RU210800U1 - ENDOPROSTHESIS OF THE ACETABULAR COMPONENT OF THE HIP JOINT - Google Patents

ENDOPROSTHESIS OF THE ACETABULAR COMPONENT OF THE HIP JOINT Download PDF

Info

Publication number
RU210800U1
RU210800U1 RU2021132586U RU2021132586U RU210800U1 RU 210800 U1 RU210800 U1 RU 210800U1 RU 2021132586 U RU2021132586 U RU 2021132586U RU 2021132586 U RU2021132586 U RU 2021132586U RU 210800 U1 RU210800 U1 RU 210800U1
Authority
RU
Russia
Prior art keywords
ion
endoprosthesis
cells
hip joint
acetabular component
Prior art date
Application number
RU2021132586U
Other languages
Russian (ru)
Inventor
Игорь Владимирович Родионов
Ирина Владимировна Перинская
Любовь Евгеньевна Куц
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.)
Priority to RU2021132586U priority Critical patent/RU210800U1/en
Application granted granted Critical
Publication of RU210800U1 publication Critical patent/RU210800U1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/02Use of inorganic materials

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Hematology (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Prostheses (AREA)

Abstract

Полезная модель относится к медицинской технике, а именно к конструкции вертлужных компонентов (чашек) эндопротезов тазобедренного сустава, и может быть использована в травматологии и ортопедии для замещения деформированной или разрушенной вертлужной впадины при первичном и ревизионном эндопротезировании тазобедренного сустава. Технический результат полезной модели заключается в упрочнении поверхности внешней стороны чашки, взаимодействующей с костной тканью, в результате синтеза углеродного алмазоподобного слоя. Эндопротез вертлужного компонента тазобедренного сустава с ячеистой структурой и биоактивным покрытием выполнен монолитным в виде чаши, имеющей форму полусферы, из титанового сплава по аддитивной технологии методом лазерного спекания с отверстиями со сферическими углублениями под шляпку костного винта, стенка выполнена толщиной 4 мм, содержит радиальные сквозные ячейки шестигранной формы, диаметр вписанной окружности каждой ячейки 1,5 мм, стенка ячейки имеет поперечные сквозные поры, наружная поверхность чаши и стенки ячеек имеют биосовместимое гетерогенное оксидное покрытие толщиной 20 мкм и шероховатостью Ra=1,4 мкм с микропорами размером 12 мкм, полученное в результате газотермического оксидирования на воздухе с последующим синтезом на его поверхности углеродной алмазоподобной пленки, полученной в процессе ионно-лучевой обработки в вакуумной среде углекислого газа (CO2) пучком ионов аргона (Ar+) и модифицированной ионами серебра (Ag+) в процессе ионно-лучевой обработки. 1 фиг.The utility model relates to medical technology, namely to the design of acetabular components (cups) of hip endoprostheses, and can be used in traumatology and orthopedics to replace a deformed or destroyed acetabulum during primary and revision hip arthroplasty. The technical result of the utility model is to harden the surface of the outer side of the cup, which interacts with bone tissue, as a result of the synthesis of a carbon diamond-like layer. The endoprosthesis of the acetabular component of the hip joint with a cellular structure and a bioactive coating is made monolithic in the form of a hemisphere-shaped bowl, made of titanium alloy using additive technology by laser sintering with holes with spherical recesses for the bone screw head, the wall is made 4 mm thick, contains radial through cells hexagonal shape, the diameter of the inscribed circle of each cell is 1.5 mm, the cell wall has transverse through pores, the outer surface of the bowl and the walls of the cells have a biocompatible heterogeneous oxide coating 20 μm thick and with a roughness of Ra = 1.4 μm with micropores of 12 μm, obtained in as a result of gas-thermal oxidation in air with subsequent synthesis on its surface of a carbon diamond-like film obtained in the process of ion-beam treatment in a vacuum environment of carbon dioxide (CO2) with an argon ion beam (Ar+) and modified with silver ions (Ag+) in the process of ion-beam treatment. 1 fig.

Description

Полезная модель относится к медицинской технике, а именно к конструкции вертлужных компонентов (чашек) эндопротезов тазобедренного сустава, и может быть использована в травматологии и ортопедии для замещения деформированной или разрушенной вертлужной впадины при первичном и ревизионном эндопротезировании тазобедренного сустава.The utility model relates to medical technology, namely to the design of acetabular components (cups) of hip endoprostheses, and can be used in traumatology and orthopedics to replace a deformed or destroyed acetabulum during primary and revision hip replacement.

