RU2153482C2 - Способ изготовления алюмосиликатных и корундовых огнеупорных изделий - Google Patents

Способ изготовления алюмосиликатных и корундовых огнеупорных изделий Download PDF

Info

Publication number
RU2153482C2
RU2153482C2 RU98111863/03A RU98111863A RU2153482C2 RU 2153482 C2 RU2153482 C2 RU 2153482C2 RU 98111863/03 A RU98111863/03 A RU 98111863/03A RU 98111863 A RU98111863 A RU 98111863A RU 2153482 C2 RU2153482 C2 RU 2153482C2
Authority
RU
Russia
Prior art keywords
refractories
refractory
suspension
binder
bauxite
Prior art date
Application number
RU98111863/03A
Other languages
English (en)
Other versions
RU98111863A (ru
Inventor
Ю.Е. Пивинский
Е.М. Гришпун
Е.В. Рожков
Original Assignee
Пивинский Юрий Ефимович
Гришпун Ефим Моисеевич
Рожков Евгений Васильевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Пивинский Юрий Ефимович, Гришпун Ефим Моисеевич, Рожков Евгений Васильевич filed Critical Пивинский Юрий Ефимович
Priority to RU98111863/03A priority Critical patent/RU2153482C2/ru
Publication of RU98111863A publication Critical patent/RU98111863A/ru
Application granted granted Critical
Publication of RU2153482C2 publication Critical patent/RU2153482C2/ru

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Изобретение относится к производству огнеупорных изделий алюмосиликатного и корундового составов, формуемых методом прессования. В качестве тонкодисперсной связующей составляющей применяют высококонцентрированные вяжущие суспензии влажностью 12 - 20% на основе соответствующих огнеупорных материалов: боксита, муллита, шамота с различным содержанием Al2O3 и т.д. с содержанием в суспензии частиц до 5 мкм 20 - 50%. Исходные суспензии пластифицируют добавками огнеупорной глины (2 - 10%), вводят также высокодисперсное кварцевое стекло, или Al2O3 (2 - 10%), или комплексную добавку указанных компонентов. Смесь для формования готовят при соотношении компонентов, мас.%: связующее 20 - 45, заполнитель 55 - 80. Способ позволяет получить высокоплотный полуфабрикат, способный уже после низкотемпературной термообработки приобретать требуемые эксплуатационные характеристики. Отличие новых огнеупоров состоит в повышенной плотности, прочности, что обеспечивает лучшие их эксплуатационные характеристики. Последние достигаются уже после низкотемпературного (1000 - 1200oС) обжига изделий. 3 з.п. ф-лы.

