NZ727474B2 - System and method of releasably connecting pipe sections - Google Patents

System and method of releasably connecting pipe sections Download PDF

Info

Publication number
NZ727474B2
NZ727474B2 NZ727474A NZ72747414A NZ727474B2 NZ 727474 B2 NZ727474 B2 NZ 727474B2 NZ 727474 A NZ727474 A NZ 727474A NZ 72747414 A NZ72747414 A NZ 72747414A NZ 727474 B2 NZ727474 B2 NZ 727474B2
Authority
NZ
New Zealand
Prior art keywords
pipe
connector
pipe section
male
female
Prior art date
Application number
NZ727474A
Other versions
NZ727474A (en
Inventor
Stuart Gibson
Peter Scott
Original Assignee
Lock Pty Ltd
Filing date
Publication date
Application filed by Lock Pty Ltd filed Critical Lock Pty Ltd
Priority claimed from PCT/AU2014/000850 external-priority patent/WO2015027277A1/en
Publication of NZ727474A publication Critical patent/NZ727474A/en
Publication of NZ727474B2 publication Critical patent/NZ727474B2/en

Links

Abstract

pipe fitting system, including a first pipe section with at least one male end, a second pipe section with at least one female end, and a connecting means for releasably connecting the pipe sections together such that the male end is at least partially received within the female end. The connecting means comprising releasably engageable first and second connectors associated with the first and second pipe sections respectively, wherein the first connector comprises at least one outwardly extending protrusion and wherein the second connector comprises corresponding recesses adapted to releasably receive the or each protrusion of the first connector. The pipe fitting system is suitable for applications such as end of line connections, repair/replacement of fixed existing pipes, and in enabling temporary removal of pipes for maintenance or access purposes. The novel and inventive feature is the secondary seal located within the female pipe thus protecting the seals from the outside elements. This allows the pipe to be disconnected multiple times and maintain a tight seal after each disconnection and reconnection. g means comprising releasably engageable first and second connectors associated with the first and second pipe sections respectively, wherein the first connector comprises at least one outwardly extending protrusion and wherein the second connector comprises corresponding recesses adapted to releasably receive the or each protrusion of the first connector. The pipe fitting system is suitable for applications such as end of line connections, repair/replacement of fixed existing pipes, and in enabling temporary removal of pipes for maintenance or access purposes. The novel and inventive feature is the secondary seal located within the female pipe thus protecting the seals from the outside elements. This allows the pipe to be disconnected multiple times and maintain a tight seal after each disconnection and reconnection.

Description

SYSTEM AND METHOD OF ABLY CONNECTING PIPE SECTIONS Field of the invention The present invention relates generally to pipes and pipe fittings for directing and controlling the flow of fluids, and more specifically to releasably connectable pipe fittings and related components.
The invention has been developed ily as a pipe fitting system for releasably connecting sections of pipe to simplify end of line connections, repair/replacement of existing fixed pipes, and to facilitate ary removal of pipes for maintenance or access purposes, and will be bed predominantly in this context. It should be iated, however, that the invention is not limited to this particular field of use, being ially applicable to a broad range of other piping applications at residential, commercial and industrial sites, including other fluid collection/transfer systems (including systems for liquids, gases, and particulate material), drainage systems, data and energy transfer systems, for example. It is also to be understood that the invention has application in both pressure (charged) and gravity flow (uncharged) fluid systems.
Background to the invention The following ption of the prior art is intended to place the invention in an appropriate technical context and enable the advantages of it to be more fully appreciated. r, any nces to prior art should not be construed as an express or implied admission that such art is widely known or forms part of common l knowledge in the relevant field.
There are many varied applications in which pipes and pipe fittings are connected together to form a pipeline for controlling the flow of fluids. One particular application relates to water tanks which are arranged next to residential, commercial and industrial buildings such as, for example, residential homes, public school ngs and rural properties.
The use of water tanks is rapidly growing as communities become increasingly aware of the importance of minimising water usage and e. Changes to environmental conditions, including extended periods of drought, have led to a growing awareness of the limited water supply available for consumption. In an effort to address water supply problems, a number of governments and councils have imposed building regulations requiring a water tank to be installed on site at new building developments.
Water tanks are commonly installed around buildings as a convenient way of ing rain water runoff, enabling the water to be reused around the building and reducing the amount of water which flows to the municipal storm water ge systems. Typically, a water tank is led such that water is harvested from ater runoff, with a pe or other drain feeding directly to an opening at the top of the water tank. The opening at the top of the tank may have a strainer or some other means of filtering dirt, leaves or other foreign matter from the water entering the tank.
Regular access to the strainer or to the tank via the opening is required for nance, repair, cleaning or other purposes. The location of the stormwater piping directly outside or above the opening, however, can restrict this access, requiring at least part of the stormwater piping to be removed before conducting these ties. The access to openings such as strainers is often further reduced where the outlet of two or more pipes are ed over a single opening.
Traditionally, it has been necessary to cut out and remove the section or sections of piping which is obstructing access to the location where works are to be carried out, e.g. above the strainer of a water tank. After the task has been completed, the d section of stormwater piping is then rejoined. To rejoin the piping which has been removed, it is common to mount slip-on gs to the existing pipes and glue the removed pipe section to these fittings. The use of glue often results in an untidy finish which detracts from the appearance of the ng or the property as a whole, particularly when the procedure has been repeated numerous times. In addition, the requirement to cut out a section of pipe and rejoin this section in the manner described above is relatively labour intensive, timing ing and requires additional fittings and pipe sections to be used for simple and routine cleaning and maintenance procedures.
