из группы несоседних базовых станций, которая включает в себя базовую станцию 1. В ответ на это сообщение базовая станция 1 осуществляет передачу в течение временного интервала от 0 до Т. В момент времени Т КБС 4 посылает сообщение о передаче на базовую станцию 2А, давая команду базовой станции 2А осуществлять передачу в течение временного интервала с момента времени Т до момента времени 2Т. Этот процесс повторяется для каждой из базовых станций 2B-2F, как показано на фиг.3. В момент времени 7Т КБС 4 посылает сообщение на базовую станцию 1, которая осуществляет передачу в течение временного интервала с момента времени 7Т до момента времени 8Т.
Заметим, что, когда одна из базовых станций 2A-2F ведет передачу, то может вести передачу и подгруппа базовых станций 2A-2F, поскольку ни одна из двух базовых станций не имеет общую границу ячеек. Например, когда базовая станция 2А осуществляет передачу, то ячейки 1, 2В, 3F, 3Е, 3D и 2F не могут передавать, потому что они являются соседними с ячейкой 2А. Однако ячейки 2C-2F могут вести передачу в течение этого периода, поскольку они не являются соседними с ячейкой 2А. В предпочтительном варианте временные интервалы для передачи являются одинаковыми для того, чтобы уменьшить сложность координации передач, осуществляемых базовыми станциями в системе. Следует отметить, что просматривается возможность использования изменяющихся временных интервалов.
В иллюстративном варианте, показанном на фиг.3, цикл передач, выполняемых ячейками, подчиняется простой детерминированной последовательности. Понятно, что при простом детерминированном цикле передачи нет необходимости, чтобы базовая станция работала под управлением КБС 4, поскольку каждая базовая станция может осуществлять передачу в заданные интервалы времени без управления со стороны КБС 4. В предпочтительном варианте цикл передачи не определяется простой детерминированной последовательностью типа той, что показана на фиг.3.
В предпочтительном варианте КБС 4 выбирает базовую станцию или группу несоседних базовых станций, которая должна вести передачу, в соответствии с объемом информации (данных), стоящей в очереди на передачу, для осуществления передачи на этой базовой станции или группе несоседних базовых станций. В предпочтительном варианте КБС 4 контролирует объем сообщений, которые стоят в очереди, поддерживаемой каждой базовой станцией или группой несоседних базовых станций, и выбирает базовую станцию для передачи на основе объема данных в очередях.
В каждой ячейке может быть множество абонентских станций, каждая из которых требует, чтобы ей передавались данные базовой станцией, обслуживающей эту ячейку. В иллюстративном варианте базовая станция идентифицирует абонентскую станцию, на которую она ведет передачу, посредством заголовка. Обратимся к фиг. 3, где на первом временном интервале (с момента времени 0 до момента времени Т) базовая станция 1 осуществляет передачу на выбранную абонентскую станцию. В иллюстративном варианте каждый блок данных имеет длительность 2 мс. Передаваемые данные снабжаются заголовком, который идентифицирует выбранную абонентскую станцию.
В альтернативном варианте реализации каждая ячейка разделена на узкие секторы, причем передача на каждый сектор может вестись независимо от передачи на любой другой сектор в этой ячейке. Это может быть выполнено с помощью антенн с высокой степенью направленности, конструкция которых хорошо известна специалистам в данной области техники. На фиг.7 показана ячейка 600, обслуживаемая базовой станцией 510, которая разделена на секторы 500А-5000. В этом варианте каждая ячейка системы связи, разбитая на секторы подобным образом, ведет передачу на произвольный сектор или подгруппу секторов в ней. Вероятность наличия перекрывающихся, одновременно идущих передач от соседних секторов мала, поскольку каждая ячейка разделена на достаточно большое количество секторов.
Обратившись к фиг.3, следует заметить, что все передачи прямого тракта обеспечены одной и той же энергией Е0, которая обычно равна максимальной энергии передачи, разрешенной государственными нормативами. Приведенное ниже уравнение (2) раскрывает составляющие общего энергетического потенциала линии связи, описывая взаимосвязь параметров в беспроводной системе связи с фиксированной мощностью (Е0):
Е0=R(бит/c)(дБ)+(Eb/No)req(дБ)+Ls(дБ)+L0(дБ), (2)
где Е0- фиксированная энергия передачи базовой станции, R - скорость передачи, (Eb/No)req - требуемое отношение сигнал-шум для данной частоты появления ошибок, Ls - потери на трассе в децибелах и L0 - другие потери в децибелах. Потери на трассе Ls строго зависят от расстояния между базовой станцией и абонентской станцией. В настоящем изобретении в зависимости от расстояния между абонентской станцией и базовой станцией варьируется либо скорость передачи R, либо требуемое отношение сигнал-шум (Eb/No)req.
Обратимся к фиг.4, где абонентские станции 6А, 6В и 6С находятся внутри границы ячеек 10 и поэтому обслуживаются базовой станцией 1. Расстояния до абонентских станций 6А, 6В и 6С соответственно составляют r1, r2 и r3. В альтернативном варианте может быть использовано эффективное расстояние, где эффективное расстояние - это метрика, выбираемая в соответствии с потерями на трассе между базовой станцией 1 и принимающей абонентской станцией. Специалистам в данной области техники понятно, что эффективное расстояние связано с физическим расстоянием между базовой станцией и абонентской станцией, но не тождественно ему. Эффективное расстояние зависит как от физического расстояния, так и от траектории прохождения сигнала.
Вновь обратимся к уравнению (2), из которого можно видеть, что различия в потерях на трассе (Ls) могут быть скомпенсированы при поддержании их всех постоянными путем изменения значения (Eb/No)req. Значение (Eb/No)req зависит от способов обнаружения и коррекции ошибок, используемых для защиты передаваемых данных. Скорость кодирования определяется отношением количества двоичных символов, выводимых кодером, к количеству бит, введенных в кодер. В общем случае, чем выше скорость кодирования в системе передачи, тем эффективней защита передаваемых данных и тем ниже требуемое отношение сигнал-шум (Eb/No)req. Таким образом, в первом иллюстративном варианте настоящего изобретения скорость кодирования для передачи на абонентские станции выбирается на основе расстояния между абонентской станцией и базовой станцией. Поскольку системы связи имеют ограниченную ширину полосы частот, использование более высокой скорости кодирования приводит к более низкой пропускной способности системы передачи данных.
Из уравнения (2) можно видеть, что различия в потерях на трассе (Ls) могут быть также скомпенсированы путем изменения значения скорости передачи R. Скорость передачи R задается уравнением
R=Rs•log2M, (3)
где Rs - количество передаваемых символов, а М - количество символов в модулирующей совокупности. Таким образом, если расстояние между базовой станцией и абонентской станцией велико, то скорость передачи R уменьшается. В настоящем изобретении скорость передачи варьируется путем изменения формата модуляции на формат с большим или меньшим количеством символов в модулирующей совокупности. В то же время, если расстояние между базовой станцией и абонентской станцией мало, скорость передачи R возрастает. Во втором иллюстрированном варианте скорость передачи символов устанавливается путем выбора формата модуляции. Скорость передачи данных - это скорость, с которой передаются действительные биты некодированной информации пользователя.
Если предположить, что физическое расстояние и эффективные расстояния тесно связаны, базовая станция 1 будет вести передачу на абонентскую станцию 6А с более низкой скоростью передачи данных, чем на абонентскую станцию 6В, поскольку эффективное расстояние до абонентской станции 6А больше, чем эффективное расстояние до абонентской станции 6В.
В иллюстративном варианте каждая абонентская станция передает на базовую станцию, обслуживающую ячейку, в которой находится эта абонентская станция, сообщение, указывающее ее местоположение.
В альтернативном варианте станцией связи для оценки местоположения абонентской станции могут быть использованы способы определения местоположения, хорошо известные специалистам в данной области техники. В альтернативном варианте базовая станция использует эффективное расстояние, которое определяется в соответствии с результатами измерения потерь на трассе между базовой станцией и абонентской станцией. Измерение потерь на трассе может быть выполнено путем передачи сигнала известной мощности от базовой станции и измерения принимаемой мощности на абонентской станции. Подобным же образом измерение потерь на трассе может быть выполнено путем передачи сигнала известной мощности от абонентской станции и измерения принимаемой мощности на базовой станции. Следует заметить, что ссылки на расстояние между базовой станцией и абонентской станцией относятся равным образом и к физическому расстоянию и к эффективному расстоянию на основе измеренных потерь на трассе.
В настоящем изобретении начальная скорость кодирования или формат модуляции выбираются и обеспечиваются изначально во время процедуры настройки обслуживания. Затем отслеживается расстояние. Если во время обслуживания происходит существенное изменение в расстоянии, то в соответствии с новым расстоянием выбирается новая скорость кодирования или формат модуляции.
В первом иллюстративном варианте базовая станция выбирает скорость кодирования в соответствии с расстоянием между базовой станцией и абонентской станцией. Базовая станция передает указание о выбранной скорости кодирования на принимающую абонентскую станцию. Принимающая абонентская станция в соответствии с выбранной скоростью кодирования выбирает формат декодирования, подходящий для использования с выбранной скоростью кодирования.
Во втором иллюстративном варианте базовая станция выбирает формат модуляции на основе расстояния между базовой станцией и абонентской станцией. Затем базовая станция передает на принимающую абонентскую станцию указание о выбранном формате модуляции. Принимающая абонентская станция в соответствии с выбранным форматом модуляции настраивает демодулятор для приема сигнала, модулированного в соответствии с выбранным форматом модуляции.
Блок-схема иллюстративного варианта базовой станции 1 показана на фиг.5. Блок-схема иллюстративного варианта абонентской станции 6А показана на фиг. 6.
В первом иллюстративном варианте скорость кодирования для передач на абонентскую станцию выбирается в соответствии с расстоянием между базовой станцией и абонентской станцией. Таким образом, скорость передачи данных изменяется вместе со скоростью передачи R, которая фиксируется путем выбора одной из множества скоростей кодирования. Сначала абонентская станция 6А регистрируется базовой станцией 1. В процессе регистрации мобильная станция 6А предупреждает базовую станцию 1 о своем существовании и выполняет задачи настройки основной системы, хорошо известные специалистам в данной области техники. Иллюстративный вариант регистрации устройства подробно описан в патенте US 5289527 на "Способ регистрации устройства мобильной связи".
В иллюстративном варианте генератор сигналов 218 абонентской станции 6А генерирует сообщение, указывающее ее местоположение, и выдает это сообщение в подсистему передачи 216. Подсистема передачи 216 кодирует, модулирует, преобразует с повышением частоты и усиливает сообщение и подает его через антенный переключатель 201 для передачи через антенну 200. Сообщение о местоположении принимается антенной 120 и поступает в приемную подсистему 118. Приемная подсистема 118 усиливает, преобразует с понижением частоты, демодулирует и декодирует принятое сообщение о местоположении и выдает его в контроллер передачи 104.
В иллюстративном варианте настоящего изобретения мобильная станция 6А передает сообщение, указывающее ее местоположение, на базовую станцию 1 во время процесса регистрации. Кроме того, в иллюстративном варианте абонентская станция 6А отслеживает свое собственное перемещение и, если расстояние изменилось, по меньшей мере, на определенную величину, то абонентская станция 6А передает указание о своем новом местоположении. Как было описано выше, могут быть использованы альтернативные способы определения местоположения абонентской станции, или способы на основе измерения потерь на трассе. В иллюстративном варианте информация о местоположении подается в контроллер передачи 104 базовой станции 1, который вычисляет расстояние между базовой станцией 1 и абонентской станцией 6А.
Контроллер передачи 104 выбирает скорость кодирования в соответствии с расстоянием между абонентской станцией 6А и базовой станцией 1. В предпочтительном варианте расстояние между базовой станцией 1 и абонентской станцией 6А преобразуется в дискретные значения, как показано на фиг.4. Обратимся к фиг. 4, где все абонентские станции, которые находятся между базовой станцией 1 и окружностью 7А будут принимать данные с первой скоростью кодирования. Все абонентские станции, которые расположены между окружностью 7А и окружностью 7В будут принимать данные со второй скоростью кодирования. Все абонентские станции, которые расположены между окружностью 7В и окружностью 7С будут принимать данные с третьей скоростью кодирования. Например, как показано на фиг.4, базовая станция 1 может использовать код со скоростью 1/2 при передаче на абонентскую станцию 6В, которая находится недалеко от базовой станции 1. Однако базовая станция 1 при передаче на абонентскую станцию 6А, которая находится далеко от базовой станции 1, может использовать код со скоростью 1/8.
Если расстояние между базовой станцией и абонентской станцией велико, то будет выбран код с более высокой скоростью кодирования. В то же время, если расстояние между базовой станцией и абонентской станцией мало, то будет выбрана более низкая скорость кодирования. Используемые на абонентской станции 6А способы коррекции и обнаружения ошибок допускают более низкое отношение сигнал-шум (Eb/No)req для данной частоты появления ошибок. Чем ниже скорость кодирования, тем большее количество ошибок может быть скорректировано и тем меньше требуемое отношение сигнал-шум (Eb/No)req.
В первом иллюстративном варианте контроллер передачи 104 выбирает скорость кодирования так, как было описано выше, и посылает указание о выбранной скорости на абонентскую станцию 6А. В этом иллюстративном варианте сообщение, указывающее скорость кодирования передается по каналу поискового вызова (пейджинговой связи) во время процесса регистрации. Каналы поискового вызова используются в беспроводных системах связи для посылки коротких сообщений от базовой станции на абонентскую станцию. В предпочтительном варианте в системе связи базовой станции 1 разрешается изменить скорость кодирования с помощью последующих сообщений, передаваемых по каналу трафика. Одна из причин, по которой обеспечивается изменение скорости кодирования, - это дать возможность изменить местоположение абонентской станции 6А.
В иллюстративном варианте сообщение, указывающее выбранную скорость кодирования, подается контроллером передачи 104 в кодер 106, который кодирует это сообщение. Закодированные символы из кодера 106 подаются на перемежитель 108, который переупорядочивает символы в соответствии с заданным форматом переупорядочивания. В иллюстративном варианте символы после перемежения подаются на скремблер 110, который скремблирует сигнал после перемежения в соответствии с форматом расширения МДКР, как это описано в вышеупомянутых патентах US 4901307 и 5103459.