В Российской Федерации потребность первичного эндопротезирования тазобедренного сустава составляет порядка 50000 хирургических вмешательств ежегодно, а потребность в эндопротезировании тазобедренного сустава у подростков и активных молодых граждан достигает уровня 150 операций по имплантации. Процент осложнений и неудовлетворительных результатов имплантации при операциях эндопротезирования тазобедренного сустава остается по-прежнему на высоком уровне. Увеличить эффективность таких операций возможно путем повышения уровня биосовместимости эндопротезов при использовании новых конструкционных материалов и покрытий, а также путем разработки высокотехнологичных конструкций эндопротезов.In the Russian Federation, the need for primary hip arthroplasty is about 50,000 surgical interventions annually, and the need for hip arthroplasty in adolescents and active young citizens reaches the level of 150 implantation operations. The percentage of complications and unsatisfactory results of implantation during hip arthroplasty remains at a high level. It is possible to increase the efficiency of such operations by increasing the level of biocompatibility of endoprostheses using new structural materials and coatings, as well as by developing high-tech designs of endoprostheses.

Поверхности, контактирующие с биоструктурами, должны обладать высокой суммарной открытой пористостью и морфологической гетерогенностью, что необходимо для эффективного прорастания клеток костной ткани и прочного остеоинтеграционного закрепления имплантируемых конструкций в организме.Surfaces in contact with biostructures should have a high total open porosity and morphological heterogeneity, which is necessary for efficient germination of bone tissue cells and strong osseointegration fixation of implanted structures in the body.

Однако высокая открытая пористость покрытий характеризуется пониженной механической прочностью, что является сильным ограничением в разработке высокопористых имплантационных систем. Поэтому создание внутрикостных металлических конструкций с пористыми биосовместимыми покрытиями, обладающими повышенной прочностью, является актуальным в современной имплантологии и биоинженерии поверхности.However, the high open porosity of coatings is characterized by reduced mechanical strength, which is a strong limitation in the development of highly porous implant systems. Therefore, the creation of intraosseous metal structures with porous biocompatible coatings with increased strength is relevant in modern implantology and surface bioengineering.

При действии агрессивной биологической среды в виду отсутствия физико-механических условий, обеспечивающих эффективное интеграционное (на микро- и наноуровне) взаимодействие поверхности эндопротеза с прилегающими костными структурами, происходят процессы воспаления прилегающих тканей и отторжения установленных конструкций. Поэтому для повышения эффективности использования эндопротезов рекомендуют применение биосовместимых покрытий с антимикробными свойствами.Under the action of an aggressive biological environment, due to the absence of physical and mechanical conditions that ensure effective integration (at the micro- and nanolevel) interaction of the endoprosthesis surface with adjacent bone structures, processes of inflammation of adjacent tissues and rejection of established structures occur. Therefore, to increase the efficiency of endoprosthesis use, it is recommended to use biocompatible coatings with antimicrobial properties.

Известна конструкция эндопротеза вертлужного компонента тазобедренного сустава фирмы LOGEEKs MS (http://3dmed.logeeks.ru/), которая предлагает компоненты для эндопротезирования тазобедренного сустава, в частности, линейку типоразмеров вертлужных компонентов Tuberlocktm, выполненных по аддитивной технологии методом лазерного спекания порошков титановых сплавов. Чашки имеют шероховатую поверхность и гладкие отверстия со сферическими углублениями под шляпку винта. Аддитивная технология изготовления позволяет учесть особенности геометрии дефекта кости.Known design of the endoprosthesis of the acetabular component of the hip joint company LOGEEKs MS (http://3dmed.logeeks.ru/), which offers components for hip arthroplasty, in particular, a line of sizes of acetabular components Tuberlocktm, made by additive technology by laser sintering of titanium alloy powders . The cups have a rough surface and smooth holes with spherical recesses for the screw head. The additive manufacturing technology makes it possible to take into account the features of the geometry of the bone defect.

Недостатком данной конструкции является отсутствие на внешней стороне чашки, взаимодействующей с костной тканью, биосовместимого гетерогенного покрытия, обладающего антимикробными свойствами и высокой механической прочностью.The disadvantage of this design is the lack of a biocompatible heterogeneous coating on the outside of the cup that interacts with bone tissue, which has antimicrobial properties and high mechanical strength.

Известна конструкция эндопротеза вертлужного компонента (чашки) пресс-фит фирмы ALTIMED (каталог имплантатов для остеосинтеза фирмы ALTIMED) (http://www.altimed.by/uploads/userfiles/files/altimed_catalogue_2012_russian.pdf). Эндопротез имеет сферическую форму и пористую структуру поверхности, что обеспечивает стабильную первичную и вторичную фиксацию. Кроме того, поверхность чашки покрыта защитным коррозионностойким слоем диоксида титана, который повышает биосовместимость и предотвращает миграцию микропримесей в организм.Known design of the endoprosthesis of the acetabular component (cup) press-fit company ALTIMED (catalogue of implants for osteosynthesis company ALTIMED) (http://www.altimed.by/uploads/userfiles/files/altimed_catalogue_2012_russian.pdf). The endoprosthesis has a spherical shape and a porous surface structure, which ensures stable primary and secondary fixation. In addition, the surface of the cup is covered with a protective corrosion-resistant layer of titanium dioxide, which increases biocompatibility and prevents the migration of micro-impurities into the body.