Another method for joining sections of pipe includes the use of rubber sleeve-type couplings held in place and sealed by hose clamps. This method has a number of inherent disadvantages including a relatively short working life. These rubber sleeve couplings are typically used in fixed pipe installations, including in the ground systems and systems held by brackets to a structure. When exposed to a range of harsh environmental conditions, the rubber n deteriorates y and the metal portion es. For visually exposed systems, this method detracts from the appearance of the building or the property as a whole.
Pipe structures are commonly formed using slip-on fittings which are glued together.
This method is often messy (inside and outside the pipe), time consuming, and highly frustrating for the constructor. When used in temporary situations such as, for example, in building sites where the entire pipe structure must be removed, it is common that no pipe components or fittings are able to be reused, resulting in undesirably high levels of wastage and associated costs.
It is an object of the present invention in one or more of its various aspects, to overcome or substantially ameliorate one or more of the deficiencies of the prior art, or at least to provide a useful alternative. y of the invention According to a first aspect of the invention, there is ed a pipe fitting system, including: a first hollow pipe section having at least one male end with a first connector, the first connector having two or more protrusions extending outwardly from an outer surface of the male end of the first pipe n; a second hollow pipe section having at least one female end with a second connector, the second connector having two or more generally L-shaped ing ions associated with an inner surface of the female end of the second pipe section, the L-shaped receiving formations having a first arm t extending axially from an opening at a free end face of the female end of the second pipe section, and a second arm segment ing transversely from a distal end of the first arm segment to a closed end, the L-shaped receiving formations being formed so as to have no impact on the profile of the outer surface of the second connector of the female end of the second pipe section, whereby the second connector has a smooth, cylindrical outer surface profile, the receiving formations being adapted to ably receive and engage a respective protrusion of the first connector; a positive locking member arranged within the second arm segment of each receiving formation, each positive locking member extending from a floor of the associated second arm segment and being spaced from the closed end such that the associated protrusion of the first connector can be ely retained between the closed end of the second arm segment and the positive locking member to releasably restrain the first and second pipe sections t rotational displacement away from an engaged position; a primary seal seated within a first seal retaining formation formed within the female end of the second pipe section, the primary seal being resiliently compressible and adapted to sealingly engage a free end face of the male end of the first pipe section; and a secondary seal seated within a second seal retaining formation formed within the female end of the second pipe section, the secondary seal being resiliently compressible and adapted to gly engage an outer side face of the male end of the first pipe n, wherein the free end face and the outer side face are substantially orthogonal to one another; wherein, the first connector and the second connector form a connecting means for releasably connecting the male end of the first pipe section and the female end of the second pipe section together such that, when the first pipe section and the second pipe section are connected together, the male end of the first pipe section is at least partially received within the female end of the second pipe section.
Preferably, the first pipe section has at least one male end. In some embodiments, the first pipe section has two male ends. In other embodiments, the first pipe section has one male end and one female end. In yet other embodiments, the first pipe section has two female ends.
The second pipe section preferably has at least one female end. In some embodiments, the second pipe section has two female ends. In other embodiments, the second pipe section has one male end and one female end. In yet other embodiments, the second pipe section has two male ends.
For the sake of y, the following description will be made with reference to the first pipe section having at least one male end, and the second pipe section having at least one female end.
Preferably, the connecting means is configured such that, when the first pipe n and the second pipe n are connected together, via the connecting means, the male end of the first pipe section is at least partially received within the female end of the second pipe section.
In certain embodiments, the first pipe section is a straight pipe fitting. In other embodiments, the first pipe section is an angled pipe fitting. In some preferred embodiments, the angled pipe fitting is configured such that the d ends of the first pipe section are arranged at one of, for e, 5, 15, 22.5, 30, 42, 45, 88 and 90 s with respect to each other.
Preferably, the first pipe section has a hollow body defining a passage through which fluid can flow, from one end of the first pipe section to the other end. In some embodiments, the internal passage of the body has a substantially constant cross-sectional area. In certain embodiments, the cross-sectional area of the body is circular.
It will be appreciated that the body of the first pipe section is not limited to having a constant cross-sectional area, rather the cross-sectional area may vary along the length of the body of the fitting, ing, for example, a gradual or progressive change along the length of the body (or a n thereof) or a stepwise change. It will also be appreciated that the crosssectional area is not limited to being circular in shape, rather the shape of the cross-section may be any le shape, including regular and lar nal shapes, for the particular application in which the pipe fitting will be employed.
Where the first pipe section is a straight pipe fitting, the body is preferably a straight length of pipe. Where the first pipe section is an angled pipe fitting, the body is preferably an angled, curved, or otherwise bent length of pipe. In other forms, the angled pipe fitting may have a straight body with the ends angled relative to one another. In such forms, one end of the body may be angled ve to the longitudinal axis of the body, whilst the other end is ntially orthogonal to the longitudinal axis. In other forms, both ends may be angled relative to the longitudinal axis of the body.
In certain embodiments, the second pipe section is a straight pipe g. In other embodiments, the second pipe section is an angled pipe fitting. In some preferred embodiments, the angled pipe fitting is configured such that the opposed ends of the second pipe section are arranged at one of, for example, 5, 15, 22.5, 30, 42, 45, 88 and 90 degrees with respect to each other.
Preferably, the second pipe section has a hollow body defining a passage through which fluid can flow, from one end of the second pipe section to the other end. In some embodiments, at least a portion (e.g. a middle portion) of the internal passage of the body has a substantially constant sectional area. In certain embodiments, the cross-sectional area of the body is circular.
It will be appreciated that the body of the second pipe section is not limited to having a constant cross-sectional area, rather the cross-sectional area may vary along the length of the body of the fitting, including a gradual or progressive change along the length of the body (or portion thereof) or a stepwise change. It will also be appreciated that the cross-sectional area is not limited to being circular in shape, rather the shape of the cross-section may be any suitable shape, ing regular and irregular polygonal shapes, for the particular application in which the pipe fitting will be employed.