Скремблированный сигнал подается в модулятор 112, который модулирует сигнал в соответствии с заданным форматом модуляции. В иллюстративном варианте формат модуляции для канала поискового вызова представляет собой квадратурную манипуляцию фазовым сдвигом (КМФС). Модулированный сигнал подается в передатчик 114, где он преобразуется с повышением частоты, усиливается и передается через антенну 116.
Переданное сообщение, указывающее скорость кодирования, принимается антенной 200 и подается на приемник (ПР) 202. Приемник 202 осуществляет преобразование сигнала с понижением частоты, усиливает принятый сигнал и подает его на демодулятор 204. Демодулятор 204 демодулирует принятый сигнал. В иллюстративном варианте формат демодуляции для канала поискового вызова (пейджинговый канал) представляет собой формат демодуляции типа КМФС. В иллюстративном варианте демодулированный сигнал подается на эквалайзер (компенсатор) 205. Эквалайзер 205 представляет собой канальный компенсатор, который уменьшает эффекты среды распространения сигнала, такие как эффекты многолучевого распространения. Канальные компенсаторы хорошо известны специалистам в данной области техники. Конструкция и реализация канального компенсатора раскрыты в одновременно рассматриваемой патентной заявке US 08/509722 на "Адаптивное устройство сжатия", поданной 31 июля 1995.
Скомпенсированный сигнал подается на дескремблер 206, который дешифрует сигнал в соответствии с форматом сжатия МДКР, подробно описанном в вышеупомянутых патентах US 4901307 и 5103459. После сжатия символы подаются в обратный перемежитель 208 и переупорядочиваются в соответствии с заданным форматом переупорядочивания. Переупорядоченные символы подаются в декодер 210, который декодирует сообщение, указывающее выбранную скорость кодирования, и подает декодированное сообщение в управляющий процессор 212.
В ответ на декодированное сообщение управляющий процессор 212 подает сигнал на декодер 210, указывая формат декодирования, который будет использоваться для высокоскоростных передач данных. В иллюстративном варианте декодер 210 способен декодировать принятый сигнал в соответствии с множеством форматов матричного декодирования, в котором каждый формат декодирования соответствует формату кодирования.
Вновь обратимся к фиг.5, где данные, подлежащие передаче на абонентские станции в ячейке 1 (абонентские станции 6А, 6В и 6С), поступают в очередь 100. Данные хранятся в очереди 100 по данной абонентской станции, на которую они должны быть переданы. Данные для абонентской станции 6А хранятся в памяти 102А, данные для абонентской станции 6В хранятся в памяти 102В, данные для абонентской станции 6С хранятся в памяти 102С и т.д. Разные элементы памяти (102A-102N) приведены лишь для иллюстрации, и понятно, что очередь обычно состоит из одного устройства памяти, а показанные отдельные устройства памяти просто относятся к ячейкам памяти в этом устройстве.
На первом временном интервале (t=0) на фиг.3 КБС 4 посылает сообщение в контроллер передачи 104, давая команду базовой станции 1 осуществлять передачу. В ответ контроллер передачи 104 выбирает принимающую абонентскую станцию в своей зоне обслуживания и интервал времени, в течение которого данные находятся в очереди. В предпочтительном варианте выбор принимающей абонентской станции базируется на объеме данных, стоящих в очереди на передачу на абонентские станции в зоне обслуживания. Контроллер передачи 104 избирательно подает сигнал на один из элементов памяти 102A-102N на основе своего выбора принимающей абонентской станции. Кроме того, в соответствии с выбранной принимающей абонентской станцией контроллер передачи 104 подает сигнал на кодер 106, указывая скорость кодирования, которая должна использоваться для передач на выбранную абонентскую станцию.
Контроллер передачи 104 подает на кодер 106 сообщение заголовка, идентифицирующее принимающую абонентскую станцию. В иллюстративном варианте кодер 106 кодирует сообщение заголовка, применяя формат кодирования, который используется для кодирования заголовков для передач на все абонентские станции. В иллюстративном варианте информация о заголовке кодируется отдельно от остальных данных, так что абонентской станции нет необходимости декодировать очень большой объем данных, передаваемых в течение интервала передачи, если эти данные не предназначены для данной абонентской станции.
Затем контроллер передачи 104 подает сигнал на элемент памяти 102А, дающий команду выдать данные и определяющий максимальный объем данных, который может быть передан на принимающую абонентскую станцию 6А в течение заданного временного интервала. Заданный максимум - это максимальный объем данных (информации), который может быть передан на абонентскую станцию 6А в течение временного интервала Т при выбранной скорости кодирования (Renc) для фиксированной скорости передачи R, как показано ниже в уравнении (4):
Мах Data =(R•Т)/Renc. (4)
В ответ на сигнал от контроллера передачи 104 элемент памяти 102А выдает на кодер 106 объем данных, меньше или равный Мах Data.
Кодер 106 кодирует данные, используя выбранный формат кодирования и объединяет кодированные символы сообщения заголовка с кодированными символами данных. В иллюстративном варианте кодер 106 способен кодировать данные с множеством скоростей сверточного кодирования. Например, кодер 106 способен кодировать данные, используя форматы сверточного кодирования со скоростью 1/2, 1/3, 1/4 и 1/5. Скорости кодирования могут быть по существу любыми, если использовать комбинацию обычно применяемых кодеров и прокалывание данных. Кодер 106 подает кодированные символы в перемежитель 108.
Перемежитель 108 переупорядочивает символы в соответствии с заданным форматом переупорядочивания и подает переупорядоченные символы в скремблер 110. Скремблер 110 скремблирует символы в соответствии с заданным форматом расширения МДКР и подает расширенные символы в модулятор 112. Следует отметить, что поскольку передача идет только на одну абонентскую станцию 6А, выполняемое скремблером 110 скремблирование данных предназначено для защиты данных и увеличения помехозащищенности сигнала по отношению к узкополосному шуму, а не для обеспечения связи с множественным доступом.
Модулятор 112 модулирует расширенные символы в соответствии с заданным форматом модуляции. В иллюстративном варианте модулятор 112 представляет собой 16-ричный квадратурный амплитудный модулятор (КАМ). Модулятор 112 подает модулированные символы в передатчик (ПЕР) 114. Передатчик 114 преобразует сигнал с понижением частоты, усиливает его и передает через антенну 116.
Передаваемый сигнал принимается абонентской станцией 6А на антенне 200. Принятый сигнал подается на приемник (ПР) 202. Приемник 202 преобразует принятый сигнал с понижением частоты и усиливает его. Принятый сигнал подается в демодулятор 204, который демодулирует этот сигнал в соответствии с заданным форматом демодуляции. Демодулированный сигнал поступает в эквалайзер 205, который представляет собой канальный компенсатор, описанный выше. После канальной компенсации сигнал подается в дескремблер 206, который дешифрует сигнал в соответствии с заданным форматом сжатия МДКР, как было описано выше. Обратный перемежитель 208 переупорядочивает символы, прошедшие сжатие, и подает их в декодер 210.
В иллюстративном варианте декодер 210 сначала декодирует сообщение заголовка, содержащееся в переупорядоченных символах. Сообщение заголовка подается в средство проверки заголовка 214, которое проверяет, предназначены ли передаваемые данные для абонентской станции 6А. Если данные предназначены для абонентской станции 6А, то тогда декодируются остальные данные. Если заголовок указывает, что данные предназначены для пользователя абонентской станции 6А, то средство проверки заголовка 214 посылает сигнал в декодер 210, указывая, что остальную информацию следует декодировать. В альтернативном варианте декодируются все данные, а затем после процесса декодирования проверяется заголовок.
Декодер 210 декодирует символы в соответствии с выбранным форматом декодирования от управляющего процессора 212. В иллюстративном варианте декодер 210 декодирует переупорядоченные символы в соответствии с одним из множества форматов матричного декодирования, выбираемым на основе выбранной скорости кодирования. Затем декодированные символы поступают к пользователю абонентской станции 6А.
Во втором иллюстративном варианте контроллер передачи 104 выбирает формат модуляции в соответствии с расстоянием между базовой станцией и мобильной станцией. Базовая станция 1 посылает указание о выбранном формате модуляции на абонентскую станцию. Формат модуляции непосредственно воздействует на скорость передачи R. Обратимся к уравнению (2), в котором все параметры являются в этом случае фиксированными, кроме потерь на трассе Ls и скорости передачи R. Передача на более высоких скоростях передачи (R) осуществляется с использованием формата модуляции, который содержит больший набор символов модуляции. Например, для передачи на абонентскую станцию, находящуюся рядом с базовой станцией, может быть использована 28-ричная квадратурная амплитудная модуляция (КАМ). В то же время для передачи на абонентские станции, находящиеся далеко от базовой станции, может быть использована 16-ричная КАМ модуляция.
В иллюстративном варианте абонентская станция 6А передает сообщение, указывающее ее местоположение, на базовую станцию 1. В ответ на это базовая станция 1 выбирает формат модуляции. Как было описано в связи с предыдущим вариантом, расстояния, вычисленные контроллером передачи 104, преобразуются в дискретные значения. Формат модуляции выбирается в соответствии с дискретными значениями расстояния. Обратимся к фиг.4, где все абонентские станции, которые расположены между базовой станцией 1 и окружностью 7А, получают данные с использованием первого формата модуляции. Все абонентские станции, которые расположены между окружностью 7А и окружностью 7В, получают данные с использованием второго формата модуляции. Все абонентские станции, которые расположены между окружностью 7В и окружностью 7С, получают информацию с использованием третьего формата модуляции. Например, если обратиться к фиг. 4, то базовая станция 1 при передаче на абонентскую станцию 6В, которая находится недалеко от базовой станции 1, может использовать формат модуляции КМФС. В противоположном случае, при передаче на абонентскую станцию 6А, находящуюся далеко от базовой станции 1, базовая станция 1 может использовать 64-ричную квадратурную амплитудную модуляцию (КАМ). В иллюстративном варианте сообщение, указывающее выбранный формат модуляции, передается по каналу поискового вызова во время процесса регистрации. Опять же, в предпочтительном варианте система связи разрешает базовой станции 1 изменить формат модуляции с помощью последующих сообщений, передаваемых по каналу поискового вызова.
Переданный сигнал, указывающий формат модуляции, принимается абонентской станцией 6А, как было описано выше, и подается на управляющий процессор 212. Управляющий процессор 212 подает в демодулятор 204 сигнал, указывающий формат демодуляции, который будет использоваться. Демодулятор 204 из второго иллюстративного варианта способен демодулировать принятый сигнал в соответствии с множеством форматов демодуляции. В ответ на сигнал от управляющего процессора 212 выбирается подходящий формат демодуляции.
Вернемся к фиг.5, где данные, подлежащие передаче на абонентские станций в ячейке 1 (абонентские станции 6А, 6В и 6С), подаются в очередь 100. На первом временном интервале (t=0) КБС 4 посылает сообщение контроллеру передачи 104, давая команду базовой станции 1 вести передачу.
В ответ на этот сигнал контроллер передачи 104 выбирает принимающую абонентскую станцию, как было описано выше. Контроллер передачи 104 избирательно подает сигнал на один из элементов памяти 102A-102N на основе своего выбора абонентской станции. Кроме того, в соответствии с выбранной абонентской станцией контроллер передачи 104 подает сигнал, указывающий выбранный формат модуляции на модулятор 112.
Контроллер передачи 104 подает на кодер 106 сообщение заголовка, которое идентифицирует абонентскую станцию, на которую посылаются данные. Кодер 106 кодирует сообщение заголовка, как было описано выше. Затем контроллер передачи 104 подает сигнал на элемент памяти 102А, дающий команду выдать данные и определяющий максимальный объем данных, который может быть передан на принимающую абонентскую станцию 6А в течение заданного временного интервала. Заданный максимум - это максимальный объем данных, который может быть передан на абонентскую станцию 6А в рамках временного интервала Т при выбранной скорости, как показано ниже в уравнении (5):
Мах Data =M•Rs•T, (5)
где М - количество символов модуляции, используемых в выбранном формате модуляции, Rs - скорость передачи символов.
В ответ на сигнал от контроллера передачи 104 элемент памяти 102 выдает на кодер 106 объем данных, меньше или равный Мах Data.
Во втором иллюстративном варианте кодер 106 кодирует данные с фиксированной скоростью кодирования и объединяет закодированные символы сообщения заголовка с закодированными символами данных. Кодер 106 подает закодированные символы в перемежитель 108. Перемежитель 108 переупорядочивает символы в соответствии с заданным форматом переупорядочивания и подает переупорядоченные символы на скремблер 110. Скремблер 110 скремблирует эти символы в соответствии с заданным форматом расширения МДКР и подает скремблированные символы на модулятор 112.
Модулятор 112 модулирует скремблированные символы в соответствии с выбранным форматом модуляции. В иллюстративном варианте модулятор 112 способен преобразовывать скремблированные символы в символы модуляции в соответствии с множеством форматов модуляции. Модулятор 112 подает модулированные символы в передатчик (ПЕР) 114. Передатчик 114 преобразует сигнал с повышением частоты, усиливает его и передает сигнал через антенну 116.
Передаваемый сигнал принимается абонентской станцией 6А на антенне 200. Принятый сигнал подается на приемник (ПР) 202. Приемник 202 преобразует принятый сигнал с понижением частоты и усиливает его. Принятый сигнал подается в демодулятор 204, который демодулирует сигнал в соответствии с выбранным форматом демодуляции. Демодулированный сигнал подается в эквалайзер 205, который осуществляет канальную компенсацию принятого сигнала, как было описано выше. Скомпенсированный сигнал подается в дескремблер 206, который дескремблирует этот сигнал в соответствии с заданным форматом сжатия МДКР. Обратный перемежитель 208 переупорядочивает дескремблированные символы и подает их в декодер 210.
В иллюстративном варианте декодер 210 сначала декодирует сообщение заголовка, содержащееся в переупорядоченных символах. Сообщение заголовка подается в средство проверки заголовка 214, которое проверяет, предназначены ли передаваемые данные для абонентской станции 6А. Если данные предназначены для абонентской станции 6А, то тогда декодируются остальные данные. Если заголовок указывает, что данные предназначены для пользователя абонентской станции 6А, то средство проверки заголовка 214 посылает в декодер 210 сигнал, указывающий, что остальные данные следует декодировать. В альтернативном варианте декодируются все данные, а затем после завершения процесса декодирования проверяется заголовок. Декодер 210 декодирует символы. Затем декодированные символы подаются пользователю абонентской станции 6А.