Недостатком данной конструкции является отсутствие на внешней стороне чашки, взаимодействующей с костной тканью, биосовместимого гетерогенного покрытия, обладающего антимикробными свойствами и высокой механической прочностью.The disadvantage of this design is the lack of a biocompatible heterogeneous coating on the outside of the cup that interacts with bone tissue, which has antimicrobial properties and high mechanical strength.

Наиболее близким по технической сущности предлагаемой полезной модели является конструкция эндопротеза вертлужного компонента тазобедренного сустава [Патент РФ №202646, МПК A61F 2/34 (2006.01), опубл. 01.03.2021], которая выполнена монолитной в форме полусферы из титанового сплава по аддитивной технологии методом лазерного спекания, с отверстиями, имеющими сферические углубления, под шляпку костного винта. Стенка эндопротеза выполнена толщиной 4 мм и содержит радиальные сквозные ячейки шестигранной формы. Диаметр вписанной окружности каждой ячейки 1,5 мм, стенка ячейки имеет поперечные сквозные поры. Наружная поверхность и стенки ячеек содержат биоактивное покрытие из гидроксиапатита толщиной 40 мкм и шероховатостью Ra=2,38 мкм с микропорами и с антибиотиком.The closest in technical essence of the proposed utility model is the design of the endoprosthesis of the acetabular component of the hip joint [RF Patent No. 202646, IPC A61F 2/34 (2006.01), publ. 03/01/2021], which is made monolithic in the form of a hemisphere of titanium alloy using additive technology by laser sintering, with holes having spherical recesses for the head of a bone screw. The wall of the endoprosthesis is made 4 mm thick and contains radial through cells of a hexagonal shape. The diameter of the inscribed circle of each cell is 1.5 mm, the cell wall has transverse through pores. The outer surface and walls of the cells contain a bioactive coating of hydroxyapatite with a thickness of 40 μm and a roughness of Ra=2.38 μm with micropores and with an antibiotic.

Недостатком данной конструкции является отсутствие на внешней стороне чашки, взаимодействующей с костной тканью, биосовместимого гетерогенного покрытия, обладающего антимикробными свойствами и высокой механической прочностью.The disadvantage of this design is the lack of a biocompatible heterogeneous coating on the outside of the cup that interacts with bone tissue, which has antimicrobial properties and high mechanical strength.

Задачей полезной модели является создание эндопротеза вертлужного компонента тазобедренного сустава с механически высокопрочным биосовместимым гетерогенным покрытием, обладающей антимикробными свойствами.The objective of the utility model is to create an endoprosthesis of the acetabular component of the hip joint with a mechanically high-strength biocompatible heterogeneous coating with antimicrobial properties.

Технический результат полезной модели заключается в создании высокопрочного биосовместимого гетерогенного покрытия, взаимодействующего с костной тканью, в результате газотермического оксидирования на воздухе и последующего синтеза на сформированном биосовместимом оксидном покрытии углеродной алмазоподобной пленки и придания ей антимикробных свойств за счет его ионно-лучевого модифицирования ионами серебра.The technical result of the utility model is to create a high-strength biocompatible heterogeneous coating that interacts with bone tissue as a result of gas-thermal oxidation in air and subsequent synthesis of a carbon diamond-like film on the formed biocompatible oxide coating and imparting antimicrobial properties to it due to its ion-beam modification with silver ions.

Поставленная задача решается за счет того, что предлагаемый эндопротез вертлужного компонента тазобедренного сустава с ячеистой структурой и биоактивным покрытием выполнен монолитным в виде чаши, имеющей форму полусферы, из титанового сплава по аддитивной технологии методом лазерного спекания с отверстиями со сферическими углублениями под шляпку костного винта, стенка выполнена толщиной 4 мм, содержит радиальные сквозные ячейки шестигранной формы, диаметр вписанной окружности каждой ячейки 1,5 мм, стенка ячейки имеет поперечные сквозные поры, согласно новому техническому решению, наружная поверхность чаши и стенки ячеек, имеют биосовместимое гетерогенное оксидное покрытие толщиной 20 мкм и шероховатостью Ra=1,4 мкм с микропорами размером 12 мкм, полученное в результате газотермического оксидирования на воздухе с последующим синтезом на его поверхности углеродной алмазоподобной пленки, полученной в процессе ионно-лучевой обработки в вакуумной среде углекислого газа (CO2) пучком ионов аргона (Ar+) и модифицированной ионами серебра (Ag+) в процессе ионно-лучевой обработки.The problem is solved due to the fact that the proposed endoprosthesis of the acetabular component of the hip joint with a cellular structure and a bioactive coating is made monolithic in the form of a bowl having the shape of a hemisphere, from a titanium alloy using additive technology by laser sintering with holes with spherical recesses under the head of the bone screw, the wall made with a thickness of 4 mm, contains radial through cells of a hexagonal shape, the diameter of the inscribed circle of each cell is 1.5 mm, the cell wall has transverse through pores, according to a new technical solution, the outer surface of the bowl and cell walls have a biocompatible heterogeneous oxide coating 20 microns thick and roughness Ra = 1.4 µm with micropores 12 µm in size, obtained as a result of gas-thermal oxidation in air with subsequent synthesis on its surface of a carbon diamond-like film obtained in the process of ion-beam processing in a vacuum environment of carbon dioxide (CO 2 ) by an ion beam argon (Ar + ) and modified with silver ions (Ag + ) in the process of ion-beam processing.

