RU2039921C1 - Теплообменник - Google Patents

Теплообменник Download PDF

Info

Publication number
RU2039921C1
RU2039921C1 RU93040320A RU93040320A RU2039921C1 RU 2039921 C1 RU2039921 C1 RU 2039921C1 RU 93040320 A RU93040320 A RU 93040320A RU 93040320 A RU93040320 A RU 93040320A RU 2039921 C1 RU2039921 C1 RU 2039921C1
Authority
RU
Russia
Prior art keywords
plates
channels
heat
spacers
heat exchanger
Prior art date
Application number
RU93040320A
Other languages
English (en)
Other versions
RU93040320A (ru
Inventor
Виктор Владиславович Будрик
Original Assignee
Виктор Владиславович Будрик
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виктор Владиславович Будрик filed Critical Виктор Владиславович Будрик
Priority to RU93040320A priority Critical patent/RU2039921C1/ru
Application granted granted Critical
Publication of RU2039921C1 publication Critical patent/RU2039921C1/ru
Publication of RU93040320A publication Critical patent/RU93040320A/ru

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Использование: для интенсификации теплообмена и повышения технологичности. Сущность изобретения: проставки 7 выполнены полыми с наклонными перемычками-турбулизаторами 8 в зоне каждого отверстия 6 пластин 5. Они наложены на отверстия пластин с переворотом на угол 180° через каждую пластину. Поверхность пластин 5 между проставками 7 в каналах для перекрестного тока теплоносителя имеет турбулизирующие элементы в виде, например, выспупов, расположенных под углом 45 90° к оси каналов. 7 ил.