Claims (23)

1. Способ передачи цифровых данных от первой станции связи ко второй станции связи, заключающийся в том, что определяют расстояние между первой и второй станциями связи, выбирают скорость передачи данных для передачи в соответствии с расстоянием и передают цифровые данные с упомянутой скоростью передачи данных.
1. Способ по п. 1, отличающийся тем, что выбор скорости передачи данных включает выбор скорости кодирования цифровых данных.
3. Способ по п. 1, отличающийся тем, что выбор скорости передачи данных включает выбор формата модуляции цифровых данных.
4. Способ по п. 2, отличающийся тем, что выбор скорости кодирования включает выбор одной из заданного набора скоростей сверточного кодирования.
5. Способ по п. 1, отличающийся тем, что определение расстояния включает передачу сообщения о местоположении от первой станции связи на вторую станцию связи и определение расстояния в соответствии с сообщением о местоположении
6. Способ по п. 1, отличающийся тем, что определение расстояния включает передачу эталонного сигнала с известной мощностью, измерение принимаемой мощности эталонного сигнала и вычисление значения расстояния в соответствии с известной мощностью и принимаемой мощностью.
7. Способ по п. 1, отличающийся тем, что передачу цифровых данных с упомянутой скоростью передачи данных выполняют с фиксированной максимальной энергией передачи.
8. Способ по п. 1, отличающийся тем, что дополнительно запрещают передачу по меньшей мере от одной, соседней с первой, станции связи, когда первая станция связи ведет передачу.
9. Способ приема цифровых данных в системе связи, в которой первая станция связи передает цифровые данные на вторую станцию связи, причем скорость передачи цифровых данных определяют в соответствии с потерями на трассе между первой и второй станицями связи, заключающийся в том, что принимают на второй станции связи сигнал, указывающий скорость передачи данных, выбирают на второй станции связи формат приема в соответствии со скоростью передачи данных и принимают цифровые данные в соответствии с выбранным форматом приема.
10. Способ по п. 9, отличающийся тем, что выбор формата приема включает выбор формата декодирования.
11. Способ по п. 10, отличающийся тем, что выбор формата приема включает выбор формата матричного декодирования.
12. Способ по п. 9, отличающийся тем, что выбор формата приема включает выбор формата демодуляции.
13. Устройство передачи цифровых данных от первой станции связи на вторую станцию связи, содержащее контроллер передачи для выбора формата передачи в соответствии с расстоянием между первой и второй станциями связи и для обеспечения сигнала формата передачи, указывающего выбранный формат передачи и систему передачи для приема цифровых данных и сигнала формата передачи и для передачи цифровых данных в соответствии с выбранным форматом передачи.
14. Устройство по п. 13, отличающееся тем, что контроллер передачи выбирает скорость кодирования цифровых данных.
15. Устройство по п. 13, отличающееся тем, что контроллер передачи выбирает формат модуляции цифровых данных.
16. Устройство по п. 14, отличающееся тем, что контроллер передачи выбирает одну из заданного набора скоростей сверточного кодирования.
17. Устройство по п. 13, отличающееся тем, что дополнительно содержит подсистему приемника для приема сообщения о местоположении от второй станции связи, а контроллер передачи предназначен для приема сообщения о местоположении и для вычисления расстояния между первой и второй станицями связи в соответствии с сообщением о местоположении.
18. Устройство по п. 13, отличающееся тем, что дополнительно содержит подсистему приемника для приема сигнала об известной энергии передачи от второй станции связи, а контроллер передачи предназначен для измерения энергии принимаемого сигнала и для вычисления расстояния между первой и второй станциями связи в соответствии с измеренной энергией принимаемого сигнала.
19. Устройство по п. 13, отличающееся тем, что система передачи передает цифровые данные с фиксированной максимальной энергией передачи.
20. Устройство по п. 13, отличающееся тем, что первая станция связи является сотовой базовой станцией, обслуживающей первую ячейку, а контроллер передачи дополнительно предназначен для приема сигнала передачи, указывающего интервал времени для передачи, причем сигнал передачи обеспечивается таким образом, что, когда первая станция связи ведет передачу, другим базовым станциям, обслуживающим ячейки, соседние с первой ячейкой, запрещено вести передачу.
21. Устройство для приема цифровых данных в системе связи, в которой первая станция связи передает цифровые данные на вторую станцию связи, причем скорость передачи цифровых данных определяют в соответствии с расстоянием между первой и второй станицями связи, содержащее подсистему приемника для приема на второй станции связи сигнала, указывающего скорость передачи данных, и управляющий процессор для выбора на второй станции связи формата приема в соответствии со скоростью передачи данных, причем подсистема приемника дополнительно предназначена для приема цифровых данных в соответствии с выбранным форматом приема.
22. Устройство по п. 21, отличающееся тем, что управляющий процессор предназначен для выбора формата декодирования.
23. Устройство по п. 22, отличающееся тем, что управляющий процессор предназначен для выбора формата матричного декодирования.
24. Способ по п. 21, отличающийся тем, что управляющий процессор предназначен для выбора формата демодуляции.
RU99111318/09A 1996-10-29 1997-10-27 Способ обеспечения высокоскоростной передачи данных в оборудовании сотовой связи и устройство для его осуществления RU2193291C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US741,320 1991-08-07
US08/741,320 US6496543B1 (en) 1996-10-29 1996-10-29 Method and apparatus for providing high speed data communications in a cellular environment