Изготовление предлагаемого эндопротеза вертлужного компонента тазобедренного сустава может осуществляться путем литья, обработки давлением, механического формообразования отверстий, газотермического оксидирования на воздухе (получение биосовместимого гетерогенного оксидного покрытия), ионно-лучевой обработки (синтез на сформированной поверхности оксидного покрытия углеродной алмазоподобной пленки, полученной в процессе ионно-лучевой обработки в вакуумной среде углекислого газа пучком ионов аргона, модифицированние ионами серебра в процессе ионно-лучевой обработки). Материалами для изготовления эндопротеза вертлужного компонента тазобедренного сустава могут служить титан, тантал, цирконий и сплавы на их основе.The manufacture of the proposed endoprosthesis of the acetabular component of the hip joint can be carried out by casting, pressure treatment, mechanical shaping of holes, gas-thermal oxidation in air (obtaining a biocompatible heterogeneous oxide coating), ion-beam treatment (synthesis of a carbon diamond-like film on the formed surface of the oxide coating, obtained in the process of ion -beam treatment in a vacuum environment of carbon dioxide with a beam of argon ions, modification with silver ions in the process of ion-beam treatment). Titanium, tantalum, zirconium and alloys based on them can serve as materials for the manufacture of an endoprosthesis of the acetabular component of the hip joint.

Полезная модель поясняется 3D-моделью. На фиг. 1 приведена предлагаемая конструкция эндопротеза вертлужного компонента тазобедренного сустава, включающая чашку с ячеистой структурой, выполненную монолитной из титанового сплава и имеющую биоактивное покрытие из гидроксиапатита, содержащую радиальные сквозные ячейки 1, и поры (каналы) 2, позволяющие сохранять возможность внутрикостного кровоснабжения, свободного перемещения тканевой жидкости. Чашка выполнена по аддитивной технологии методом лазерного спекания из сплава титанового порошка и имеет вид полусферы с отверстиями 3 под фиксирующие костные винты (на фиг. не показаны). Стенка чашки выполнена толщиной 4 мм, имеет радиальные сквозные ячейки 1 шестигранной формы с толщиной стенки от 1 мм до 1,5 мм, диаметр вписанной окружности каждой ячейки 1,5 мм, стенка ячейки 1 имеет поперечные поры (каналы) 2 диаметром 300 мкм. Внешняя поверхность чашки и стенки ячеек 1 содержат биосовместимое гетерогенное оксидное покрытие 4, толщиной 20 мкм и шероховатостью Ra=1,4 мкм с микропорами размером 12 мкм, полученное в результате газотермического оксидирования на воздухе и сформированную на поверхности оксидного покрытия 4 углеродную алмазоподобную пленку 5, полученную в процессе ионно-лучевой обработки в вакуумной среде углекислого газа пучком ионов аргона, модифицированная ионами серебра 6.The utility model is illustrated by a 3D model. In FIG. 1 shows the proposed design of the endoprosthesis of the acetabular component of the hip joint, including a cup with a cellular structure, made of a monolithic titanium alloy and having a bioactive coating of hydroxyapatite, containing radial through cells 1, and pores (channels) 2, which allow maintaining the possibility of intraosseous blood supply, free movement of the tissue liquids. The cup is made by the additive technology by laser sintering from an alloy of titanium powder and has the form of a hemisphere with holes 3 for fixing bone screws (not shown in the figure). The cup wall is made 4 mm thick, has radial through cells 1 of a hexagonal shape with a wall thickness of 1 mm to 1.5 mm, the diameter of the inscribed circle of each cell is 1.5 mm, the cell wall 1 has transverse pores (channels) 2 with a diameter of 300 μm. The outer surface of the cup and the walls of the cells 1 contain a biocompatible heterogeneous oxide coating 4, 20 μm thick and with a roughness of Ra=1.4 μm with micropores of 12 μm, obtained as a result of gas-thermal oxidation in air and a carbon diamond-like film 5 formed on the surface of the oxide coating 4, obtained in the process of ion-beam treatment in a vacuum environment of carbon dioxide with a beam of argon ions, modified with silver ions 6.

