RU2018133552A - DEFORMABLE BORE STRUCTURES CONTAINING CARBON NANOTUBE MATERIALS AND METHODS FOR FORMING AND USING SUCH DESIGNS - Google Patents

DEFORMABLE BORE STRUCTURES CONTAINING CARBON NANOTUBE MATERIALS AND METHODS FOR FORMING AND USING SUCH DESIGNS Download PDF

Info

Publication number
RU2018133552A
RU2018133552A RU2018133552A RU2018133552A RU2018133552A RU 2018133552 A RU2018133552 A RU 2018133552A RU 2018133552 A RU2018133552 A RU 2018133552A RU 2018133552 A RU2018133552 A RU 2018133552A RU 2018133552 A RU2018133552 A RU 2018133552A
Authority
RU
Russia
Prior art keywords
deformable
cnt
conductive element
electrically conductive
deformable material
Prior art date
Application number
RU2018133552A
Other languages
Russian (ru)
Other versions
RU2018133552A3 (en
Inventor
Олег А. МАЗЯР
Санкаран МУРУГЕСАН
Валерий Н. ХАБАШЕСКУ
Дэррил Н. ВЕНТУРА
Ростислав ДОЛОГ
Original Assignee
Бейкер Хьюз, Э Джии Компани, Ллк
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бейкер Хьюз, Э Джии Компани, Ллк filed Critical Бейкер Хьюз, Э Джии Компани, Ллк
Publication of RU2018133552A publication Critical patent/RU2018133552A/en
Publication of RU2018133552A3 publication Critical patent/RU2018133552A3/ru

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/1208Packers; Plugs characterised by the construction of the sealing or packing means

Claims (28)