Publications (2)

Publication Number Publication Date
RU99111318A RU99111318A (ru) 2001-03-10
RU2193291C2 true RU2193291C2 (ru) 2002-11-20

Family

ID=24980247

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99111318/09A RU2193291C2 (ru) 1996-10-29 1997-10-27 Способ обеспечения высокоскоростной передачи данных в оборудовании сотовой связи и устройство для его осуществления

Country Status (20)

Country Link
US (4) US6496543B1 (ru)
EP (5) EP1865741A3 (ru)
JP (4) JP4130476B2 (ru)
KR (2) KR100708248B1 (ru)
CN (3) CN1108077C (ru)
AT (2) ATE381867T1 (ru)
AU (1) AU722340B2 (ru)
BR (3) BRPI9715351A8 (ru)
CA (1) CA2269223C (ru)
DE (2) DE69738405T2 (ru)
ES (2) ES2294059T3 (ru)
HK (2) HK1076203A1 (ru)
ID (1) ID21870A (ru)
IL (2) IL129306A (ru)
NO (1) NO318282B1 (ru)
NZ (1) NZ335018A (ru)
RU (1) RU2193291C2 (ru)
TW (1) TW408539B (ru)
UA (1) UA57041C2 (ru)
WO (1) WO1998019481A2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7639650B2 (en) 2004-02-14 2009-12-29 Samsung Electronics Co., Ltd Apparatus and method for allocating OVSF codes and I/Q channels for reducing peak-to-average power ratio in transmitting data via enhanced up-link dedicated channels in WCDMA systems
US7769177B2 (en) 2005-01-14 2010-08-03 Lg Electronics Inc. Method for managing digital rights in broadcast/multicast service
RU2491741C1 (ru) * 2007-04-26 2013-08-27 Фудзицу Лимитед Базовая станция, мобильная станция, система связи, способ передачи и способ переупорядочивания
RU2579959C2 (ru) * 2010-12-16 2016-04-10 Квэлкомм Инкорпорейтед Способ и устройство для поддержания набора схем модуляции-кодирования в беспроводных системах с очень высокой пропускной способностью