Description

Изобретение относится к огнеупорной промышленности, а именно к производству огнеупоров преимущественно алюмосиликатного и корундового составов. Известно [1] , что огнеупоры алюмосиликатного типа подразделяются на следующие группы: полукислые, шамотные, муллитокремнеземистые, муллитовые, муллитокорундовые. Содержание Al2O3 в этих огнеупорах колеблется в пределах 15 - 90%, а SiO2 - 9 - 85%. Содержание Al2O3 в корундовых огнеупорах превышает 90%. Большинство из этих огнеупоров получают методом полусухого прессования с последующими сушкой и высокотемпературным (1400 - 1700oC обжигом [2].
Недостатками традиционных огнеупоров данных групп являются относительно высокая их пористость и низкая механическая прочность. Так, показатель предела прочности при сжатии σсж для шамотных и полукислых огнеупоров составляет 10 - 23 МПа, муллитокремнеземистых - 20 - 40 МПа, муллитовых - 25 - 60 МПа, муллитокорундовых и корундовых - 20 - 100 МПа [2]. Кроме того, эти огнеупоры характеризуются относительно крупнопористым строением - наличием пор с размерами, допускающими их пропитку расплавами (диаметр более 5 - 10 мкм). Это ухудшает их эксплуатационные характеристики.
Отмеченные недостатки традиционных огнеупоров обусловлены специфическими особенностями технологии их получения. Независимо от состава рассмотренных огнеупоров преобладающая их доля формуется методом полусухого прессования. Пресс-порошки для прессования всех типов рассматриваемых огнеупоров состоят из крупнозернистой составляющей (шамот, фракционированный корунд, боксит и т.д.) и тонкодисперсной (связующей) составляющей. Если для полукислых и шамотных огнеупоров связующие функции в пресс-порошках выполняет глина, то в высокоглиноземистых и корундовых, как правило, в состав масс для этой цели вводят органические добавки.
В процессе обжига огнеупоров наблюдается существенная усадка в микрообъемах связующей фазы материала при условиях безусадочного заполнителя при общей низкой усадке прессовки. В конечном итоге это приводит к образованию крупных дефектов (пор) в материале и низкой механической прочности.
В работе [3] впервые в качестве тонкодисперсной (связующей) составляющей при прессовании огнеупоров высокоглиноземистого состава использована вяжущая суспензия боксита. В пресс-порошках на основе ВКВС на микроуровне формируется высокая плотность упаковки связки, что благоприятно сказывается на свойствах полученного огнеупора. При этом была достигнута существенно большая механическая прочность огнеупоров по сравнению с известными аналогами. Недостаток этого способа состоит в том, что ввиду дилатансии суспензий боксита (отсутствия у них пластичных свойств) пресс-порошки на их основе характеризуются низкой уплотняемостью. Так, даже при удельном давлении прессования Pуд = 200 МПа на бокситовых составах не была достигнута пористость менее 20%.
Целью настоящего изобретения является создание способа изготовления прессованных огнеупоров, позволяющего получить высокоплотный полуфабрикат, способный уже после низкотемпературной термообработки приобретать требуемые эксплуатационные характеристики.
Поставленная цель достигается тем, что в качестве связующей составляющей исходных формовочных систем применяют соответствующие высококонцентрированные керамические вяжущие суспензии (ВКВС) с влажностью 12-20% и содержанием частиц до 5 мкм 20-50% в количестве 20-45 мас.% с введенными в них модифицирующими добавками. Цель последних улучшить технологические и реологические свойства пресс-порошков за счет устранения их дилатантных свойств, придания им необходимой пластичности. Кроме того, вводимые в ВКВС добавки должны способствовать низкотемпературному упрочнению огнеупоров при сохранении высокого их объемопостоянства.
В качестве исходных материалов для ВКВС как связки при получении рассматриваемых огнеупоров применяют шамот с различным содержанием Al2O3, муллит, боксит и т.д.
В качестве модифицирующих добавок в ВКВС этих материалов могут вводиться различные добавки. Например, с целью придания пластичных свойств пресс-порошкам в исходные ВКВС вводятся добавки огнеупорной глины в количестве 2 - 10%. Существенное влияние оказывают добавки высокодисперсного кварцевого стекла SiO2, вводимого посредством "слива" - отхода производства кварцевых огнеупоров, формуемых центробежным методом. Такие добавки существенно понижают дилатансию ВКВС, а в дальнейшем способствуют резкому упрочнению материала при низкотемпературном обжиге. В частности, при введении SiO2 в ВКВС боксита такое упрочнение происходит за счет низкотемпературного муллитообразования, обусловленного высокой активностью и дисперcностью сверхтонких частиц SiO2 и боксита. Определенное участие в процессе муллитообразования принимают частицы глины (свободный SiO2). При получении ряда огнеупоров эффективными являются комплексные добавки глины и SiO2, вводимые в количестве 3 - 15%.
Заполнитель (крупнозернистая составляющая) пресс-порошков, получаемых по данному способу, используемых в количестве 55 - 80 мас.%, может быть представлен теми же огнеупорными материалами, что и связующая составляющая (ВКВС). Может применяться и сложный состав, например, шамот или боксит с добавками SiC корундо-муллитовый и т.д.
Состав исходных формовочных систем при этом может быть однородным (например, ВКВС боксита и бокситовый заполнитель), так и разнородным (ВКВС боксита и шамотный заполнитель и т.д.).
Для формования изделий по данному изобретению могут применяться также методы набивки (вибротрамбования), вибропрессования, вибролитья или литья из саморастекающихся масс. В двух последних случаях влажность массы повышают на 0,5 -1,5%, а в качестве структурообразователя непосредственно перед формованием допускается введение 0,5 - 3,0% высокоглиноземистого цемента.
Примеры осуществления предлагаемого способа.