Where the second pipe section is a ht pipe fitting, the body is ably a straight length of pipe. Where the second pipe section is an angled pipe fitting, the body is preferably an angled, curved, or otherwise bent length of pipe. In other forms, the angled pipe fitting may have a straight body with the ends angled relative to one another. In such forms, one end of the body may be angled relative to the longitudinal axis of the body, whilst the other end is substantially orthogonal to the longitudinal axis. In other forms, both ends may be angled relative to the longitudinal axis of the body.
In some embodiments, the first and second pipe sections are configured to have internal bores that are configured such that, when the two pipe ns are connected er, the internal passage extending through both pipe sections is generally of constant cross-sectional shape so as not to disrupt flow, thereby reducing ent flow within the connected pipe sections.
In certain embodiments, the first and section pipe sections are ured to have an internal diameter in the range of approximately 1mm to 1000mm, more preferably 35mm to 700mm, still more preferably 90mm to 300mm. In some ments, the internal diameter is, for example, one of 10mm, 20mm, 35mm, 50mm, 65mm, 90mm, 100mm, 200mm, 250mm, 300mm, 350mm and 600mm. It will be appreciated by those skilled in the art that the first and second pipe sections are not limited to having al diameters with those ary diameters listed above, but may be any suitable diameter for the application in which the pipe fitting system will be employed.
In some embodiments, the connecting means includes a first connector associated with the first pipe section, and a second connector associated with the second pipe section, wherein the first and second connectors are ably engagable with one another to thereby connect the first and second pipe sections together (to form at least a section of pipeline).
Preferably, the connecting means is configured to connect the first pipe section and the second pipe section in end-to-end relation, more preferably mating end-to-end relation.
The first connector is preferably ally formed with the body of the first pipe section as a one-piece unit. Preferably, the second connector is integrally formed with the body of the second pipe section as a one-piece unit. In certain other embodiments, the first and second connectors may be attachable (fixedly or releasably) to the body of the respective first and second pipe sections.
Preferably, the first connector is arranged on, or nt to, an end of the first pipe section. In some embodiments, the first pipe section has a male end and the first connector is arranged on the male end.
Preferably, the second connector is arranged on, or adjacent, to an end of the second pipe section. In some embodiments, the second pipe section has a female end and the second connector is ed on the female end.
In certain embodiments, the first connector es at least one protrusion extending from a surface of the male end of the first pipe section, the protrusion being adapted to releasably engage the second connector. ably, the at least one protrusion extends outwardly from an outer surface of the male end. In other embodiments, the at least one protrusion s inwardly from an inner surface of a female end of the first pipe section.
In certain preferred embodiments, the first connector has two or more sions. It will be appreciated that the number of protrusions can be selected to suit the particular application in which the pipe fitting system is to be employed. For example, the number of protrusions may be selected depending on the size and/or shape of the pipe fitting sections, or to provide desired structural characteristics to the joint connection between the first and second pipe section. It has been found that a greater number of protrusions can provide advantages in terms of enhanced ility and stability at the connection between two pipe sections. In some embodiments, the first connector may have, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more protrusions. Again, it will be appreciated that the number of protrusions is not limited to those exemplary s listed above, rather the number of protrusions can be selected for desired performance requirements, as required. It has also been found that advantages arise in connection with angular fittings, where an increased number (e.g. three or more) of protrusions are arranged at the male end of the first pipe section, in terms of enabling a corresponding increase in the number of te angular ents in which the angular pipe n can be connected.
The one or more protrusions of the first connector are ably arranged symmetrically about the outer surface of the male end from which they extend. The protrusions are preferably arranged to extend radially from the outer surface of the male end.
In some embodiments, each protrusion is in the form of a stud, spigot, lug, rib, bayonet or other suitable raised formation. In some embodiments, each protrusion may be generally oval shaped, circular, or obround in section, having rounded end profiles and lly flat side faces. Preferably, the protrusion is arranged such that the flat side faces of the protrusion extend in a circumferential ion around the outer surface of the male end of the first pipe n. In certain embodiments, the flat side edges may be parallel to each other, or may be angled with respect to each other. In some embodiments, the flat side edge t to the free edge of the male end is substantially parallel to the free edge, and the flat edge furthest from the free edge is angled relative to the free edge.
In certain embodiments, the second connector includes at least one receiving formation associated with the female end of the second pipe section, the receiving formation being adapted to releasably receive the or each sion of the first connector. Preferably, the receiving formation is associated with an inner surface of the female end of the second pipe section. Preferably, the second connector is configured such that an outer surface of the second pipe section has a generally smooth profile (i.e. the second connector does not impact on the profile of the outer surface of the second pipe section). In other ments, the receiving formation may be associated with an outer surface of a male end of the respective pipe section.
In some ments, the receiving formation is generally in the form of a , socket, slot, groove, notch, channel or other suitable formation for receiving a protrusion of the first connector. The receiving formation is preferably configured such that the number of recesses on the second connector corresponds with the number of protrusions on the first connector. That is, the connecting means preferably es discrete pairs of protrusions and recesses. It has been found in various embodiments it may be advantageous to have two or more pairs of protrusions and recesses as the increased number of pairs can give rise to improved sealing performance and structural stability to the connecting ing) means. In certain embodiments, the or each recess is substantially L-shaped. Each recess is preferably an nded recess. Preferably, each open-ended recess includes a first arm segment extending from an opening at a free end face of the female end of the second pipe section, and a second arm segment extending transversely from a distal end of the first arm t to a closed end. In some embodiments, the second arm segment advantageously extends so as to be inclined away from the free end of the pipe n so that, during rotation, the first and second pipe sections are drawn together to improve the sealing connection therebetween.