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496543B1 (en) * 1996-10-29 2002-12-17 Qualcomm Incorporated Method and apparatus for providing high speed data communications in a cellular environment
US7184426B2 (en) 2002-12-12 2007-02-27 Qualcomm, Incorporated Method and apparatus for burst pilot for a time division multiplex system
US9118387B2 (en) 1997-11-03 2015-08-25 Qualcomm Incorporated Pilot reference transmission for a wireless communication system
CN1192651C (zh) * 1998-07-16 2005-03-09 三星电子株式会社 移动通信***中处理分组数据的装置及方法
US20020110206A1 (en) * 1998-11-12 2002-08-15 Neal Becker Combined interference cancellation with FEC decoding for high spectral efficiency satellite communications
EP1035660B1 (en) * 1999-01-05 2008-02-27 Motorola, Inc. Portable communication device
US6785323B1 (en) 1999-11-22 2004-08-31 Ipr Licensing, Inc. Variable rate coding for forward link
US6973140B2 (en) 1999-03-05 2005-12-06 Ipr Licensing, Inc. Maximizing data rate by adjusting codes and code rates in CDMA system
US7593380B1 (en) 1999-03-05 2009-09-22 Ipr Licensing, Inc. Variable rate forward error correction for enabling high performance communication
US6658047B1 (en) * 1999-03-10 2003-12-02 Nokia Corporation Adaptive channel equalizer
DE19931236C2 (de) * 1999-07-07 2002-05-29 Siemens Ag Verfahren zur Zuweisung von Übertragungskapazität zu Verbindungen in einem Funk-Kommunikationssystem
US8064409B1 (en) 1999-08-25 2011-11-22 Qualcomm Incorporated Method and apparatus using a multi-carrier forward link in a wireless communication system
US6621804B1 (en) 1999-10-07 2003-09-16 Qualcomm Incorporated Method and apparatus for predicting favored supplemental channel transmission slots using transmission power measurements of a fundamental channel
US6519279B1 (en) 2000-01-05 2003-02-11 Motorola, Inc. Transceiver circuitry, portable communication device and method for performing radio communication
CA2310188A1 (en) 2000-05-30 2001-11-30 Mark J. Frazer Communication structure with channels configured responsive to reception quality
JP3426194B2 (ja) * 2000-06-26 2003-07-14 松下電器産業株式会社 通信端末装置
FR2813727B1 (fr) * 2000-09-01 2002-11-29 Thomson Csf Procede et dispositif pour ordonner des signaux provenant de multi-utilisateurs
FR2813726B1 (fr) * 2000-09-01 2006-06-23 Thomson Csf Procede et dispositif pour demoduler des signaux provenant de multi-utilisateurs
US7023933B2 (en) * 2000-10-20 2006-04-04 Matsushita Electric Industrial Co., Ltd. Radio communication apparatus
US7068683B1 (en) 2000-10-25 2006-06-27 Qualcomm, Incorporated Method and apparatus for high rate packet data and low delay data transmissions
US6973098B1 (en) 2000-10-25 2005-12-06 Qualcomm, Incorporated Method and apparatus for determining a data rate in a high rate packet data wireless communications system
US7009949B1 (en) * 2000-11-17 2006-03-07 Lucent Technologies Inc. Asymmetric rate feedback and adjustment system for wireless communications
GB0029002D0 (en) * 2000-11-28 2001-01-10 Nokia Networks Oy Channels in a communication system
US6999471B1 (en) 2000-11-28 2006-02-14 Soma Networks, Inc. Communication structure for multiplexed links
US6850499B2 (en) * 2001-01-05 2005-02-01 Qualcomm Incorporated Method and apparatus for forward power control in a communication system
US7003045B2 (en) * 2001-01-31 2006-02-21 Motorola, Inc. Method and apparatus for error correction
GB2371947B (en) * 2001-02-01 2005-02-23 Fujitsu Ltd Communications systems
JP4540880B2 (ja) * 2001-05-25 2010-09-08 京セラ株式会社 移動通信システム、移動通信システムの携帯通信端末及び基地局
US7058035B2 (en) * 2001-06-29 2006-06-06 Qualcomm, Indorporated Communication system employing multiple handoff criteria
US7353287B2 (en) * 2001-09-26 2008-04-01 Adobe Systems Incorporated Marked foreign data blocks
US20030081569A1 (en) * 2001-10-25 2003-05-01 Nokia Corporation Method and apparatus providing call admission that favors mullti-slot mobile stations at cell edges
GB2382271B (en) * 2001-11-19 2005-06-29 Hutchison Whampoa Three G Ip Bit rate allocation in mobile communications networks
JP3896873B2 (ja) * 2002-03-07 2007-03-22 日本電気株式会社 可変通信システム
US6904021B2 (en) * 2002-03-15 2005-06-07 Meshnetworks, Inc. System and method for providing adaptive control of transmit power and data rate in an ad-hoc communication network
US7352722B2 (en) * 2002-05-13 2008-04-01 Qualcomm Incorporated Mitigation of link imbalance in a wireless communication system
US6961595B2 (en) 2002-08-08 2005-11-01 Flarion Technologies, Inc. Methods and apparatus for operating mobile nodes in multiple states
US7363039B2 (en) 2002-08-08 2008-04-22 Qualcomm Incorporated Method of creating and utilizing diversity in multiple carrier communication system
US8190163B2 (en) 2002-08-08 2012-05-29 Qualcomm Incorporated Methods and apparatus of enhanced coding in multi-user communication systems
US7423982B2 (en) * 2002-09-09 2008-09-09 Scientific-Atlanta, Inc. Adaptive communication modes
DE10251314A1 (de) * 2002-11-04 2004-05-19 Advanced Micro Devices, Inc., Sunnyvale Sendereinstellung auf Grundlage von Sendestatistiken
CA2516382C (en) 2003-02-19 2013-04-16 Flarion Technologies, Inc. Controlled superposition coding in multi-user communication systems
US7653876B2 (en) * 2003-04-07 2010-01-26 Adobe Systems Incorporated Reversible document format
KR100559545B1 (ko) * 2003-04-08 2006-03-10 엘지전자 주식회사 단말기의 데이터통신 통화품질 개선 장치 및 그 방법
US8593932B2 (en) 2003-05-16 2013-11-26 Qualcomm Incorporated Efficient signal transmission methods and apparatus using a shared transmission resource
US7925291B2 (en) * 2003-08-13 2011-04-12 Qualcomm Incorporated User specific downlink power control channel Q-bit
CN1333605C (zh) * 2003-08-22 2007-08-22 华为技术有限公司 一种控制第三代移动通信***业务传输速率的方法
US7689256B2 (en) 2003-11-10 2010-03-30 Research In Motion Limited Methods and apparatus for limiting communication capabilities in mobile communication devices
EP1530383B1 (en) * 2003-11-10 2006-06-14 Research In Motion Limited Methods and system for limiting communication capabilities in mobile communication devices
US7602806B2 (en) 2003-12-08 2009-10-13 Analogix Semiconductor, Inc. Signaling and coding methods and apparatus for long-range 10 and 100 MBPS ethernet transmission
US7702968B2 (en) * 2004-02-27 2010-04-20 Qualcomm Incorporated Efficient multi-symbol deinterleaver
CN100359979C (zh) * 2004-03-10 2008-01-02 华为技术有限公司 一种扩大覆盖范围的方法
EP1730858B1 (en) * 2004-03-16 2009-09-30 Nokia Corporation A method, a device and a system for duplex communications
US8023489B2 (en) * 2004-03-17 2011-09-20 Qualcomm, Inc. Burden sharing in satellite communications
JP4391304B2 (ja) * 2004-04-23 2009-12-24 日産自動車株式会社 減速制御装置
CN1965513B (zh) * 2004-05-01 2014-11-26 桥扬科技有限公司 用于以时分双工进行通信的方法和装置
US7899480B2 (en) * 2004-09-09 2011-03-01 Qualcomm Incorporated Apparatus, system, and method for managing transmission power in a wireless communication system
CN101057420B (zh) * 2004-11-10 2012-08-15 株式会社Ntt都科摩 移动通信***、移动台及无线基站
US8804765B2 (en) * 2005-06-21 2014-08-12 Optis Wireless Technology, Llc Dynamic robust header compression
US7706432B2 (en) * 2005-08-18 2010-04-27 Sony Corporation Data transfer system, wireless communication device, wireless communication method, and computer program
US20070211669A1 (en) * 2006-03-07 2007-09-13 Bhupesh Manoharlal Umatt Method and apparatus for searching radio technologies
US8139660B2 (en) * 2006-04-14 2012-03-20 Qualcomm Incorporated Methods and apparatus related to using a wireless terminal scrambling identifier
US9544638B2 (en) * 2006-04-17 2017-01-10 Broadcom Corporation Method for reconstructing system time clock (STC) without carrying PCR
JP4805016B2 (ja) * 2006-05-19 2011-11-02 京セラ株式会社 通信システム、通信装置、及び通信レート変更方法
US7865160B2 (en) * 2006-06-27 2011-01-04 Motorola Mobility, Inc. Mixed mode power measurement calibration and reporting in wireless communication networks
US20080037661A1 (en) * 2006-08-08 2008-02-14 Adaptix, Inc. Mobile communication system having multiple modulation zones
CN100446589C (zh) * 2006-08-14 2008-12-24 华为技术有限公司 无线蜂窝网络中基站发射功率设置的方法及其***
KR101014940B1 (ko) * 2006-09-29 2011-02-15 후지쯔 가부시끼가이샤 무선 기지국
US8903407B2 (en) * 2006-11-25 2014-12-02 Qualcomm Incorporated System and method for adaptable multimedia download resulting in efficient airlink usage
SI2515587T1 (sl) 2007-01-11 2021-02-26 Qualcomm Incorporated Uporaba DTX in DRX v brezžičnem komunikacijskem sistemu
US8483719B2 (en) * 2007-06-01 2013-07-09 Qualcomm Incorporated Methods and apparatus for determining FEMTO base station location
EP2205015B1 (en) 2007-10-22 2017-11-01 NEC Corporation Wireless communication system, base station, wireless resource management method and base station control program
JP5172405B2 (ja) * 2007-11-15 2013-03-27 ソニー株式会社 無線通信装置、無線通信システム、プログラム、および無線通信方法
JP5128323B2 (ja) * 2007-11-15 2013-01-23 ソニー株式会社 無線通信装置、情報処理装置、プログラム、無線通信方法、処理方法、および無線通信システム
CN101488827B (zh) 2008-01-14 2015-07-08 华为技术有限公司 实现数据报错的方法和装置
KR100976030B1 (ko) 2008-06-27 2010-08-17 에스케이 텔레콤주식회사 무선 랜 환경에서 무선 인터넷 서비스 제공 시스템 및 방법
JP5565082B2 (ja) * 2009-07-31 2014-08-06 ソニー株式会社 送信電力決定方法、通信装置及びプログラム
US8811200B2 (en) 2009-09-22 2014-08-19 Qualcomm Incorporated Physical layer metrics to support adaptive station-dependent channel state information feedback rate in multi-user communication systems
WO2012094199A1 (en) * 2011-01-04 2012-07-12 Thomson Licensing Apparatus and method for transmitting live media content
JP2012160806A (ja) * 2011-01-31 2012-08-23 Mitsubishi Electric Corp 列車無線システム、基地局および移動局
US9750030B2 (en) * 2011-08-03 2017-08-29 Qualcomm Incorporated Enhanced downlink rate adaptation for LTE heterogeneous network base stations
US9031033B2 (en) * 2011-09-27 2015-05-12 Apple Inc. Wireless radio access network control channel capacity management
JP5383859B2 (ja) * 2012-04-25 2014-01-08 京セラ株式会社 中継局、無線通信端末、無線通信システムおよび無線通信方法
US10057823B2 (en) 2015-05-18 2018-08-21 Apple Inc. Packet-switched wireless communication for link budget limited wireless devices
EP3841718A4 (en) * 2018-08-23 2022-04-13 Telefonaktiebolaget Lm Ericsson (Publ) MODULATION AND DEMODULATION OF DATA
US11240773B2 (en) * 2018-12-07 2022-02-01 Google Llc Managing doppler and framing impacts in networks