Description

Изобретение относится к рекуперативным теплообменным аппаратам холодильной, криогенной и другой теплообменной техники. Изобретение особенно целесообразно при использовании в качестве радиатора моторного транспортного средства для охлаждения наддувочного воздуха, масла и антифриза, а также в качестве конденсатора, испарителя и прочих рекуперативных теплообменников с противоточной и перекрестноточной схемой движения теплоносителей.
Известен теплообменник, содержащий коллекторы и канал для двух теплоносителей, организованные пакетом теплопроводных пластин, разделяющих теплоносители, и проставок-ребер, развивающих теплообменную поверхность и искусственно турбулизирующих потоки каждого теплоносителя [1]
Недостатками известного теплообменника являются трудность использования его при наличии существенной разницы в давлениях теплоносителей (например, более 1 МПа), низкая надежность и неудовлетворительная технологичность изготовления из-за относительно большого числа сборочных единиц деталей.
Известен теплообменник, выбранный в качестве прототипа, содержащий коллекторы и каналы по крайней мере для двух теплоносителей, организованные пакетом теплопроводных пластин с рядами отверстий и проставок между рядами отверстий, разделяющих теплоносители [2]
Известная конструкция частично устраняет недостатки аналога, однако по сравнению с ним имеет повышенные потери давления (ΔР) в каналах при одинаковых условиях работы и габаритах (фронтального сечения) теплообменника, что сильно ограничивает область использования таких теплообменных аппаратов. Это обусловлено тем, что в данной конструкции целесообразно применять отверстия с эквивалентным диаметром dэ только меньше 2 мм. Если увеличивать диаметр отверстия dэ > 2 мм (например, с целью уменьшения ΔР/ΔL при прочих одинаковых условиях согласно известной зависимости
ΔP/ΔL=ζ·G2/(2·ρ·F 2 у з·dэ)
Figure 00000002
1,6·ζ·G2/(2·ρ·n2·d 2 э )
то ухудшается интенсивность теплоотдачи. Для поддержания ее надо увеличивать расстояние между пластинами (или толщину проставок), которое, как правило, больше dэ. Это приводит к существенному уменьшению компактности теплообменника S/V, м23 (величины теплообменной поверхности на единицу объема).
Решаемая задача интенсификация теплообмена, расширение функциональных возможностей, в частности расширение диапазона рабочего давления и области эффективного применения, а также повышение технологичности изготовления теплообменника за счет упрощения и снижения числа сборочных единиц деталей.
Был проведен поиск. Аналогов, порочащих отличительную часть формулы, обнаружено не было, на основании чего был сделан вывод, что данный теплообменник является новым и обладает существенными отличиями.
Для решения задачи в теплообменнике, содержащем коллекторы и каналы по крайней мере для двух теплоносителей, организованные пакетом теплопроводных пластин с рядами отверстий и проставок между рядами отверстий, разделяющих теплоносители, согласно изобретению проставки выполнены полыми с наклонными перемычками-турбулизаторами в зоне каждого отверстия пластин и наложены на отверстия пластин с переворотом на угол 180о через каждую пластину, причем поверхность пластин между проставками в каналах для перекрестного тока теплоносителя имеет турбулизирующие элементы в виде, например, выступов, расположенных под углом 45-90о к оси каналов.
На фиг. 1 изображен теплообменник в виде радиатора; нар фиг. 2 узел I на фиг. 1; на фиг. 3 разрез А-А на фиг. 2; на фиг. 4 разрез Б-Б на фиг. 3; на фиг. 5 теплообменник в виде конденсатора-испарителя; на фиг. 6 теплообменник с противоточно-перекрестным током; на фиг. 7 теплообменник с противотоком.
Теплообменник содержит коллекторы (или коллекторные пластины) 1 и каналы 2 и 3 по крайней мере для двух теплоносителей. Эти каналы организованы пакетом 4 теплопроводных пластин 5 с рядами отверстий 6 и проставок 7, разделяющих теплоносители. Проставки 7 выполнены полыми с наклонными перемычками-турбулизаторами 8 в зоне каждого отверстия 6 пластин и наложены на отверстия пластин с переворотом на угол 180о через каждую пластину 5. В каналах 3 для перекрестного тока поверхность пластин 5 между проставками 7 имеет турбулизирующие элементы 9 в виде, например, выступов, расположенных под углом 45-90о к оси каналов 3.
Пластины 5 и проставки 7 изготовлены из теплопроводного материала, например из алюминиевого сплава, меди, латуни или стали. Пластины 5 выполнены из металлической ленты толщиной δл= 0,1-0,4 мм путем пропускания между двумя специальными каликами, которые обеспечивают порядное прорезание отверстий 6 и формовку (или накатку) турбулизирующих элементов 9 на поверхности пластины нужной ширины. Пластины 5 могут иметь дополнительные локальные проколы 10 с односторонним отгибом буртика (высотой до толщины проставок 7) для фиксации проставок 7 по наружному торцу на листах при сборке, а также при необходимости на участках с турбулизирующими элементами 9 для поддержания формы листов в процессе пайки пакета 4. Проставки 7 с перемычками-турбулизаторами 8 выполнены из металлического листа толщиной δпр= 0,5-2 мм путем штамповки. Для обеспечения герметизации между теплоносителями пластины 5 и проставки 7, собранные в пакет 4, могут быть сжаты или склеены, или спаяны. Конструктивное исполнение каналов 2 и 3 и наличие в полых проставках 7 перемычек-турбулизаторов 8 позволяют расширить возможный диапазон рабочих давлений (или возможную разницу в давлениях между теплоносителями 2 и 3), например, до 20 МПа.
Изобретение обеспечивает в каналах теплообменника при наличии только двух сборочных единиц деталей (пластина 5 и проставка 7) с относительно простой технологией изготовления, достижение эффективного сочетания геометрических параметров турбулизаторов для получения рациональной интенсификации теплообмена, а также развития и соотношения теплообменных поверхностей каналов 2 и 3 на различные условия работы теплообменника. Известно, что в негладких каналах увеличение средней интенсивности теплоотдачи за счет искусственной турбулизации потока (число Нуссельта Nu) по отношению к теплоотдаче в гладком канале (Nu), т.е. величина Nu/Nuгл А, а также повышение коэффициента гидравлического сопротивления (ζ) по сравнению со средним значением сопротивления гладкого канала (ζгл.ср= 0,02), т.е. значение ζ/
Figure 00000003
A2, зависят от сочетания геометрических параметров турбулизирующих элементов, главными из которых являются относительная высота элементов (выступов) h/R h/(h + 0,05 aуз) и расстояние между ними по оси потока t/h. Здесь ауз расстояние между противоположными турбулизаторами (стенками) в узком проходном сечении канала. В частности, для канала 2, образованного отверстиями 6 в пластинах совместно с перемычками-турбулизаторами 8 проставок, это эквивалентный диаметр в узком проходном сечении единичного канала (aуз)
Figure 00000004
dэ2= 4Fi уз/пiуз, а для канала 3 с противоточным током теплоносителя (фиг. 2-4) (aуз)3= δпр-2h
Figure 00000005
dэ3/2пр- толщина проставки). Высота турбулизаторов h2 в канале 2 может быть различной по периметру единичного канала (пiуз)2) и равна или половине ширины перемычек 8 проставок, или половине ширины перемычки между отверстиями 6 в пластинах, или половине ширины перемычки между отверстием и внутренним торцом проставки на соответствующих частях периметра единичных каналов. При этом расстояние между турбулизаторами t2 изменяется от δпр до 2 (δпрл).
Для достижения рациональной интенсификации теплообмена в каналах, т.е. например, величин Nu/Nuгл 2-4,5 и ζ/ζгл.ср= 3-16, нужны определенные сочетания значений (t/h)рац (например, в диапазоне от 2 до 6) в зависимости от принимаемой величины h/R (в частности, от 0,7 до 0,1 соответственно).
Конструкция теплообменника обеспечивает широкое варьирование геометрических параметров турбулизаторов и получение эффективного сочетания их во всех каналах для достижения рациональной интенсификации теплообмена, а также развития теплообменной поверхности S (например, для канала 2S*2 S2/S2гл. уз 5-6) и соотношения поверхностей между каналами (например, S*3,2 S3/S2 1-3). Это важно, в частности, для удовлетворения известного условия оптимальной теплопередачи между теплоносителями
Figure 00000006
α3·S*3,2·ηр2 или (при газообразных теплоносителях)
S*3,2·ηр2
Figure 00000007
Figure 00000008