The free open end of the first arm enables the respective protrusion to be received within the recess, upon relative axial movement between the first and second pipe sections s one another. The extent of axial movement is limited by an innermost side wall of the second pipe section extending transversely to the first arm segment.
The second arm t preferably extends a predetermined distance in a lly circumferential direction along the inner surface of the female end of the second pipe section, thereby facilitating relative rotational movement between the first and second pipe sections when the protrusion is ed within the second arm of the recess. The closed end of the second arm segment limits the extent of rotational movement between the first and second pipe sections, and defines the engaged position. In certain embodiments, the length of the second arm segment is such that the extent of rotational movement between the first and second pipe sections is limited to less than 90 degrees.
Preferably, the closed end of the second arm segment of the recess is configured to be of complementary shape to that of the respective protrusion. In some embodiments, side edges of the second arm segment may be ntially el to each other, or may be angled with respect to each other. In some embodiments, the side edge of the second arm segment st from the free end of the second pipe section is substantially parallel to the free end, and the flat edge closest to the free edge is angled relative to the free edge. ably, the angled side edge of the second arm segment is angled so as to substantially correspond to the angled side edge of the protrusion, thereby enabling substantially face-toface sliding engagement with each other when the first and second pipe sections are rotated relative to one another.
In some ments, one or more of the receiving formations has a positive locking member, the positive g member being arranged to restrain the first and second pipe sections against rotational displacement away from the engaged position. Preferably, each recess includes a positive locking . The positive locking member is preferably arranged within the second arm segment of the recess, the positive g member being spaced from the closed end such that the sion can be captively retained between the closed end of the second arm segment and the positive locking member (i.e. in the engaged position). In some embodiments, the spacing between the positive locking member and the closed end may be such that there may be some degree of rotational play when the protrusion is in the engaged position. In other embodiments, there may be a substantially size-for-size relationship between the spacing and the circumferential length of the protrusion such that a tight or close-fit is provided with substantially no rotational play between the pipe sections.
In n embodiments, the positive g member is generally in the form of a raised member such as, for example, a ramp, dimple, or the like. In some ments, the positive locking member is a locking ramp having a first ramp wall facing generally towards the open end of the recess, and a second ramp wall facing generally towards the closed end of the recess.
Preferably, the locking ramp is ured such that, upon rotational movement between first and second pipe sections s the engaged position, the protrusion abuts the first ramp wall, whereby further rotation causes the male end carrying the protrusion to resiliently deform enabling the protrusion to slide along the first ramp wall, and past the locking ramp into the d position. It will be appreciated that the protrusion and g ramp act in combination to provide a snap-locking mechanism for securely retaining the first and second pipe ns together. In certain embodiments, the snap-locking mechanism advantageously provides a tactile and/or audible signal, indicating when the first and second pipe sections are secured in the engaged position, and when the pipe sections are released from the engaged Preferably, the locking ramp has a peak where the first and second locking ramps meet. The peak is preferably configured (e.g. curved) to facilitate movement of the protrusion past the peak of the locking ramp, during movement to and from the engaged position.
Preferably, the first ramp wall has a different profile to that of the second ramp wall.
The different ramp profiles are preferably configured to provide different shaped obstructions with corresponding different levels of resistance to nt of the protrusion past the g ramp. In some ments, the first ramp wall provides less resistance during connection of the first and pipe sections, relative to the resistance provided when disconnecting the pipe sections. In some embodiments, the first ramp wall extends from a floor of the recess to the peak of the locking ramp at a generally constant gradient or slope. In some embodiments, the second ramp wall has a steeper gradient to that of the first ramp wall, thereby ing relatively greater resistance to movement of the protrusion past the locking ramp. In certain embodiments, the second ramp wall may have a first portion extending from, and generally orthogonally to, the floor of the recess, and a second angled or curved portion extending from the first position to the peak of the locking ramp.
Preferably, each receiving formation of the second connector is configured to act on the respective sion of the first connector such that, upon relative rotation between the first and second pipe sections, the first and second pipe sections are vely driven towards one another in an axial direction. In certain embodiments, the angled side faces of the sion and second arm segment of the recess are adapted to provide this positive driving action on the first and second pipe sections. It will be appreciated that the positive driving action facilitates in achieving a sealing engagement between the free end face of the male end of the first pipe section and an inner seat formed within an interior of the female end of the second pipe section.
Preferably, the inner surface of the female end of the second pipe section has a stepped profile. In some embodiments, the inner surface has a two step profile. Preferably, the stepped profile defines the seat for limiting inward axial nt of the male end of the first pipe section into the female end. In certain embodiments, the step may be tapered. In other embodiments, the seat may be substantially square to the free end face of the male end of the first pipe section. In some embodiments, the free end face of the male end abuts against the inner seat in face-to-face sealing engagement.
In some embodiments, the female end of the second pipe section houses a sealing means for providing a seal between the first and second pipe ns, when the pipe sections are in the engaged position.
In some embodiments, the sealing means includes a primary seal ed within the female end of the second pipe section and adapted to g engage a first face (e.g. the free end face) of the male end of the first pipe section. ably, the primary seal is located on or adjacent to the seat formed within the female end of the second pipe n. The female end preferably includes a seal retaining formation in which the primary seal is seated.
Preferably, the seal retaining formation is a notch or groove extending circumferentially within the interior of the female end of the second pipe n. In n embodiments, the seal ing formation has a generally C, U- or J-shaped cross-sectional profile. Preferably, the cross-sectional profile is complementary in shape to that of the primary seal. In some embodiments, the primary seal is a washer, gasket, o-ring or the like. Preferably, the washer is annular. In some embodiments, the washer may have a stepped cross-section profile forming a shoulder which facilitates locating and/or retaining the washer within the seal retaining formation. Preferably, the primary seal is ently compressible.