Пример 1 относится к получению бокситовых огнеупоров, характеризующихся содержанием Al2O3 в пределах 85-88%.
В качестве материала для ВКВС применяют боксит, содержащий 85-92% Al2O3 и 3 - 8% SiO2. Мокрый помол осуществляют в шаровой мельнице с постадийной загрузкой материала, соблюдая основные принципы получения ВКВС [4]. С целью ускорения процесса измельчения, улучшения реологических свойств полученных суспензий при мокром помоле вводят добавки высокодисперсного плавленого кварца в виде слива. Добавка SiO2 при этом составляет 2 - 6% (по сухому веществу). После окончания мокрого помола ВКВС характеризуется влажностью 12 -15%, содержанием частиц менее 5 мкм в пределах 20 - 40% и крупнее 63 мкм - 5 -15%. Полученная суспензия подвергается гравитационному смешиванию с предварительно полученной суспензией огнеупорной глины, содержание которой в ВКВС варьируют в пределах 2 - 4%. С целью понижения вязкости смешанной суспензии в процессе перемешивания могут вводиться добавки, регулирующие показатель pH системы. Заполнитель из боксита для получения огнеупорных масс готовят посредством дробления, помола и рассева с выделением различных групп фракций: 1 - 3 мм; 0-1 мм. Огнеупорную массу готовят в специальных бегунах при следующем соотношении компонентов (по сухому):
ВКВС (связующая система) - 30 - 40%
Бокситовый заполнитель - 48 - 67%
В зависимости от пористости (водопоглощения) бокситового заполнителя влажность исходного пресс-порошка должна составлять 4,0 - 5,2%. При известных значениях Pуд прессования влажность пресс-порошков выбирают из условия достижения плотности прессовки, близкой к критической [4]. Основная доля воды в пресс-порошок вводится в виде ВКВС.
Прессование изделий осуществляется при Pуд = 50 - 200 МПа на гидравлических или фрикционных прессах. В зависимости от вида, пористости и состава заполнителя при этих давлениях можно получить прессовки с пористостью 12 -18%, характеризующиеся после сушки значительной прочностью (σсж= 8-12 МПа). Для огнеупоров, полученных по предлагаемому способу, характерна высокая механическая прочность. Так, даже после термообработки при 1000oC механическая прочность составляет σсж= 80-120 МПа, после 1200oC - 140-180 МПа, 1500oC - 200-300 МПа. Благодаря процессу муллитообразования в процессе спекания или службы усадка материала практически не отмечается. По сравнению с традиционными корундо-муллитовыми огнеупорами со сравнимым химическим составом полученные по данному способу огнеупорные изделия характеризуются также повышенными эксплуатационными характеристиками благодаря тонкокапиллярной структуре.
Пример 2 относится к получению корундовых огнеупоров с содержанием Al2O3 в пределах 90 - 95%. По данному изобретению также огнеупоры получают следующим образом. В качестве связки применяют пластифицированную ВКВС высококачественного боксита (Al2O3 > 88%) с комплексной добавкой SiO2 и огнеупорной глины в пределах 6-8% (см. пример 1). В качестве заполнителя применяют корундовый шамот, электрокорунд или спеченный глинозем (типа табулярного), а в ряде случаев и алюмомагнезиальную шпинель (фракции 1-5 мм). При этом содержание связки в пресс-порошках находится в пределах 20-30%. Требуемые эксплуатационные свойства таких огнеупоров достигаются при низкотемпературном (1000 - 1200oC) обжиге, что на 500-700oC ниже температуры обжига традиционных прессованных корундовых огнеупоров. Это достигается образованием в корундовых огнеупорах муллитовой связки.
Пример 3 относится к получению шамотных огнеупоров или огнеупоров полукислого состава. По данному изобретению их получают следующим образом. В качестве связующего применяют ВКВС на основе алюмосиликатного шамота, в том числе и на основе лома шамотных огнеупоров. Кроме добавок огнеупорной глины в их состав может вводиться высокодисперсный кварцевый песок (при совместном помоле) в количестве 5-15%, а также глинозем в количестве 2-10%. Если добавка кристаллического SiO2 способствуют повышению объемопостоянства изделий при обжиге и службе, то Al2O3 низкотемпературному упрочнению за счет муллитообразования. В качестве заполнителя при этом применяют полифракционный шамот фракции 0,1-5 мм в количество 55-80. Требуемые эксплуатационные характеристики достигаются после обжига при 1000-1100oC, что на 300-400oC ниже по сравнению с известными огнеупорами.
Пример 4 относится к получению огнеупоров с корундо-карборундовым заполнителем. В отличие от огнеупоров, описанных в примере 2, заполнитель в данном случае применяют двухкомпонентным - на основе электрокорунда фракции 0,1-5 мм и карбида кремния фракции 0,02 - 0,2 мм. Состав масс при этом принимают следующим, %:
Связующее - 25-30
Электрокорунд - 50-60
Карбид кремния - 10-20
Требуемые эксплуатационные свойства достигаются после обжига при 1000 - 1150oC. Применяют для футеровок, высокоустойчивых к шлаку.
Предлагаемые огнеупорные изделия характеризуются не только повышенной стойкостью в службе, но и пониженной заводской себестоимостью, экологически безвредны. Области применения огнеупорных изделий - традиционные для огнеупоров рассматриваемых классов: сталеразливочные ковши, камеры горения воздухонагревателей, для кладки лещади доменных печей, стаканы-коллекторы и т.д.
Источники информации
1. Стрелов К.К. Теоретические основы технологии огнеупорных материалов. - М.: Металлургия, 1985, 480 с.
2. Огнеупорные изделия, материалы и сырье. Справочник. Изд. 4. Под ред. А.К. Карклите, М.: Металлургия, 1991, 416 с.
3. Пивинский Ю.Е., Добродон Д.А., Рожков Е.В. и др. Материалы на основе высококонцентрированных вяжущих суспензий (ВКВС). Оценка способов формования бокситовых керамобетонов // Огнеупоры и техническая керамика, 1997, N 5, с. 11 - 14.
4. Попильский Р.Я. и Пивинский Ю.Е. Прессование порошковых керамических масс. М.: Металлургия, 1983, 176 с,