1.     Деформируемое скважинное изделие для использования в стволе скважины, содержащее:1. A deformable well product for use in a wellbore, comprising: трубчатый компонент, выполненный с возможностью размещения в стволе скважины;a tubular component configured to be placed in a wellbore; деформируемый материал, расположенный вокруг наружной поверхности трубчатого компонента, иa deformable material located around the outer surface of the tubular component, and электропроводный элемент, содержащий материал из углеродных нанотрубок (carbon nanotube, CNT), связанный с деформируемым материалом.an electrically conductive element containing carbon nanotube (CNT) material bonded to a deformable material. 2.     Деформируемое скважинное изделие по п. 1, отличающееся тем, что электропроводный элемент расположен и выполнен с возможностью того, что нагрузка будет прилагаться к электропроводному элементу при разбухании деформируемого материала, и электропроводный элемент деформируется в ответ на приложенную нагрузку.2. A deformable borehole product according to claim 1, characterized in that the electrically conductive element is located and configured so that the load will be applied to the electrically conductive element when the deformable material swells, and the electrically conductive element is deformed in response to the applied load. 3.     Деформируемое скважинное изделие по п. 1, дополнительно содержащее электронное устройство, функционально связанное с электропроводным элементом и выполненное с возможностью измерения по меньшей мере одной электрической характеристики электропроводного элемента.3. A deformable well product according to claim 1, further comprising an electronic device operatively coupled to the electrical conductive member and configured to measure at least one electrical characteristic of the electrical conductive member. 4.     Деформируемое скважинное изделие по п. 1, отличающееся тем, что материал CNT проходит наружу в радиальном направлении по меньшей мере от части трубчатого компонента.4. A deformable well product according to claim 1, characterized in that the CNT material extends radially outward from at least a portion of the tubular component. 5.     Деформируемое скважинное изделие по п. 1, отличающееся тем, что материал CNT проходит по периметру вокруг по меньшей мере части трубчатого компонента.5. A deformable well product according to claim 1, characterized in that the CNT material extends around the perimeter around at least a portion of the tubular component. 6.     Деформируемое скважинное изделие по любому из п. 1-5, отличающееся тем, что электропроводный элемент ковалентно связан с деформируемым материалом.6. A deformable downhole product according to any one of p. 1-5, characterized in that the electrically conductive element is covalently bonded to the deformable material. 7.     Деформируемое скважинное изделие по любому из п. 1-5, отличающееся тем, что материал CNT содержит сшитые углеродные нанотрубки (carbon nanotubes, CNT), и при этом углеродные нанотрубки (CNT) материала CNT ковалентно связаны с деформируемым материалом.7. A deformable well product according to any one of claims 1-5, characterized in that the CNT material contains crosslinked carbon nanotubes (CNT), and wherein the carbon nanotubes (CNT) of the CNT material are covalently bonded to the deformable material. 8.     Деформируемое скважинное изделие по любому из п. 1-5, отличающееся тем, что углеродные нанотрубки (CNT) материала CNT пропитаны металлическими наночастицами.8. Deformable downhole product according to any one of p. 1-5, characterized in that the carbon nanotubes (CNT) of the CNT material are impregnated with metal nanoparticles. 9.     Деформируемое скважинное изделие по п. 8, отличающееся тем, что металлические наночастицы содержат наночастицы палладия. 9. A deformable well product according to claim 8, characterized in that the metal nanoparticles contain palladium nanoparticles. 10.     Деформируемое скважинное изделие по п. 7, отличающееся тем, что углеродные нанотрубки (CNT) материала CNT сшиты бензохиноном. 10. A deformable well product according to claim 7, characterized in that the carbon nanotubes (CNT) of the CNT material are crosslinked with benzoquinone. 11.     Деформируемое скважинное изделие по любому п. 1-5, отличающееся тем, что деформируемый материал содержит полимер с памятью формы.11. A deformable well product according to any one of claims 1-5, characterized in that the deformable material contains a shape memory polymer. 12.     Деформируемое скважинное изделие по п. 11, отличающееся тем, что полимер с памятью формы содержит полиуретан.12. A deformable well product according to claim 11, characterized in that the polymer with shape memory contains polyurethane. 13.     Способ формирования деформируемого скважинного изделия для использования в стволе скважины, включающий:13. A method of forming a deformable well product for use in a wellbore, including: расположение деформируемого материала вокруг наружной поверхности трубчатого компонента, выполненного с возможностью размещения в стволе скважины, и the location of the deformable material around the outer surface of the tubular component, made with the possibility of placement in the wellbore, and связывание электропроводного элемента, содержащего материал из углеродных нанотрубок (carbon nanotube, CNT), с деформируемым материалом.bonding an electrically conductive element containing carbon nanotube (CNT) material to a deformable material. 14.     Способ по п. 13, отличающийся тем, что расположение деформируемого материала вокруг наружной поверхности трубчатого компонента включает в себя формование деформируемого материала вокруг трубчатого компонента. 14. The method according to p. 13, characterized in that the location of the deformable material around the outer surface of the tubular component includes forming a deformable material around the tubular component. 15.     Способ по п. 14, отличающийся тем, что формование деформируемого материала вокруг трубчатого компонента включает в себя процесс реактивного литья под давлением.15. The method according to p. 14, characterized in that the molding of the deformable material around the tubular component includes a reactive injection molding process. 16.     Способ по любому из пп. 13-15, отличающийся тем, что связывание электропроводного элемента, содержащего материал из углеродных нанотрубок (CNT), с деформируемым материалом включает ковалентное связывание электропроводного элемента с деформируемым материалом.16. The method according to any one of paragraphs. 13-15, characterized in that the bonding of an electrically conductive element containing a material of carbon nanotubes (CNT) with a deformable material includes covalent bonding of an electrically conductive element with a deformable material. 17.     Способ использования деформируемого скважинного изделия в стволе скважины, включающий:17. A method of using a deformable well product in a wellbore, comprising: установку деформируемого скважинного изделия в стволе скважины, при этом деформируемое скважинное изделие содержит трубчатый компонент, деформируемый материал, расположенный вокруг наружной поверхности трубчатого компонента, и электропроводный элемент, содержащий материал из углеродных нанотрубок (CNT), связанный с деформируемым материалом;the installation of a deformable well product in the wellbore, the deformable well product comprising a tubular component, a deformable material located around the outer surface of the tubular component, and an electrically conductive element comprising carbon nanotube (CNT) material associated with the deformable material; расширение деформируемого материала до расширенного состояния в стволе скважины, при этом расширение деформируемого материала деформирует материал из углеродных нанотрубок (CNT) электропроводного элемента; иexpanding the deformable material to an expanded state in the wellbore, while expanding the deformable material deforms the carbon nanotube (CNT) material of the electrically conductive element; and измерение электрических характеристик электропроводного элемента. measurement of electrical characteristics of an electrically conductive element. 18.     Способ по п. 17, отличающийся тем, что измерение электрической характеристики электропроводного элемента включает измерение удельного сопротивления или индуктивности электропроводного элемента.18. The method according to p. 17, characterized in that the measurement of the electrical characteristics of the conductive element includes measuring the resistivity or inductance of the conductive element. 19.     Способ по п. 17, дополнительно включающий сопоставление данных измерений, полученных при измерении электрической характеристики электропроводного элемента, со степенью расширения деформируемого материала.19. The method according to p. 17, further comprising comparing the measurement data obtained by measuring the electrical characteristics of the conductive element, with the degree of expansion of the deformable material. 20.     Способ по любому из п. 17-19, отличающийся тем, что электропроводный элемент ковалентно связан с деформируемым материалом.20. The method according to any one of p. 17-19, characterized in that the electrically conductive element is covalently linked to a deformable material.
RU2018133552A 2016-03-07 2017-03-06 DEFORMABLE BORE STRUCTURES CONTAINING CARBON NANOTUBE MATERIALS AND METHODS FOR FORMING AND USING SUCH DESIGNS RU2018133552A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/063,034 2016-03-07
US15/063,034 US20170254170A1 (en) 2016-03-07 2016-03-07 Deformable downhole structures including carbon nanotube materials, and methods of forming and using such structures
PCT/US2017/020903 WO2017155868A1 (en) 2016-03-07 2017-03-06 Deformable downhole structures including carbon nanotube materials, and methods of forming and using such structures