In some embodiments, the sealing means includes a secondary seal arranged within the female end of the second pipe section and adapted to sealingly engage a second face (e.g. an outer side face) of the male end of the first pipe section. Preferably, the first and second faces are substantially orthogonal to one another. In some embodiments, the first face is substantially orthogonal to the longitudinal axis of the pipe n and the second face is substantially parallel to the longitudinal axis. The secondary seal is ably spaced from the primary seal. Preferably, the secondary seal is closer to the free end of the female end of the second pipe section than the primary seal. The female end preferably includes a second seal retaining formation in which the secondary seal is located. Preferably, the secondary seal retaining formation is a notch or groove extending circumferentially within the interior of the female end of the second pipe section. In n embodiments, the seal ing formation has a generally C-, U- or J-shaped sectional profile. Preferably, the cross-sectional profile is complementary in shape to that of the ary seal. The secondary seal is preferably an o-ring, washer, gasket or the like. Preferably, the secondary seal is resiliently compressible.
The protrusions of the first connector are preferably spaced back from the free edge of the male end to provide a continuous/uninterrupted edge that can abut the seat or primary seal within the female end, when in the engaged on.
Preferably, the first pipe section is formed from a substantially rigid material, more preferably a rigid plastics material. In some preferred embodiments, the first pipe n is formed from a thermoplastic material such as, for example, polyvinylchloride (PVC) or hylene (PE).
Preferably, the second pipe section is formed from a substantially rigid material, more preferably a rigid cs material. In some preferred embodiments, the second pipe n is formed from a thermoplastic material such as, for example, polyvinylchloride (PVC) or polyethylene (PE).
It will be appreciated that the first and second pipe sections are not limited to the materials listed above and may be formed from other suitable materials such as, for example, fibreglass.
In this specification, the term “rigid” is to be understood, in the context of the first and second pipe sections, to encompass some degree of resilient ation of the pipe sections when connecting the pipe sections, or disconnecting them from each other.
Preferably, the first pipe section includes a gripping formation for facilitating grasping of the first pipe section during connection and disconnection with the second pipe section. The gripping formation is preferably adapted to enable a r lever or turning force to be applied to the first pipe body. In certain embodiments, the gripping formation is configured as a handgrip. In other embodiments, the gripping formation is adapted to provide a lever point for a mechanical lever. In some preferred embodiments, the gripping formation is configured such that it can be used as a handgrip and/or as lever point for a mechanical lever. In some such embodiments, it is envisaged that the gripping formation may be used as a handgrip when securing the first and second pipe sections er, and a lever point when disconnecting the first and second pipe sections, or vice versa.
In some embodiments, the gripping formation extends circumferentially around the outer surface of the body of the first pipe section. Preferably, the gripping formation is arranged between the centre of the body and the first connector. In some embodiments, the gripping formation is a continuous band extending circumferentially about the body of the first pipe section. In other embodiments, the gripping formation is an interrupted formation, having te gripping elements. In some preferred ments, the continuous band includes a raised rib extending circumferentially about the body, and a plurality of ng elements arranged in spaced relation about the rib. In some embodiments, the gripping elements may be formed as notches or s, or as a raised element, which preferably extend axially across the band (i.e. substantially el to the longitudinal axis of the first pipe section). In yet other embodiments, the gripping elements may form a cross, zig-zag, or other le pattern. Preferably, the notches are evenly spaced about the ferential rib. In some ularly preferred embodiments, there are four pairs of notches spaced about the rib.
In other embodiments, the spacing between a pair of notches may be less than or more than the spacing between adjacent pairs of notches.
Preferably, the gripping elements (e.g. notches) are offset with respect to the protrusions of the first connector on the male end of the first pipe n. It has been found that by offsetting the gripping elements with respect to the protrusions there is less stiffening of the male end of the first pipe section, thereby allowing the male end to resiliently deform to enable the protrusions to pass the positive locking member during connection and disconnection of the first and second pipe sections. In other embodiments, the gripping elements may be substantially in line with the protrusions of the first connector.
In some embodiments, the ical lever may have an elongate lever arm with an engaging formation at its distal end for ng at least at portion of the gripping formation.
Preferably, the engaging formation is adapted to (at least partially) engage with one or more of the gripping elements, wherein the gripping ts provide an anchor or pivot point for the mechanical lever. In some embodiments, the engaging formation includes two or more spaced apart prongs for engaging respective s in the circumferential gripping band. Preferably, the prongs are of complementary configuration to that of the notches. In some ularly preferred embodiments, the engaging formation includes a base member at the distal end of the lever arm, the prongs being arranged on, and extending outwardly from, the base member.
Preferably, the base member is curved so as to complement the shape of the circumferential rib, more preferably a portion of the curved outer portion of the rib. In some ments, the base member is lly semi-circular in shape. In certain ments, the semi-circular shaped base member carries five prongs.
It will be appreciated that the gripping formation will provide significant advantages to a wide range of embodiments, but will be particularly advantageous in those embodiments incorporating a positive locking member (e.g. locking ramp), where the positive locking member resists the free passage of the protrusion of the first connector to and from the engaged position.
In some ments, the first pipe section may have a male end with a first connecter at that end, as described herein. The other end of the first pipe section may also be configured to have a male end with a first connector, or a female end with a second connector as described herein. In other forms, the other end of the first pipe section may be ured as a slip-on fitting (male or female) which can, for example, be glued to another fitting or pipe.
In some embodiments, the other end of the first pipe section may be ured with a threaded end (male/external thread or female/internal thread), such as for example a BSB thread.