Углеродная алмазоподобная пленка 5 имеет повышенные показатели механической прочности и толщину 25-75 нм, которая обусловлена технологическими режимами синтеза в процессе ионно-лучевой обработки в вакуумной среде углекислого газа пучком ионов аргона. При этом углеродная алмазоподобная пленка 5 воспроизводит рельеф поверхности биосовместимого гетерогенного оксидного покрытия 4, не снижая его общую суммарную открытую микропористость и остеоинтеграционную способность.Carbon diamond-like film 5 has increased mechanical strength and a thickness of 25-75 nm, which is due to the technological modes of synthesis in the process of ion-beam processing in a vacuum environment of carbon dioxide with an argon ion beam. At the same time, the carbon diamond-like film 5 reproduces the surface topography of the biocompatible heterogeneous oxide coating 4 without reducing its overall total open microporosity and osseointegration ability.

Исследования показали, что оптимальными значениями параметров проведения процесса газотермического оксидирования на воздухе являются следующие: температура нагрева t=500°С; время выдержки τ=1,5 ч. При газотермическом оксидировании на воздухе образование покрытия на поверхности происходит за счет физико-химического взаимодействия металлической матрицы с кислородом реакционной среды. В результате такого реакционного взаимодействия на обрабатываемой поверхности формируются металлокерамические оксидные соединения, которые придают ей комплекс повышенных физико-химических и механических свойств, отличных от свойств основного металла. Происходит также диффузионное термоупрочнение модифицированных поверхностных слоев изделия при сохранении химического состава основной металлической матрицы.Studies have shown that the optimal values of the parameters of the process of thermal oxidation in air are the following: heating temperature t=500°C; holding time τ=1.5 h. During gas-thermal oxidation in air, the formation of a coating on the surface occurs due to the physicochemical interaction of the metal matrix with the oxygen of the reaction medium. As a result of such a reactionary interaction, metal-ceramic oxide compounds are formed on the treated surface, which give it a complex of increased physicochemical and mechanical properties that differ from those of the base metal. There is also diffusion thermal hardening of the modified surface layers of the product while maintaining the chemical composition of the main metal matrix.

При уменьшении значений указанных параметров газотермического оксидирования на воздухе не наблюдается образования гетерогенное оксидное покрытие, а при их превышении получаемое покрытие характеризуется повышенной склонностью к трещинообразованию. В указанном диапазоне параметров газотермического оксидирования на воздухе происходит формирование биосовместимого гетерогенного оксидного покрытия толщиной 20 мкм с величиной твердости 7-8 ГПа, что на 36% превышает твердость не модифицированной поверхности. Для упрочнения биосовместимого гетерогенного оксидного покрытия на его поверхности имеется углеродная алмазоподобная пленка с повышенными показателями твердости.With a decrease in the values of these parameters of gas-thermal oxidation in air, the formation of a heterogeneous oxide coating is not observed, and when they are exceeded, the resulting coating is characterized by an increased tendency to cracking. In the specified range of parameters of gas-thermal oxidation in air, a biocompatible heterogeneous oxide coating 20 μm thick with a hardness value of 7–8 GPa is formed, which is 36% higher than the hardness of the unmodified surface. To strengthen the biocompatible heterogeneous oxide coating on its surface, there is a carbon diamond-like film with increased hardness.

Исследования показали, что оптимальными дозами ионов аргона, необходимыми для процесса формирования углеродной алмазоподобной пленки при ионно-лучевой обработки, являются: доза ионов аргона Ф=6·1016-2,4·1017 ион/см2; энергия E=75 кэВ, так как при дозах ионов аргона менее 1,6·1016 ион/см2 и более 2,4·1017 ион/см2 не происходит формирование углеродной алмазоподобной пленки. Углеродная алмазоподобная пленка 5 обладает антимикробными свойствами за счет ее ионно-лучевого модифицирования ионами серебра 6 в процессе ионно-лучевой обработки, что подтверждается экспериментально полученными результатами исследования, которые показали, что оптимальными дозами ионов серебра, необходимыми для придания пленки антимикробных свойств, являются 1,2·1016-1,8·1016 ион/см2 с ускоряющим напряжением 50 кВ. При дозах ионов серебра менее 1,2·1016 ион/см2 и более 1,8·1016 ион/см2 не проявляются антимикробные свойства. Антимикробные свойства обусловлены комплексом терапевтических свойств, присущих серебросодержащим покрытиям и препаратам серебра: широким антибактериальным спектром в отношении патогенной флоры, в том числе устойчивой к антибиотикам; сложностью вырабатывания у патогенных микроорганизмов защитных механизмов к действию ионов серебра; хорошо выраженным ранозаживляющим действием.Studies have shown that the optimal doses of argon ions necessary for the process of formation of a carbon diamond-like film during ion-beam processing are: the dose of argon ions Ф=6·10 16 -2.4·10 17 ion/cm 2 ; energy E=75 keV, since at doses of argon ions less than 1.6·10 16 ion/cm 2 and more than 2.4·10 17 ion/cm 2 no carbon diamond-like film is formed. Carbon diamond-like film 5 has antimicrobial properties due to its ion-beam modification with silver ions 6 during ion-beam treatment, which is confirmed by experimentally obtained research results, which showed that the optimal doses of silver ions necessary to impart antimicrobial properties to the film are 1, 2·10 16 -1.8·10 16 ion/cm 2 with an accelerating voltage of 50 kV. At doses of silver ions less than 1.2·10 16 ion/cm 2 and more than 1.8·10 16 ion/cm 2 antimicrobial properties do not appear. Antimicrobial properties are due to a complex of therapeutic properties inherent in silver-containing coatings and silver preparations: a wide antibacterial spectrum against pathogenic flora, including those resistant to antibiotics; the complexity of developing protective mechanisms in pathogenic microorganisms to the action of silver ions; well-pronounced wound-healing effect.