Family Cites Families (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3310631A (en) 1963-06-03 1967-03-21 Itt Communication system for the selective transmission of speech and data
US3715508A (en) 1967-09-15 1973-02-06 Ibm Switching circuits employing orthogonal and quasi-orthogonal pseudo-random code sequences
US4052565A (en) 1975-05-28 1977-10-04 Martin Marietta Corporation Walsh function signal scrambler
US4135059A (en) 1977-07-07 1979-01-16 Satellite Business Systems Multiple channel per burst tdma multiple transponder network
GB2022365A (en) 1978-06-02 1979-12-12 Texas Instruments Inc Communications network for data and voice
US4220821A (en) 1978-06-16 1980-09-02 Communications Satellite Corporation Off-hook initiated demand assignment communications
US4291409A (en) 1978-06-20 1981-09-22 The Mitre Corporation Spread spectrum communications method and apparatus
US4256925A (en) 1978-12-12 1981-03-17 Satellite Business Systems Capacity reallocation method and apparatus for a TDMA satellite communication network with demand assignment of channels
US4301530A (en) 1978-12-18 1981-11-17 The United States Of America As Represented By The Secretary Of The Army Orthogonal spread spectrum time division multiple accessing mobile subscriber access system
FR2454233B1 (fr) 1979-04-11 1986-01-24 Materiel Telephonique Demodulateur stochastique pour signaux modules en sauts de phase, fonctionnant en temps partage sur plusieurs canaux
US4445213A (en) 1979-07-31 1984-04-24 Bell Telephone Laboratories, Incorporated Communication line interface for controlling data information having differing transmission characteristics
US4291406A (en) 1979-08-06 1981-09-22 International Business Machines Corporation Error correction on burst channels by sequential decoding
US4298979A (en) 1979-09-27 1981-11-03 Communications Satellite Corporation Decoding TIM bus structure
US4322845A (en) 1979-09-28 1982-03-30 Ibm Corporation Demand assignment technique for TDMA satellite communication network
US4369434A (en) 1979-12-20 1983-01-18 Gretag Aktiengesellschaft Enciphering/deciphering system
US4319353A (en) 1980-02-29 1982-03-09 Ibm Corporation Priority threaded message burst mechanism for TDMA communication
US4339818A (en) 1980-04-30 1982-07-13 Broadcom, Incorporated Digital multiplexer with increased channel capacity
US4477900A (en) 1980-04-30 1984-10-16 Broadcom, Incorporated Successive frame digital multiplexer with increased channel capacity
FR2488469A1 (fr) 1980-08-06 1982-02-12 Thomson Csf Mat Tel Procede d'etablissement de conversations radio-telephoniques dama simple bond par l'intermediaire d'un satellite
US4730340A (en) 1980-10-31 1988-03-08 Harris Corp. Programmable time invariant coherent spread symbol correlator
JPS57155856A (en) 1981-03-20 1982-09-27 Fujitsu Ltd Adaptive modulation system
US4383315A (en) 1981-07-20 1983-05-10 Bell Telephone Laboratories, Incorporated Idle time slot seizure and transmission facilities for loop communication system
JPS5853709U (ja) 1981-10-02 1983-04-12 株式会社伊藤喜工作所 流動棚装置
US4494232A (en) 1981-12-04 1985-01-15 Racal-Milgo, Inc. Statistical multiplexer with dynamic bandwidth allocation for asynchronous and synchronous channels
US4455649A (en) 1982-01-15 1984-06-19 International Business Machines Corporation Method and apparatus for efficient statistical multiplexing of voice and data signals
US4472815A (en) 1982-09-27 1984-09-18 The United States Of America As Represented By The Secretary Of The Army Pulse interference cancelling system for spread spectrum signals
US4460992A (en) 1982-11-04 1984-07-17 The United States Of America As Represented By The Secretary Of The Army Orthogonal CDMA system utilizing direct sequence pseudo noise codes
US4562572A (en) 1983-01-11 1985-12-31 International Telephone And Telegraph Corporation Cellular mobile radio service telephone system
US4726014A (en) 1983-01-11 1988-02-16 U.S. Holding Company, Inc. Cellular mobile radio service telephone system
US4547880A (en) 1983-05-13 1985-10-15 Able Computer Communication control apparatus for digital devices
US4491947A (en) 1983-05-31 1985-01-01 At&T Bell Laboratories Technique for dynamic scheduling of integrated circuit- and packet-switching in a multi-beam SS/TDMA system
US4688035A (en) 1983-11-28 1987-08-18 International Business Machines Corp. End user data stream syntax
GB8407223D0 (en) 1984-03-20 1984-04-26 British Telecomm Broadband digital transmission systems
US4587652A (en) 1984-06-21 1986-05-06 Itt Corporation Data control for telephone system
US4594476A (en) 1984-08-31 1986-06-10 Freeman Michael J Broadcast interactive telephone system
US4635221A (en) 1985-01-18 1987-01-06 Allied Corporation Frequency multiplexed convolver communication system
JPS6291027A (ja) 1985-10-17 1987-04-25 Kokusai Denshin Denwa Co Ltd <Kdd> デマンド割当て通信方式
US4700341A (en) 1985-10-30 1987-10-13 Racal Data Communications Inc. Stochastic time division multiplexing
EP0234191B1 (en) 1986-01-09 1993-12-29 Nec Corporation Packet-switched communications network with parallel virtual circuits for re-routing message packets
AU5589086A (en) 1986-03-25 1987-10-20 Motorola, Inc. Method and apparatus for controlling a tdm communication device
US4901307A (en) 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US4813040A (en) 1986-10-31 1989-03-14 Futato Steven P Method and apparatus for transmitting digital data and real-time digitalized voice information over a communications channel
NL8700930A (nl) 1987-04-17 1988-11-16 Hollandse Signaalapparaten Bv Systeem van orthogonaal werkende codegeneratoren, radio's voorzien van een codegenerator en codegeneratoren van zo'n systeem.
FR2617657A1 (fr) 1987-07-03 1989-01-06 Trt Telecom Radio Electr Systeme de transmission de series d'echantillons numeriques codes par des mots binaires a longueurs variables
US4970648A (en) 1987-08-12 1990-11-13 Fairchild Space And Defense Corporation High performance flight recorder
JPH0817369B2 (ja) 1987-08-17 1996-02-21 株式会社日立製作所 多重集配信装置
CA1299706C (en) 1987-08-27 1992-04-28 Yasutaka Sasaki Concentrator system capable of completing emergency calls under congested traffic
DE3881170T2 (de) 1987-11-30 1993-12-09 Nippon Electric Co Rahmen-Abstands-Störungsfeststellung für ein TDMA-Kommunikationssystem mit bedarfsweiser Kanalzuteilung.
FR2629931B1 (fr) 1988-04-08 1991-01-25 Lmt Radio Professionelle Correlateur numerique asynchrone et demodulateurs comportant un tel correlateur
JPH0234059A (ja) 1988-07-25 1990-02-05 Mitsubishi Electric Corp ノード装置の処理方式
US5425051A (en) * 1992-11-09 1995-06-13 Norand Corporation Radio frequency communication network having adaptive parameters
US5003534A (en) 1988-08-26 1991-03-26 Scientific Atlanta Link utilization control mechanism for demand assignment satellite communications network
JPH06103873B2 (ja) 1988-09-01 1994-12-14 三菱電機株式会社 直交系列発生方式
SE466279B (sv) 1988-10-17 1992-01-20 Ericsson Telefon Ab L M Radioenhet foer oeverfoering av samtalsinformation i ett mobiltelefonsystem med kort raeckvidd
US5179549A (en) 1988-11-10 1993-01-12 Alcatel N.V. Statistical measurement equipment and telecommunication system using same
WO1990010342A1 (en) 1989-03-03 1990-09-07 Televerket Method for planning radio cells
JP2603717B2 (ja) 1989-03-09 1997-04-23 三菱電機株式会社 サイクリックデータ伝送方法
US5107377A (en) 1989-04-10 1992-04-21 Ballard Synergy Corporation Method and apparatus for digital storage and retrieval of data
US5022046A (en) 1989-04-14 1991-06-04 The United States Of America As Represented By The Secretary Of The Air Force Narrowband/wideband packet data communication system
US5172375A (en) 1989-06-22 1992-12-15 Nec Corporation Multiple access satellite communication system for mini-earth station networks
GB2236454A (en) 1989-09-01 1991-04-03 Philips Electronic Associated Communications system for radio telephones
JP2733110B2 (ja) 1989-09-19 1998-03-30 日本電信電話株式会社 無線信号伝送方式
US4965796A (en) 1989-09-29 1990-10-23 At&T Bell Laboratories Microprocessor-based substrate multiplexer/demultiplexer
IL95920A0 (en) 1989-10-24 1991-07-18 Motorola Inc Distributed synchronization method for a wireless fast packet communication system
US5101501A (en) 1989-11-07 1992-03-31 Qualcomm Incorporated Method and system for providing a soft handoff in communications in a cdma cellular telephone system
US5136586A (en) 1989-12-04 1992-08-04 Academy Of Applied Science Method and apparatus for telephone line multiplex channeling of toll-quality voice and digital information
JP2540968B2 (ja) 1990-02-27 1996-10-09 日本電気株式会社 多方向多重通信方式
DE9002440U1 (de) 1990-03-02 1990-05-03 Sueddeutsche Kuehlerfabrik Julius Fr. Behr Gmbh & Co Kg, 7000 Stuttgart Wärmetauscher, insbesonder Ölkühler für Kraftfahrzeuge
US5103459B1 (en) 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
US5511073A (en) 1990-06-25 1996-04-23 Qualcomm Incorporated Method and apparatus for the formatting of data for transmission
US5115429A (en) 1990-08-02 1992-05-19 Codex Corporation Dynamic encoding rate control minimizes traffic congestion in a packet network
CA2023053C (en) * 1990-08-10 1994-06-28 Frank D. Benner Method for assigning telecommunications channels in a cellular telephone system
CN1031540C (zh) * 1990-09-19 1996-04-10 菲利浦光灯制造公司 记录载体、主数据和控制文件的记录方法和装置及读出装置