In some embodiments, the second pipe section may have a female end with a second connecter at that end, as described herein. The other end of the second pipe section may also be configured to have a female end with a second tor, or a male end with a first connector as described herein. In other forms, the other end of the second pipe section may be configured as a slip-on g (male or female) which can, for example, be glued to another fitting or pipe. In some embodiments, the other end of the second pipe section may be configured with a threaded end (male/external thread or female/internal thread), such as for example like a BSB thread.
According to another aspect of the ion, there is provided a pipe fitting assembly, including: a body having a first open end and a second open end; and a first pipe member having an inner end and an outer end; wherein, the inner end of the first pipe member is telescopically received within the first open end of the body and adapted for sliding movement between a retracted position and an extended position, and the outer end has a first connecting means for ably connecting the first pipe member to an upstream or downstream pipe section.
In some embodiments, the body is a substantially ht pipe section. In other embodiments, the body is an angled pipe section. In certain embodiments, the body is a T- shaped pipe section.
Preferably, a second pipe member has an inner end and an outer end, the inner end of the second pipe member is telescopically received within the second open end of the body and adapted for sliding movement between a retracted position and an extended position, and the outer end has a first connecting means for releasably connecting the second pipe member to a downstream or upstream pipe section.
The outer end of the first and second pipe members is preferably configured as a male end. It will of course be appreciated that one or both of the outer ends could be configured as female pipe ends.
The upstream and downstream pipe sections are preferably configured to have at least one female end to complement the male outer ends of the first and second pipe members. The female end of the upstream and downstream pipe ns preferably have a second ting means releasably engagable with the first connecting means of the respective first and second pipe members.
The te end of the upstream and downstream pipe sections may be formed as a male or female end. ably, the opposite end of the am and downstream pipe sections is formed as a slip-on fitting (male or female) which can, for example, be glued to another fitting or pipe, or configured with a threaded end (male or female) like a BSP thread. ably, the first ting means of the first and second pipe members is in the form of a first connector as described herein. In some embodiments, the first connector has at least one protrusion ing from an outer surface of the male end of the first pipe member, the protrusion being adapted to releasably engage the second ting means.
Preferably, the second connecting means of the upstream and downstream pipe sections is in the form of a second connector as described herein. In some embodiments, the second tor includes at least one ing formation associated with the female end of the respective upstream and ream pipe sections, the receiving formation being d to releasably receive the or each protrusion of the first connector. Preferably, the receiving formation is associated with an inner surface of the female end of the second pipe section.
Preferably, a sealing mechanism is arranged between the first open end of the body and the inner end of the first pipe member. The sealing mechanism is preferably configured to provide a seal between an inner surface of the first open end of the body and an outer e of the inner end of the first pipe member. Preferably, the sealing mechanism configured to maintain the seal when the first pipe member is at or n the extended and retracted ons. In some embodiments, the sealing mechanism has at least one sealing member circumferentially arranged around the inner surface of the first open end of the body. In certain embodiments, the sealing mechanism has two or more sealing members. Preferably, the two or more sealing members are arranged in spaced apart side-by-side relation. In certain embodiments, the or each sealing member is in the form of a , washer, o-ring or the like.
Preferably, the inner surface of the first open end has a seal member retaining formation in which the sealing member is seated. Preferably, the seal member retaining formation is a notch or groove extending circumferentially within the interior of the female end of the second pipe section. Preferably, the cross-sectional profile is complementary in shape to that of the respective sealing member. Preferably, the or each sealing member is annular. Preferably, the or each sealing member is resiliently ssible.
Preferably, a sealing mechanism is arranged between the second open end of the body and the inner end of the second pipe member. The sealing mechanism is preferably configured to provide a seal between an inner surface of the second open end of the body and an outer surface of the inner end of the pipe member. Preferably, the sealing mechanism configured to maintain the seal when the pipe member is at or between the extended and ted positions. In some embodiments, the sealing mechanism has at least one sealing member circumferentially arranged around the inner surface of the open end of the body. In certain embodiments, the sealing mechanism has two or more sealing members. Preferably, the two or more sealing members are arranged in spaced apart side-by-side relation. In certain embodiments, the or each sealing member is in the form of a gasket, washer, o-ring or the like. Preferably, the inner surface of the open end has a seal member retaining formation in which the sealing member is seated. Preferably, the seal member retaining formation is a notch or groove extending ferentially within the interior of the female end of the second pipe section. Preferably, the cross-sectional profile is mentary in shape to that of the respective sealing member. Preferably, the or each sealing member is annular. Preferably, the or each sealing member is ently compressible.
Preferably, one or both of the first and second pipe members has a gripping formation adapted to facilitate grasping of the first pipe section during connection and disconnection with the second pipe section, y enabling a greater lever or g force to be applied to the first pipe body. The gripping ion of the first and/or second pipe members may be configured as a handgrip and/or adapted to provide a lever point for a ical lever as described herein.
In some embodiments, the body is a T-shaped pipe n having a third opening, in addition to the first and second open ends. Preferably, the body has a main body section in which the first and second open ends are formed, and a leg extending transversely from the main body and in which the third opening is formed. In some embodiments, the third opening may provide an inspection portal for facilitating visual inspection into the main body, advantageously at an intermediate point between the first and second open ends.
Preferably, a cover or cap is releasably attached to the leg of the body to cover the third opening. The cover of cap is preferably threadedly engagable with the leg. Preferably, the leg has an external ed portion and the cover or cap has an internal threaded n, or vice versa. In other embodiments, the cover or cap may be releasably secured in or over the third opening by any suitable means other than by way of threaded connection, such as, for e, by an interference fit (e.g. plug). In other embodiments, the cover/cap and the third leg have respective first and second connectors (or vice versa) for releasably attaching the cap/cover to the leg of the body. For example, the third leg may be configured to have a female second connector as described herein, and the cap/cover has a male first connector as described herein to enable releasable tion n the cap and third leg.