Процесс установки предлагаемого эндопротеза вертлужного компонента тазобедренного сустава состоит в следующем.The installation process of the proposed endoprosthesis of the acetabular component of the hip joint is as follows.

После подготовки костного ложа устанавливают чашку, причем для достижения «press-fit» эффекта размер имплантата должен превышать внутренний размер вертлужной впадины после ее обработки фрезами на 2 мм. Внедрение в вертлужную впадину контролируют под ударами молоткового инструмента по направителю, учитывая сопротивление костной ткани и уменьшение диастаза (расстояния между дном чашки и костной тканью) через отверстия для установки костных винтов. Плотность посадки чашки определяют путем легкого покачивания за направитель. В случаях, когда прочность первичной фиксации оказывается недостаточной, целесообразно укрепить чашку одним или двумя спонгиозными костными винтами (на фиг. 1 не показаны), выполненными из титана и покрытыми гидроксиапатитом по технологии микродугового оксидирования (диаметр костных винтов составляет 6,5 мм). Винты должны вводиться через отверстия 3 в подвздошную кость в задневерхнем секторе. Вторичная фиксация обеспечивается активным процессом остеоинтеграции формированием костного вещества внутри ячеек 1 и пор 2 чашки. Уже в течение первого месяца после операции формируется прочный костно-имплантационный блок, который обеспечивает стабильное положение чашки на длительное время. Покрытие титанового имплантата и фиксирующих винтов, состоящее из биосовместимого гетерогенного оксидного покрытия 4 и высокопрочной биосовместимой углеродной алмазоподобной пленки 5, стимулирует процесс остеоиндукции и структура окружающей костной ткани значительно уплотняется. Последнее имеет огромное значение для профилактики расшатывания элементов эндопротеза при выраженном остеопорозе. Процесс остеоиндукции важен и при заполнении небольших дефектов кости, например, сохраняющегося диастаза (1-1,5 мм) между чашкой и костным ложем впадины.After preparing the bone bed, a cup is installed, and to achieve the “press-fit” effect, the size of the implant must exceed the internal size of the acetabulum after its processing with cutters by 2 mm. Insertion into the acetabulum is controlled by blows of the hammer tool on the guide, taking into account the resistance of the bone tissue and the reduction of diastasis (the distance between the bottom of the cup and the bone tissue) through the holes for installing bone screws. The fit of the cup is determined by gently rocking the guide. In cases where the strength of the primary fixation is insufficient, it is advisable to strengthen the cup with one or two spongy bone screws (not shown in Fig. 1) made of titanium and coated with hydroxyapatite using microarc oxidation technology (bone screw diameter is 6.5 mm). The screws must be inserted through holes 3 into the ilium in the posterior superior sector. Secondary fixation is provided by an active process of osseointegration by the formation of bone substance inside cells 1 and pores 2 of the cup. Already within the first month after the operation, a strong bone-implant block is formed, which ensures a stable position of the cup for a long time. The coating of a titanium implant and fixing screws, consisting of a biocompatible heterogeneous oxide coating 4 and a high-strength biocompatible carbon diamond-like film 5, stimulates the process of osteoinduction and the structure of the surrounding bone tissue is significantly compacted. The latter is of great importance for the prevention of loosening of endoprosthesis elements in severe osteoporosis. The process of osteoinduction is also important when filling small bone defects, for example, the remaining diastasis (1-1.5 mm) between the cup and the bone bed of the cavity.

Дальнейшие этапы операции включают установку бедренного компонента эндопротеза. После проверки объема движений и длины конечности устанавливается дренаж и рана послойно ушивается.Further stages of the operation include the installation of the femoral component of the endoprosthesis. After checking the range of motion and the length of the limb, drainage is established and the wound is sutured in layers.