Claims (3)

1. Способ изготовления алюмосиликатных и корундовых огнеупорных изделий, включающий подготовку зернистой составляющей и тонкодисперсной связующей составляющей в виде предварительно полученной высококонцентрированной суспензии огнеупорного компонента, их смешение, прессование, сушку и обжиг, отличающийся тем, что используют пластифицированную высококонцентрированную суспензию с влажностью 12 - 20% при содержании в ней частиц до 5 мкм 20 - 50%, а смесь для прессования готовят при следующем соотношении компонентов по сухому веществу, мас.%:
Связующая составляющая - 20 - 45
Зернистая составляющая - 55 - 80
2. Способ по п. 1, отличающийся тем, что в связующую суспензию вводят пластифицирующие добавки огнеупорной глины в количестве 2 - 10%.
3. Способ по п. 1, отличающийся тем, что в связующую суспензию вводят добавки высокодисперсного SiO2 или Al2O3 в количестве 2 - 10 мас.%.
4. Способ по п. 1, отличающийся тем, что в связующую суспензию вводят комплексную добавку огнеупорной глины и SiO2 в количестве 3 - 15 мас.%.
RU98111863/03A 1998-06-18 1998-06-18 Способ изготовления алюмосиликатных и корундовых огнеупорных изделий RU2153482C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98111863/03A RU2153482C2 (ru) 1998-06-18 1998-06-18 Способ изготовления алюмосиликатных и корундовых огнеупорных изделий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98111863/03A RU2153482C2 (ru) 1998-06-18 1998-06-18 Способ изготовления алюмосиликатных и корундовых огнеупорных изделий

Publications (2)