Publications (2)

Publication Number Publication Date
RU2018133552A true RU2018133552A (en) 2020-03-24
RU2018133552A3 RU2018133552A3 (en) 2020-07-03

Family

ID=59724070

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018133552A RU2018133552A (en) 2016-03-07 2017-03-06 DEFORMABLE BORE STRUCTURES CONTAINING CARBON NANOTUBE MATERIALS AND METHODS FOR FORMING AND USING SUCH DESIGNS

Country Status (6)

Country Link
US (1) US20170254170A1 (en)
EP (1) EP3426876A4 (en)
CN (1) CN109072680A (en)
CA (1) CA3016882A1 (en)
RU (1) RU2018133552A (en)
WO (1) WO2017155868A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10060253B2 (en) * 2016-04-11 2018-08-28 Baker Hughes Incorporated Downhole systems and articles for determining a condition of a wellbore or downhole article, and related methods
MX2021009986A (en) 2019-02-20 2021-09-21 Schlumberger Technology Bv Non-metallic compliant sand control screen.
US11739628B2 (en) * 2019-07-22 2023-08-29 Saudi Arabian Oil Company Methods of determining wellbore integrity

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6079277A (en) * 1997-12-12 2000-06-27 The Research Foundation Of State University Of New York Methods and sensors for detecting strain and stress
US7190169B2 (en) 1999-12-24 2007-03-13 Baker Hughes Incorporated Method and apparatus for internal calibration in induction logging instruments
US20050161212A1 (en) * 2004-01-23 2005-07-28 Schlumberger Technology Corporation System and Method for Utilizing Nano-Scale Filler in Downhole Applications
NO322718B1 (en) * 2004-12-16 2006-12-04 Easy Well Solutions As Method and apparatus for sealing an incompletely filled compartment with stop pulp
ATE424524T1 (en) * 2006-10-26 2009-03-15 Fiat Ricerche GASKET FOR THE CYLINDER HEAD OF AN INTERNAL COMBUSTION ENGINE WITH POLYMER NANOCOMPOSITE MATERIAL AND INTEGRATED SENSOR
US20090139708A1 (en) 2007-06-06 2009-06-04 Baker Hughes Incorporated Wrap-On Reactive Element Barrier Packer and Method of Creating Same
US8181708B2 (en) 2007-10-01 2012-05-22 Baker Hughes Incorporated Water swelling rubber compound for use in reactive packers and other downhole tools
WO2009077804A1 (en) * 2007-12-14 2009-06-25 Prysmian S.P.A. Electric article comprising at least one element made from a semiconductive polymeric material and semiconductive polymeric composition
US7681653B2 (en) 2008-08-04 2010-03-23 Baker Hughes Incorporated Swelling delay cover for a packer
US7997338B2 (en) 2009-03-11 2011-08-16 Baker Hughes Incorporated Sealing feed through lines for downhole swelling packers
US8487625B2 (en) 2009-04-07 2013-07-16 Baker Hughes Incorporated Performing downhole measurement using tuned transmitters and untuned receivers
CA2856678C (en) * 2009-05-01 2015-07-21 Weatherford/Lamb, Inc. Wellbore isolation tool using sealing element having shape memory polymer
WO2010132996A1 (en) * 2009-05-22 2010-11-25 University Of New Brunswick Force sensing compositions, devices and methods
CN101880041B (en) * 2010-06-29 2013-03-20 清华大学 Preparation method of carbon nanotube composite structure
BR112013007669B1 (en) 2010-10-01 2020-12-01 Baker Hughes Incorporated method and apparatus for estimating at least one resistivity parameter of a formation
US9090012B2 (en) 2010-12-30 2015-07-28 Baker Hughes Incorporated Process for the preparation of conformable materials for downhole screens
US8684075B2 (en) 2011-02-17 2014-04-01 Baker Hughes Incorporated Sand screen, expandable screen and method of making
US8955606B2 (en) * 2011-06-03 2015-02-17 Baker Hughes Incorporated Sealing devices for sealing inner wall surfaces of a wellbore and methods of installing same in a wellbore
WO2012170412A2 (en) * 2011-06-07 2012-12-13 Nanocomposites Inc. Force sensing device and methods for preparing and uses thereof
US20120318532A1 (en) * 2011-06-16 2012-12-20 Schlumberger Technology Corporation Temperature Resistant Downhole Elastomeric Device
US9010428B2 (en) * 2011-09-06 2015-04-21 Baker Hughes Incorporated Swelling acceleration using inductively heated and embedded particles in a subterranean tool
WO2014197829A1 (en) * 2013-06-06 2014-12-11 Halliburton Energy Services, Inc. Deformable plug and seal well system
US9228420B2 (en) 2013-08-19 2016-01-05 Baker Hughes Incorporated Conformable materials containing heat transfer nanoparticles and devices made using same
US9428985B2 (en) 2013-12-24 2016-08-30 Baker Hughes Incorporated Swellable downhole structures including carbon nitride materials, and methods of forming such structures
US9334337B2 (en) 2014-01-24 2016-05-10 Baker Hughes Incorporated Enhanced water swellable compositions
CN104405328B (en) * 2014-10-22 2017-07-07 中国石油天然气股份有限公司 A kind of downhole packing device