В процессе приживления эндопротеза вертлужного компонента тазобедренного сустава высокопрочная углеродная алмазоподобная пленка 5 обеспечивает высокий уровень биологической совместимости поверхности и интеграционное взаимодействие с костной тканью, а затем при функционировании эндопротеза создает необходимые биотехнические условия для эффективной работы имплантата при действии функциональных весовых нагрузок за счет повышенной механической прочности поверхности вертлужного компонента, в частности твердости - 10-12 ГПа, что значительно выше твердости костной ткани (0,5-0,6 ГПа). Углеродная алмазоподобная пленка 5 модифицирована ионами серебра 6, которые проявляют антимикробные свойства, что способствует быстрой и надежной остеоинтеграции имплантата с биологическими тканями за счет наименьшего процента их отторжения.In the process of engraftment of the endoprosthesis of the acetabular component of the hip joint, high-strength carbon diamond-like film 5 provides a high level of biological compatibility of the surface and integration interaction with bone tissue, and then, during the operation of the endoprosthesis, creates the necessary biotechnical conditions for the effective operation of the implant under the action of functional weight loads due to the increased mechanical strength of the surface acetabular component, in particular hardness - 10-12 GPa, which is much higher than the hardness of bone tissue (0.5-0.6 GPa). The carbon diamond-like film 5 is modified with silver ions 6, which exhibit antimicrobial properties, which contributes to the rapid and reliable osseointegration of the implant with biological tissues due to the lowest percentage of their rejection.

Таким образом, предложенная конструкция эндопротеза вертлужного компонента тазобедренного сустава создает наилучшие условия для эффективного интеграционного взаимодействия поверхности имплантата с костной тканью и надежного функционирования эндопротеза в организме при длительном действии механических нагрузок благодаря синтезу на гетерогенной поверхности оксидного покрытия углеродной алмазоподобной пленки. Данная углеродная алмазоподобная пленка обладает повышенной биосовместимостью и обеспечивает повышенную механическую прочность поверхности конструкции эндопротеза. За счет модифицирования углеродной алмазоподобной пленки ионами серебра поверхность эндопротеза вертлужного компонента тазобедренного сустава обладает выраженными антимикробными свойствами.Thus, the proposed design of the endoprosthesis of the acetabular component of the hip joint creates the best conditions for effective integration interaction of the implant surface with bone tissue and reliable functioning of the endoprosthesis in the body under prolonged action of mechanical loads due to the synthesis of a carbon diamond-like film oxide coating on the heterogeneous surface. This carbon diamond-like film has increased biocompatibility and provides increased mechanical strength of the surface of the endoprosthesis structure. Due to the modification of the carbon diamond-like film with silver ions, the surface of the endoprosthesis of the acetabular component of the hip joint has pronounced antimicrobial properties.

Claims (1)

Эндопротез вертлужного компонента тазобедренного сустава с ячеистой структурой и биоактивным покрытием выполнен монолитным в виде чаши, имеющей форму полусферы, из титанового сплава по аддитивной технологии методом лазерного спекания с отверстиями со сферическими углублениями под шляпку костного винта, стенка выполнена толщиной 4 мм, содержит радиальные сквозные ячейки шестигранной формы, диаметр вписанной окружности каждой ячейки 1,5 мм, стенка ячейки имеет поперечные сквозные поры, отличающийся тем, что наружная поверхность чаши и стенки ячеек имеют биосовместимое гетерогенное оксидное покрытие толщиной 20 мкм и шероховатостью Ra=1,4 мкм с микропорами размером 12 мкм, полученное в результате газотермического оксидирования на воздухе с последующим синтезом на его поверхности углеродной алмазоподобной пленки, полученной в процессе ионно-лучевой обработки в вакуумной среде углекислого газа (CO2) пучком ионов аргона (Ar+) и модифицированной ионами серебра (Ag+) в процессе ионно-лучевой обработки.The endoprosthesis of the acetabular component of the hip joint with a cellular structure and a bioactive coating is made monolithic in the form of a hemisphere-shaped bowl, made of titanium alloy using additive technology by laser sintering with holes with spherical recesses for the bone screw head, the wall is made 4 mm thick, contains radial through cells hexagonal shape, the diameter of the inscribed circle of each cell is 1.5 mm, the cell wall has transverse through pores, characterized in that the outer surface of the bowl and the walls of the cells have a biocompatible heterogeneous oxide coating with a thickness of 20 μm and a roughness of Ra = 1.4 μm with micropores of size 12 µm obtained as a result of gas-thermal oxidation in air with subsequent synthesis on its surface of a carbon diamond-like film obtained in the process of ion-beam treatment in a vacuum environment of carbon dioxide (CO 2 ) with an argon ion beam (Ar + ) and modified with silver ions (Ag + ) ion beam in progress eva processing.
RU2021132586U 2021-11-08 2021-11-08 ENDOPROSTHESIS OF THE ACETABULAR COMPONENT OF THE HIP JOINT RU210800U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021132586U RU210800U1 (en) 2021-11-08 2021-11-08 ENDOPROSTHESIS OF THE ACETABULAR COMPONENT OF THE HIP JOINT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021132586U RU210800U1 (en) 2021-11-08 2021-11-08 ENDOPROSTHESIS OF THE ACETABULAR COMPONENT OF THE HIP JOINT