на заданные условия работы (массовые расходы G2 и G3, тепловая нагрузка Q, средний температурный напор ΔТср между теплоносителями, их теплофизические свойства и потери давления в каналах ΔР). Здесь ηp- эффективность оребрения, в частности, пластин между проставками.
В предлагаемом теплообменнике можно реализовывать движение теплоносителей с перекрестным током (фиг. 1), с противоточно-перекрестным током (фиг. 6) и с чистым противотоком (фиг. 7).
Теплообменник работает следующим образом.
При перекрестном токе (фиг. 1) в качестве одного из теплоносителей (за N2) может быть жидкость или газ с повышенным давлением, конденсирующийся или кипящий хладагент, а в качестве другого теплоносителя (за N3) например, атмосферный воздух с вынужденным движением от вентилятора. Теплоноситель N2 подается через входной коллектор 1 в каналы 2, образованные рядами отверстий 6 в пластинах 5 и внутренней полостью проставок 7 с перемычками-турбулизаторами 8, и выходит из этих каналов 2 через выходной коллектор. Теплоноситель N3(атмосферный воздух) поступает и проходит в каналах 3 между проставками 7 и пластинами с турбулизирующими элементами 9. По мере течения теплоносителей в каналах происходит передача тепла (Q) от более теплого теплоносителя, например, в канале 2 к более холодному в канале 3 по перемычкам-турбулизаторам 8 и стенкам проставок 7 и по перемычкам пластин, расположенных в канале 2, и далее по пластинам-ребрам с турбулизирующими элементами 9 канала 3. При этом пластины и проставки должны быть достаточно теплопроводными, чтобы в рабочих условиях эффективность оребрения их ηp была близка к единице.
Теплообменник с перекрестным током теплоносителей можно также эффективно использовать как конденсатор-испаритель (фиг. 5). В этом случае ось потока в каналах 3 (между проставками 7 и пластинами с турбулизирующими элементами 9) желательно ориентировать под углом 10-20ок вертикали. Тогда в эти каналы 3 подводят снизу кипящую жидкость, которая в каналах 3 образует подъемное двухфазное течение с верхним отводом пара после выхода из каналов. При этом каналы 2 ориентированы под углом 10-20о к горизонту, и в них сверху подводят пар, который эффективно конденсируется в каналах 2 и в виде конденсата стекает из каналов и отводится.
Теплообменник можно выполнять с чистым противотоком (фиг. 7). При этом каналы 2 и 3 для теплоносителей имеют аналогичную конструкцию (т.е. они образованы рядами отверстий 6 в пластинах 5 и внутренней полостью проставок с перемычками-турбулизаторами 8) с возможной разницей по величине развития поверхности S3/S2 и интенсификации теплообмена в зависимости от заданных условий работы.
Организация противоточно-перекрестного тока (фиг. 6) особенно целесообразна при создании крупных теплообменников (с объемом до 10 м3) из отдельных теплообменных блоков с перекрестным током, как на фиг. 1. Эти блоки 4 могут изготавливаться серийно и иметь определенные размеры (например, li x Bi x H 150 x 650 x H мм) с установленными теплогидравлическими характеристиками. При расчете крупного теплообменного аппарата оптимизируются высота (Н) и количество блоков для организации не менее пяти перекрестных ходов, что равносильно чистому противотоку с прямым и обратным потоками. Прямой поток с повышенным давлением удобно пропускать через каналы 2, а обратный поток через каналы 3 (между проставками 7 и пластинами с турбулизирующими элементами 9). Блоки 4 стыкуются последовательно в направлении оси каналов 3 путем сварки наружной кромки коллекторных пластин 1, а затем после сборки всего аппарата приваривают коллекторы для прямого потока. Такая сборка позволяет по сравнению с существующей технологией с пайкой (или склеиванием) крупных противоточных пластинчатых теплообменников свести к минимуму материальные и денежные потери от возможного брака при пайке (или склеивании), а также устранить аксиальную теплопроводность и возможную неравномерность перераспределения расхода в каналах.
Предлагаемый теплообменник является конкурентноспособным существующим лучшим теплообменникам по теплогидравлическим характеристикам и компактности на заданные условия работы.
Изобретение обеспечивает рациональную интенсификацию теплообмена, расширение функциональных возможностей (в частности, расширение диапазона рабочего давления и области эффективного применения), а также повышение технологичности изготовления теплообменника за счет упрощения и снижения числа сборочных единиц деталей.