Also Published As

Publication number Publication date
CA3016882A1 (en) 2017-09-14
WO2017155868A1 (en) 2017-09-14
EP3426876A1 (en) 2019-01-16
US20170254170A1 (en) 2017-09-07
EP3426876A4 (en) 2019-10-16
CN109072680A (en) 2018-12-21
RU2018133552A3 (en) 2020-07-03

Similar Documents

Publication Publication Date Title
RU2018133552A (en) DEFORMABLE BORE STRUCTURES CONTAINING CARBON NANOTUBE MATERIALS AND METHODS FOR FORMING AND USING SUCH DESIGNS
Peng et al. Rational design of ultrasensitive pressure sensors by tailoring microscopic features
Liu et al. Ultrasensitive 2D ZnO piezotronic transistor array for high resolution tactile imaging
Li et al. Poisson ratio and piezoresistive sensing: a new route to high‐performance 3D flexible and stretchable sensors of multimodal sensing capability
Kim et al. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks
Zhang et al. Fully Printed Silver‐Nanoparticle‐Based Strain Gauges with Record High Sensitivity
Wang et al. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires
US8250927B2 (en) Flexible, stretchable, and distributed strain sensors
Shen et al. Double-network hierarchical-porous piezoresistive nanocomposite hydrogel sensors based on compressive cellulosic hydrogels deposited with silver nanoparticles
US20160076954A1 (en) Sensing system including a sensing membrane
Charkhabi et al. Kirigami‐enabled, passive resonant sensors for wireless deformation monitoring
AR073444A1 (en) COMPOSITION AND METHOD FOR RECOVERING HYDROCARBON FLUIDS FROM AN UNDERGROUND RESERVE
KR101650827B1 (en) Conductive complex composite having piezoresistivity and piezoresistive device using the same
US20170254194A1 (en) Deformable downhole structures including electrically conductive elements, and methods of using such structures
Herren et al. Carbon nanotube‐based piezoresistive sensors fabricated by microwave irradiation
Yoshimura et al. Flexible tactile sensor materials based on carbon microcoil/silicone-rubber porous composites
KR101691910B1 (en) Strain Sensor and Manufacturing Method of The Same
US20090087348A1 (en) Sensor applications
Tallman et al. A network-centric perspective on the microscale mechanisms of complex impedance in carbon nanofiber-modified epoxy
US20110250393A1 (en) Self-assembled films and processes thereof
Duan et al. A route toward ultrasensitive layered carbon based piezoresistive sensors through hierarchical contact design
US8684100B2 (en) Electrically engaged, hydraulically set downhole devices
CN205843855U (en) Pliable pressure sensor
Lee et al. Interdigitating Elastic Fibers with a Liquid Metal Core toward Ultrastretchable and Soft Capacitive Sensors: From 1D Fibers to 2D Electronics
SA518400225B1 (en) Downhole systems and articles for determining a condition of a wellbore or downhole article, and related methods

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20201207