US5168575A (en) 1990-09-28 1992-12-01 Motorola, Inc. Demand driven wide-area radio system resource assignment method and apparatus
US5121383A (en) 1990-11-16 1992-06-09 Bell Communications Research, Inc. Duration limited statistical multiplexing in packet networks
FR2670639A1 (fr) 1990-12-14 1992-06-19 Trt Telecom Radio Electr Dispositif pour transmettre sur un multiplex temporel differents canaux ayant des debits binaires divers.
FR2670973B1 (fr) 1990-12-19 1994-04-15 Ouest Standard Telematique Sa Systeme de transmission par paquets a compression de donnees, procede et equipement correspondant.
US5235614A (en) 1991-03-13 1993-08-10 Motorola, Inc. Method and apparatus for accommodating a variable number of communication channels in a spread spectrum communication system
US5400328A (en) 1991-05-28 1995-03-21 British Technology Group Ltd. Variable data rate channels for digital networks
DK0587620T3 (da) * 1991-06-03 1998-09-07 British Telecomm Radiosystem
CA2483322C (en) 1991-06-11 2008-09-23 Qualcomm Incorporated Error masking in a variable rate vocoder
FR2678457A1 (fr) 1991-06-28 1992-12-31 Trt Telecom Radio Electr Systeme de multiplexage pour sous-canaux a divers degres de priorite.
US5253270A (en) * 1991-07-08 1993-10-12 Hal Communications Apparatus useful in radio communication of digital data using minimal bandwidth
US5195090A (en) 1991-07-09 1993-03-16 At&T Bell Laboratories Wireless access telephone-to-telephone network interface architecture
US5426655A (en) * 1991-07-16 1995-06-20 International Business Machines Corporation Method and apparatus for magnetic recording of data
US5416787A (en) 1991-07-30 1995-05-16 Kabushiki Kaisha Toshiba Method and apparatus for encoding and decoding convolutional codes
US5231649A (en) 1991-08-08 1993-07-27 Ascend Communications, Inc. Method and apparatus for dynamic bandwidth allocation in a digital communication session
US5289527A (en) 1991-09-20 1994-02-22 Qualcomm Incorporated Mobile communications device registration method
JP3226945B2 (ja) 1991-10-02 2001-11-12 キヤノン株式会社 マルチメディア通信装置
JP2554219B2 (ja) 1991-11-26 1996-11-13 日本電信電話株式会社 ディジタル信号の重畳伝送方式
US5216503A (en) 1991-12-24 1993-06-01 General Instrument Corporation Statistical multiplexer for a multichannel image compression system
SE9200607D0 (sv) 1992-02-28 1992-02-28 Ericsson Telefon Ab L M Communication methods and mean in a tdma cellular mobile radio system
DE4210305A1 (de) 1992-03-30 1993-10-07 Sel Alcatel Ag Verfahren, Sender und Empfänger zur Informationsdatenübertragung mit veränderlichem Verkehrsaufkommen und Leitstation zur Koordinierung mehrerer solcher Sender und Empfänger
US5276730A (en) 1992-04-30 1994-01-04 At&T Bell Laboratories Access method for distributed dynamic channel allocation in microcells
US5355374A (en) 1992-05-08 1994-10-11 Scientific-Atlanta, Inc. Communication network with divisible auxilliary channel allocation
GB2268372B (en) 1992-06-11 1995-11-01 Roke Manor Research Improvements in or relating to data transmission systems
US5311553A (en) * 1992-06-15 1994-05-10 General Electric Company Trellis coding technique to increase adjacent channel interference protection ratio in land mobile radio systems under peak power constraints
NZ255617A (en) * 1992-09-04 1996-11-26 Ericsson Telefon Ab L M Tdma digital radio: measuring path loss and setting transmission power accordingly
US5396516A (en) * 1993-02-22 1995-03-07 Qualcomm Incorporated Method and system for the dynamic modification of control paremeters in a transmitter power control system
US5438590A (en) * 1993-05-24 1995-08-01 Comstream Corporation Transmitting and receiving apparatus and method including punctured convolutional encoding and decoding
AU7173694A (en) * 1993-06-25 1995-01-17 Omniplex, Inc. Determination of location using time-synchronized cell site transmissions
US5404376A (en) * 1993-09-09 1995-04-04 Ericsson-Ge Mobile Communications Inc. Navigation assistance for call handling in mobile telephone systems
US5440542A (en) 1993-10-14 1995-08-08 Motorola, Inc. Method and apparatus for multiplexing control information into a user signal stream of a CDMA cellular system
US5471497A (en) 1993-11-01 1995-11-28 Zehavi; Ephraim Method and apparatus for variable rate signal transmission in a spread spectrum communication system using coset coding
US5383219A (en) 1993-11-22 1995-01-17 Qualcomm Incorporated Fast forward link power control in a code division multiple access system
DE4343765C2 (de) * 1993-12-21 2003-11-13 Detecon Gmbh Steuerungssystem für die Funkversorgung in einem zellularen, digitalen Mobilkommunikationssystem
EP0702863B1 (en) * 1994-02-17 2004-10-20 Motorola, Inc. Method and apparatus for controlling encoding rate in a communication system
JP3302168B2 (ja) 1994-04-05 2002-07-15 株式会社東芝 移動無線通信システム
FR2718906B1 (fr) * 1994-04-13 1996-05-24 Alcatel Mobile Comm France Procédé d'adaptation de l'interface air, dans un système de radiocommunication avec des mobiles, station de base, station mobile et mode de transmission correspondants.
US5442625A (en) 1994-05-13 1995-08-15 At&T Ipm Corp Code division multiple access system providing variable data rate access to a user
US5638412A (en) * 1994-06-15 1997-06-10 Qualcomm Incorporated Method for providing service and rate negotiation in a mobile communication system
US5627863A (en) * 1994-07-15 1997-05-06 Amati Communications Corporation Frame synchronization in multicarrier transmission systems
US5537410A (en) 1994-09-15 1996-07-16 Oki Telecom Subsequent frame variable data rate indication method
JPH08163102A (ja) 1994-12-09 1996-06-21 Sony Corp 移動体データ通信装置
GB2298338B (en) * 1995-02-15 1999-09-29 Motorola Ltd A method for reverse channel sounding in a communications system
JPH08274756A (ja) 1995-03-30 1996-10-18 Toshiba Corp 無線通信システム
US5550881A (en) 1995-04-13 1996-08-27 Motorola, Inc. Automatic modulation mode selecting unit and method for modems
FI100575B (fi) * 1995-05-17 1997-12-31 Nokia Mobile Phones Ltd Menetelmä kanavanvaihdon ja yhteydenmuodostuksen luotettavuuden parant amiseksi sekä solukkoradiojärjestelmä
EP0753948B1 (en) * 1995-07-11 2006-06-07 Alcatel Capacity allocation for OFDM
US5692006A (en) 1995-07-31 1997-11-25 Qualcomm Incorporated Adaptive despreader
US5974106A (en) * 1995-09-01 1999-10-26 Motorola, Inc. Method and apparatus for multirate data communications
US5950124A (en) * 1995-09-06 1999-09-07 Telxon Corporation Cellular communication system with dynamically modified data transmission parameters
US5842113A (en) * 1996-04-10 1998-11-24 Lucent Technologies Inc. Method and apparatus for controlling power in a forward link of a CDMA telecommunications system
US5784410A (en) * 1996-06-03 1998-07-21 Matsushita Electric Industrial Co., Ltd. Reception automatic gain control system and method
FR2750143B1 (fr) 1996-06-25 1998-08-14 Pechiney Electrometallurgie Ferroalliage pour l'inoculation des fontes a graphite spheroidal
US6366326B1 (en) 1996-08-01 2002-04-02 Thomson Consumer Electronics Inc. System for acquiring, processing, and storing video data and program guides transmitted in different coding formats
US5999818A (en) 1996-08-06 1999-12-07 Cirrus Logic, Inc. Frequency re-used and time-shared cellular communication system having multiple radio communication systems
US6496543B1 (en) 1996-10-29 2002-12-17 Qualcomm Incorporated Method and apparatus for providing high speed data communications in a cellular environment
US6873613B1 (en) * 2000-10-16 2005-03-29 Ericsson Inc. Methods for wirelessly communicating time division multiple access (TDMA) data using adaptive multiplexing and coding
EP1289179A1 (en) * 2001-08-28 2003-03-05 Lucent Technologies Inc. A wireless telecommunications network, a user terminal therefor, a base station therefor, and a method of telecommunication
US7359692B2 (en) 2003-06-30 2008-04-15 Zarbana Digital Fund, Llc Method of and device for antennae diversity switching
JP5219997B2 (ja) 2006-05-04 2013-06-26 ソニー コンピュータ エンタテインメント アメリカ リミテッド ライアビリテイ カンパニー 多入力ゲーム制御ミクサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Системы радиосвязи /Под ред. Н.И.КАЛАШНИКОВА. Радио и связь. - 1988, с. 215 и 216. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7639650B2 (en) 2004-02-14 2009-12-29 Samsung Electronics Co., Ltd Apparatus and method for allocating OVSF codes and I/Q channels for reducing peak-to-average power ratio in transmitting data via enhanced up-link dedicated channels in WCDMA systems
US7903618B2 (en) 2004-02-14 2011-03-08 Samsung Electronics Co., Ltd Apparatus and method for allocating OVSF codes and I/Q channels for reducing peak-to-average power ratio in transmitting data via enhanced up-link dedicated channels in WCDMA systems
US7769177B2 (en) 2005-01-14 2010-08-03 Lg Electronics Inc. Method for managing digital rights in broadcast/multicast service
RU2491741C1 (ru) * 2007-04-26 2013-08-27 Фудзицу Лимитед Базовая станция, мобильная станция, система связи, способ передачи и способ переупорядочивания
RU2579959C2 (ru) * 2010-12-16 2016-04-10 Квэлкомм Инкорпорейтед Способ и устройство для поддержания набора схем модуляции-кодирования в беспроводных системах с очень высокой пропускной способностью