Claims (1)

  1. ТЕПЛООБМЕННИК, содержащий коллекторы и каналы по крайней мере для двух теплоносителей, организованные пакетом теплопроводных пластин с рядами отверстий и проставок между рядами отверстий разделяющих теплоносители, отличающийся тем, что проставки выполнены полыми с наклонными перемычками-турбулизаторами в зоне каждого отверстия пластин и наложены на отверстия пластин с переворотом на угол 180o через каждую пластину, причем поверхность пластин между проставками в каналах для перекрестного тока теплоносителя имеет турбулизирующие элементы в виде, например, выступов, расположенных под углом 45 90o к оси каналов.
RU93040320A 1993-08-09 1993-08-09 Теплообменник RU2039921C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93040320A RU2039921C1 (ru) 1993-08-09 1993-08-09 Теплообменник

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93040320A RU2039921C1 (ru) 1993-08-09 1993-08-09 Теплообменник

Publications (2)

Publication Number Publication Date
RU2039921C1 true RU2039921C1 (ru) 1995-07-20
RU93040320A RU93040320A (ru) 1996-03-10

Family

ID=20146319

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93040320A RU2039921C1 (ru) 1993-08-09 1993-08-09 Теплообменник

Country Status (1)

Country Link
RU (1) RU2039921C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2464516C2 (ru) * 2008-08-22 2012-10-20 Мицубиси Хеви Индастрис, Лтд. Теплообменная перегородка

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Заявка Франции N 2657422, кл. F 28D 1/03, F 28F 3/14, опублик. 1991. *
2. Патент США N 3228460, кл. F 28D 1/00, опублик. 1968. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2464516C2 (ru) * 2008-08-22 2012-10-20 Мицубиси Хеви Индастрис, Лтд. Теплообменная перегородка
US8955333B2 (en) 2008-08-22 2015-02-17 Mitsubishi Heavy Industries, Ltd. Heat exchange bulkhead

Similar Documents

Publication Publication Date Title
CN102112837B (zh) 微型热传递***或热与质量传递***
US6732789B2 (en) Heat exchanger for CO2 refrigerant
CN102494547B (zh) 微型微通道板翅式换热器
US4966230A (en) Serpentine fin, round tube heat exchanger
US20100218930A1 (en) System and method for constructing heat exchanger
RU2227883C2 (ru) Двухфазный теплообменник с жидкостным охлаждением (варианты)
EP0219974A2 (en) Condenser with small hydraulic diameter flow path
JPH04227479A (ja) 改良式波形伝熱表面
JP2004144460A (ja) 熱交換器
JP3855346B2 (ja) 熱交換器
US20080184734A1 (en) Flat Tube Single Serpentine Co2 Heat Exchanger
JP2000249479A (ja) 熱交換器
CN101900459A (zh) 一种微通道平行流换热器
US5632161A (en) Laminated-type evaporator
JP4068312B2 (ja) 炭酸ガス用放熱器
JPS60216190A (ja) 伝熱管とその製造法
RU2039921C1 (ru) Теплообменник
JPH03148564A (ja) ヒートポンプの作動方法
JP3747780B2 (ja) 熱交換器
JP3731066B2 (ja) 熱交換器
JP2990947B2 (ja) 冷媒凝縮器
JP2003269822A (ja) 熱交換器および冷凍サイクル
JP2002107073A (ja) 積層型熱交換器
Panchal et al. Thermal performance of advanced heat exchangers for ammonia refrigeration systems
JPH03117860A (ja) 凝縮器