Publication Number Publication Date
RU98111863A RU98111863A (ru) 2000-05-10
RU2153482C2 true RU2153482C2 (ru) 2000-07-27

Family

ID=20207539

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98111863/03A RU2153482C2 (ru) 1998-06-18 1998-06-18 Способ изготовления алюмосиликатных и корундовых огнеупорных изделий

Country Status (1)

Country Link
RU (1) RU2153482C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072366A (zh) * 2021-03-04 2021-07-06 中国地质大学(北京) 一种利用铝矾土尾矿和钾长石低温烧结制备莫来石质复相陶瓷的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ПИВИНСКИЙ Ю.Е. и др. Материалы на основе высококонцентрированных керамических вяжущих суспензий (ВКВС). Оценка способов формования бокситовых керамобетонов. Огнеупоры и техническая керамика, 1997, N 5, с. 11 - 14. *
ПИВИНСКИЙ Ю.Е. Керамические вяжущие и керамобетоны. - М.: Металлургия, 1990, с. 222 - 233. ПИВИНСКИЙ Ю.Е. Материалы на основе высококонцентрированных керамических вяжущих суспензий (ВКВС). Прессование огнеупоров с применением ВКВС на основе боксита. Огнеупоры и техническая керамика, 1997, N 3, с. 19 - 23. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072366A (zh) * 2021-03-04 2021-07-06 中国地质大学(北京) 一种利用铝矾土尾矿和钾长石低温烧结制备莫来石质复相陶瓷的方法

Similar Documents

Publication Publication Date Title
US5252526A (en) Insulating refractory
RU2752414C2 (ru) Способ получения пористой спеченной магнезии, шихты для получения грубокерамического огнеупорного изделия с зернистым материалом из спеченной магнезии, изделия такого рода, а также способы их получения, футеровки промышленной печи и промышленная печь
CN106145976B (zh) 水泥窑用红柱石-莫来石-碳化硅砖及其制备方法
JPH0573713B2 (ru)
JP5775112B2 (ja) 鋳造体、キャスタブル組成物、及びそれらの製造方法
CN1050591C (zh) 烧成微孔铝炭砖及其制作方法
CZ20003060A3 (cs) Bázická volně tekoucí licí hmota a tvarované díly vyrobené z této hmoty
WO2002070431A1 (de) Gesinterte anorganische granulate und formkörper auf basis von kohlenstoff und/oder molybdänverbindungen in einer keramischen matrix
EP0293600B1 (de) Verfahren zur Herstellung eines feuerfesten Oxid -Kohlenstoff-Steins
RU2153482C2 (ru) Способ изготовления алюмосиликатных и корундовых огнеупорных изделий
CN108285350B (zh) 一种三元复合碳化硅质耐火材料及其制备方法
JPS6410469B2 (ru)
CN1210098A (zh) 具有高温自增强作用的耐火浇注料及其生产方法
CA1331631C (en) Rebonded fused brick
US3442670A (en) Carbon composition and process
CN113526946A (zh) 高韧性的改性硅刚玉砖
CN1252397A (zh) 碳化硅质烧结材料的制备方法
RU2153480C2 (ru) Способ изготовления огнеупорных масс для монолитных футеровок
Pivinskii et al. Materials based on highly concentrated ceramic binding suspensions (HCBS). Corundum and corundum-mullite ceramic castables based on plasticized HCBS of bauxite
RU2148566C1 (ru) Шихта для производства шамотных изделий и способ приготовления огнеупоров
Pivinskii et al. Aluminosilicate Refractories Based on High-Alumina HCBS. Part 2. Refractories Based on Mullite-Silica Composition HCBS
JP4384351B2 (ja) 高炉羽口用耐火物
US3778493A (en) Compacting refractory particles having a surface coating of gelled silicasol
JP3117180B2 (ja) 不定形耐火物成形体とその製造方法
RU2257361C1 (ru) Карбидкремниевый бетон

Legal Events

Date Code Title Description
QZ4A Changes in the licence of a patent

Effective date: 20001115

PC4A Invention patent assignment

Effective date: 20060927

MM4A The patent is invalid due to non-payment of fees

Effective date: 20090619