Publications (1)

Publication Number Publication Date
RU210800U1 true RU210800U1 (en) 2022-05-05

Family

ID=81459102

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021132586U RU210800U1 (en) 2021-11-08 2021-11-08 ENDOPROSTHESIS OF THE ACETABULAR COMPONENT OF THE HIP JOINT

Country Status (1)

Country Link
RU (1) RU210800U1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050184134A1 (en) * 2002-06-18 2005-08-25 Zimmer Technology, Inc. Method for attaching a porous metal layer to a metal substrate
RU2310422C1 (en) * 2006-05-26 2007-11-20 Общество с ограниченной ответственностью "ИЛЬКОМ" Cotyloid component's cup of hip joint endoprosthesis
WO2009102712A1 (en) * 2008-02-12 2009-08-20 Biomet Manufacturing Corp. An acetabular cup having an adjustable modular augment
US20180055641A1 (en) * 2005-12-06 2018-03-01 Howmedica Osteonics Corp. Laser-produced porous surface
RU202646U1 (en) * 2020-10-20 2021-03-01 федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр травматологии и ортопедии имени академика Г.А. Илизарова" Министерства здравоохранения Российской Федерации Endoprosthesis of the hip joint with a honeycomb structure and a bioactive coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050184134A1 (en) * 2002-06-18 2005-08-25 Zimmer Technology, Inc. Method for attaching a porous metal layer to a metal substrate
US20180055641A1 (en) * 2005-12-06 2018-03-01 Howmedica Osteonics Corp. Laser-produced porous surface
RU2310422C1 (en) * 2006-05-26 2007-11-20 Общество с ограниченной ответственностью "ИЛЬКОМ" Cotyloid component's cup of hip joint endoprosthesis
WO2009102712A1 (en) * 2008-02-12 2009-08-20 Biomet Manufacturing Corp. An acetabular cup having an adjustable modular augment
RU202646U1 (en) * 2020-10-20 2021-03-01 федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр травматологии и ортопедии имени академика Г.А. Илизарова" Министерства здравоохранения Российской Федерации Endoprosthesis of the hip joint with a honeycomb structure and a bioactive coating

Similar Documents

Publication Publication Date Title
RU196932U1 (en) Biocompatible Knee Endoprosthesis
Cizek et al. Medicine meets thermal spray technology: A review of patents
EP2014319A1 (en) A bone tissue implant comprising strontium ions
US20020062154A1 (en) Non-uniform porosity tissue implant
WO2005074530A2 (en) Metallic bone implant having improved implantability and method of making the same
Diez-Escudero et al. The role of silver coating for arthroplasty components
CN106163580B (en) Method for manufacturing a porous metal material for biomedical applications and material obtained by said method
RU210800U1 (en) ENDOPROSTHESIS OF THE ACETABULAR COMPONENT OF THE HIP JOINT
WO2002017820A1 (en) Porous attachment material for cells
RU212589U1 (en) Endoprosthesis of the acetabular component of the hip joint
RU210803U1 (en) ENDOPROSTHESIS OF THE ACETABULAR COMPONENT OF THE HIP JOINT
EP1710325A1 (en) Method of producing endosseous implants or medical prostheses by means of ionic implantation, and endosseous implant or medical prosthesis thus produced
RU210801U1 (en) ENDOPROSTHESIS OF THE ACETABULAR COMPONENT OF THE HIP JOINT
RU210804U1 (en) Endoprosthesis of the acetabular component of the hip joint
RU210808U1 (en) Endoprosthesis of the acetabular component of the hip joint
RU210802U1 (en) Endoprosthesis of the acetabular component of the hip joint
RU2765921C1 (en) Method for manufacturing a dental implant using a composite nanocoating
RU210809U1 (en) Endoprosthesis of the acetabular component of the hip joint
CN114099777A (en) Multi-layer active coating for orthopedic implant and preparation method thereof
JP2023522462A (en) bone implant
RU172665U1 (en) BIO-COMPATIBLE ROLL IMPLANT WITH BIOCOMPATIBLE COATING
RU207063U1 (en) ELBOW JOINT ENDOPROTHESIS
RU207060U1 (en) ELBOW JOINT ENDOPROTHESIS
RU208796U1 (en) ELBOW ENDOPROSTHESIS WITH BIOCOMPATIBLE COATING
RU208795U1 (en) Elbow endoprosthesis with biocompatible coating