In some ments, a branch line may be releasably connected to the third leg either directly or ctly via a fitting as described herein, rather than a cap/cover. Again, respective first and second connectors as described herein may be used to enable the branch line to be releasably connected to the third leg.
Preferably, a gasket, washer or like sealing member is arranged to seat between the cap and the leg of the body to facilitate sealing engagement therebetween.
Advantageously, the first open end of the body and the first pipe member (and similarly the second open end of the body and the second pipe member) are preferably configured such that the inner end of the pipe members are clear of (i.e. do not overlap) the leg of the body when the pipe members are in the extended position, such that they do not obstruct a view path of the main body from the inspection . This non-overlapping arrangement is also ageous in use when fluid is flowing through the pipe as it effectively keeps the passage way open and free of obstructions which would otherwise give rise to creating turbulent flow within the fluid stream as it moves past the junction of the third leg.
It will be appreciated that the adjustable length of the pipe fitting assembly together with the releasable connectors advantageously enables simple, clean and efficient repair or replacement of existing fixed pipes as it can be readily retrofitted between upstream and ream pipes or pipe sections. In some embodiments, the adjustable length and releasable tors enable the assembly, or a n thereof, to be removable. For example, the pipe fitting assembly may be installed as part of a new pipe network or itted to an existing network such that it enables adjoining pipes to be temporarily removed for maintenance, access or other purposes, as and when required.
In some embodiments, a stop may be arranged within the body for limiting the extent to which the first and/or second pipe members can retract into the body. In certain embodiments, a separate stop may be provided for the first and second pipe members, respectively. In other embodiments, the extent of inward travel of the first and/or second pipe members may be limited by the associated ng formation, enabling the inner surface of the pipe members to be ntially smooth and free of obstructions which could give rise to undesirable turbulence flow.
According to another aspect of the invention, there is provided a first pipe section having at least one first connector as described herein. In certain embodiments, the first pipe section with the first connector can be configured as a male to male fitting, a male to female fitting, or a female to female fitting. In various embodiments, the first pipe section with the first connector can be configured as one of a straight fitting, an angled/elbow fitting, a reducer, a Y- fitting, a double-Y fitting, a T-fitting, a ng T-fitting, a double door T-fitting, an offset fitting, a closed end cap/cover, and the like.
The opposite end of the first pipe section may be formed as a male or female end.
In some embodiments, the opposite end of the first pipe section is formed as a slip-on g (male or female) which can, for example, be glued to another fitting or pipe, or configured with a ed end (male or female) like a BSP thread. In other ments, the opposite end of the first pipe section has a first or second connector.
According to another aspect of the invention, there is provided a second pipe n having a second connector as described . In certain embodiments, the second pipe section with the second connector can be configured as a female to female fitting, a female to male fitting, or a female to female fitting. In various embodiments, the first pipe section with the first tor can be configured as one of a straight fitting, an angled/elbow fitting, a reducer, a Y-fitting, a double-Y fitting, a ing, a reducing T-fitting, a double door T-fitting, an offset fitting, a closed end cap/cover, and the like.
The opposite end of the second pipe section may be formed as a male or female end. In some embodiments, the te end of the second pipe section is formed as a slip-on fitting (male or female) which can, for e, be glued to another fitting or pipe, or configured with a threaded end (male or female) like a BSP thread. In other embodiments, the opposite end of the second pipe section has a first or second connector.
According to another aspect of the ion, there is provided a pipe connection system for releasably connecting two pipe sections, the system including: a first pipe section with a male connecting portion; a second pipe section with a female connecting portion; and a locking means, wherein when the first pipe section and the second pipe n are in an engaged position the male connecting portion fits at least lly inside the female connecting n and the locking means releasably retains the pipe sections in the engaged position.
In some embodiments, the locking means includes: at least one protrusion ing from an outside surface of the male connecting portion; and at least one recess on an inside e of the female ting portion, wherein the protrusion fits substantially inside the recess when in the retained position.
In another form, the locking means is arranged so that moving the pipe sections from a separated position to the retained position requires inserting the male connecting portion into the female ting portion and then rotating one of the first or second pipe sections relative to the other section.
In another form, the locking means is arranged so that moving the pipe sections from the ed position to a separated position requires rotating one of the first or second pipe sections relative to the other section and then removing the male connecting portion from the female ting portion.
According to another aspect of the invention, there is provided a method of releasably connecting pipes using a pipe fitting connection system substantially as herein described, the method including the step of connecting the first pipe section to the second pipe section by inserting the male portion into the female portion and then rotating one of the first or second pipe ns relative to the other pipe section.
According to another aspect of the invention, there is provided a method of releasably connecting pipes using a pipe fitting connection system substantially as herein bed, the method including the step of removing the first pipe section from the second pipe section by rotating one of the male or female sections relative to the other n and then removing the male portion from the female n.