Also Published As

Publication number Publication date
CA2269223A1 (en) 1998-05-07
HK1076203A1 (en) 2006-01-06
JP2008086043A (ja) 2008-04-10
AU722340B2 (en) 2000-07-27
US8891663B2 (en) 2014-11-18
KR20030097612A (ko) 2003-12-31
CN100420168C (zh) 2008-09-17
EP2360862A1 (en) 2011-08-24
EP1223780A3 (en) 2002-12-18
IL129306A0 (en) 2000-02-17
NZ335018A (en) 1999-10-28
BRPI9715351A2 (ru) 1999-10-19
DE69738337D1 (de) 2008-01-10
KR100708248B1 (ko) 2007-04-16
JP5048864B2 (ja) 2012-10-17
EP1633154A3 (en) 2006-06-07
ID21870A (id) 1999-08-05
EP1223780B1 (en) 2007-12-19
BR9712455A (pt) 1999-10-19
BRPI9715349A2 (ru) 1999-10-19
JP4673356B2 (ja) 2011-04-20
AU5004697A (en) 1998-05-22
US20020106015A1 (en) 2002-08-08
CA2269223C (en) 2010-02-02
CN1234952A (zh) 1999-11-10
NO318282B1 (no) 2005-02-28
DE69738337T2 (de) 2008-10-09
US20050053030A1 (en) 2005-03-10
EP1865741A3 (en) 2011-05-25
WO1998019481A2 (en) 1998-05-07
US7949066B2 (en) 2011-05-24
JP4950330B2 (ja) 2012-06-13
ATE379930T1 (de) 2007-12-15
CN1474606A (zh) 2004-02-11
DE69738405T2 (de) 2008-12-04
US8085865B2 (en) 2011-12-27
ES2294059T3 (es) 2008-04-01
JP2001506066A (ja) 2001-05-08
US6496543B1 (en) 2002-12-17
KR20000052870A (ko) 2000-08-25
EP1633154A2 (en) 2006-03-08
JP2011097603A (ja) 2011-05-12
CN1108077C (zh) 2003-05-07
ES2293465T3 (es) 2008-03-16
EP1223780A2 (en) 2002-07-17
EP1633154B1 (en) 2007-11-28
EP1865741A2 (en) 2007-12-12
NO992039D0 (no) 1999-04-28
HK1087879A1 (en) 2006-10-20
ATE381867T1 (de) 2008-01-15
JP4130476B2 (ja) 2008-08-06
KR100507425B1 (ko) 2005-08-09
BRPI9715349A8 (pt) 2017-07-04
IL129306A (en) 2003-10-31
BRPI9715351A8 (pt) 2017-07-04
WO1998019481A3 (en) 1998-09-03
EP0935900A2 (en) 1999-08-18
CN1607747A (zh) 2005-04-20
JP2012070423A (ja) 2012-04-05
US20030053432A1 (en) 2003-03-20
DE69738405D1 (de) 2008-01-31
UA57041C2 (ru) 2003-06-16
CN100428807C (zh) 2008-10-22
IL155777A (en) 2011-10-31
NO992039L (no) 1999-04-28
TW408539B (en) 2000-10-11

Similar Documents

Publication Publication Date Title
RU2193291C2 (ru) Способ обеспечения высокоскоростной передачи данных в оборудовании сотовой связи и устройство для его осуществления
JP4955783B2 (ja) 高レートパケットデータ伝送の方法および装置
US7054284B2 (en) Method and apparatus for supervising a potentially gated signal in a wireless communication system
MXPA99003949A (en) Method and apparatus for providing high speed data communications in a cellular environment
IL155778A (en) Method and device for enabling high-speed data communication in a mobile environment