Brief description of the drawings Preferred embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which: Figure 1 shows a schematic perspective view of a first embodiment of a pipe fitting system according to the invention in a disconnected configuration; Figure 2 the pipe fitting system of Figure 1 in a connected configuration; Figure 3 shows an end view of a male end of a first pipe section with a first connector; Figure 4 shows a section view of a female end of a second pipe section with a second tor; Figure 5 shows a udinal section view of the pipe fitting system of Figure 1 in the disconnected uration; Figure 6 a longitudinal section view of the pipe fitting system of Figure 1 in the connected configuration; Figures 7A to 7E the relative positions between the first connector and the second connector during various sequential stages when connecting the first and second pipe sections together; Figures 8A and 8B show enlarged plan views of a stud of the first connector and a recess of the second connector; Figures 9A to 9K show various embodiments of pipe sections employing the first and/or second connectors; Figures 10A to 10F show various ments of angled pipe sections employing the first and/or second connectors; Figures 11A to 11D shows pairs of male and female connectors having two, three, four and eight protrusions and recesses, respectively; Figure 12 shows a sectional side view of an embodiment of a pipe fitting ly according to the invention; Figure 13 shows side view of r embodiment of a pipe fitting system according to the invention in a disconnected configuration; Figure 14 shows a n view of another embodiment of a pipe fitting ly according to the invention; Figure 15 shows a section view of the telescopic portion of the pipe g assembly of Figure 14; Figures 16A and 16B shows sectional views of a sealing mechanism of the second pipe n; Figure 17 shows a schematic representation of an embodiment of a mechanical lever ng a ng formation of the first pipe section; Figure 18 shows an exploded perspective view of another embodiment of a pipe connection according to the present invention; Figures 19A to 19C show top, side and cross sectional views of another embodiment of a pipe fitting system; Figures 20A to 20C show top, side and cross sectional views of another ment of a pipe fitting system with an O-ring; and Figure 21 show the pipe connection in use, where Figure 21A shows the pipe sections in a retained position and Figure 21B shows the pipe connection in a separated position to provide access to the water tank.
Preferred embodiments of the invention Referring to the drawings, the invention provides a pipe fitting system 1 having a first pipe section 2 and a second pipe section 3. A connecting means having a first tor 4 associated with the first pipe section 2 and a second connector 5 associated with the second pipe section 3 is provided for releasably connecting the first and second pipe sections (2, 3) together.
For the sake of clarity of description, the following description of the illustrated embodiments of the pipe fitting system 1 will be made with reference to the first pipe section 2 having a male end 6 with an outer surface 7 on which the first connector 4 is located. The description will also refer to the second pipe section 3 having a female end 8 with an inner surface 9 on which the second connector 5 is located. It will be appreciated that the invention is not limited to this exemplary ement which is provided by way of example only.
Referring to the embodiment rated in Figures 1 to 6, the first pipe section 2 is in the form of a moulded straight pipe fitting having a hollow cylindrical body 10 defining a passage through which fluid such as, for example, water can flow. Again, for clarity of description, the embodiments described herein will be made with reference to water pipe applications. However, it is to be appreciated that the pipe fitting system is not limited to fluid flow applications, but could be advantageously used in a range of other applications including with, for example, pipes through which data and energy is transferred.
The first connector 4 is integrally formed with the body of the first pipe section as a one-piece unit. The second pipe section 3 is in the form a moulded straight pipe fitting having a hollow cylindrical body ng a passage through which fluid such as, for e, water can flow. The second connector 5 is integrally formed with the body of the second pipe section as a one-piece unit.
The first and second pipe sections (2, 3) are preferably formed from a substantially rigid thermoplastic material such as, for example, polyvinylchloride (PVC).
As is most clearly seen in Figure 6, the first connector 4 and the second connector 5 are configured such that, when the first pipe section 2 and the second pipe section 3 are connected together, via the connecting means, the male end 6 of the first pipe n 2 is partially received within the female end 8 of the second pipe section 3 to form a pipeline. In this arrangement the first and second pipe sections (2, 3) are connected together in mating end-to-end relation.
In the embodiment of Figures 1 to 6, the first connector is in the form of four spaced apart protrusions in the form of studs 11 extending radially from the outer surface 7 of the male end 6 of the first pipe n 2. In the illustrated embodiment, the studs 11 are circumferentially arranged and evenly spaced about the outer surface 7 of the male end 6.
It will be appreciated that the number of studs used to form the first connector is not limited to four, but rather the number of studs can be selected to suit the particular application in which the pipe fitting system is to be employed. For example, the number of sions may be selected depending on the size and/or shape of the pipe fitting ns, or to provide d structural characteristics to the joint tion between the first and second pipe section. It has been found that a greater number of protrusions can provide advantages in terms of enhanced ility of sealing and structural stability at the connection n two pipe sections.
As is best seen in Figures 1 and 8, each stud 11 has a generally obround crosssectional profile, having rounded ends 12 and a generally flat side faces 13. The flat side edges 13 are advantageously configured to extend at an angle with respect to each other.
With nce to Figures 8A and 8B, the flat side edge 13a closest to the free edge of the male end 6 is substantially el to the free edge, and the flat edge 13b furthest from the free edge is angled relative to the free edge. As is described in further detail below, the angled flat edge 13b facilitates driving the first and second pipe sections towards each other upon relative rotational motion, when connecting the two pipe sections together.
As is most clearly shown in Figures 1 and 5, the studs 11 of the first tor 4 are spaced back from the free edge of the male end 6 to e a continuous uninterrupted edge/face that can abut a portion of the female end, when the two pipe sections are connected.
Referring to s 1 and 5, the second connector 5 includes four receiving formations in the form of generally L-shaped recesses 14 arranged on the inner surface 9 of the female end 8 of the second pipe section 3. Each recess 14 is adapted to releasably receive a corresponding stud 11 of the first connector 4. As such, the studs 11 and recesses 14 advantageously form four discrete pairs of studs and recesses.
Referring to Figure 5, each recess 14 is an open-ended recess having a first arm segment 15 extending from an opening 16 at a free end face of the female end 8 of the second pipe section 3. A second arm segment 17 extends ersely from a distal end of the first arm segment 15 to a closed end 18.
Referring to Figure 8B, the free open end 16 of the first arm segment 15 enables the respective stud 11 to be received within the recess 14, upon ve axial movement between the first and second pipe sections (2, 3) towards one another. The extent of axial movement is limited by an innermost side wall 19 of the second arm segment 17 which extends transversely to the first arm t 15.
The second arm segment 17 extends a predetermined distance in a generally circumferential direction along the inner surface 9 of the female end 8 of the second pipe section 3, thereby facilitating relative rotational movement between the first and second pipe sections when the stud 11 is ed within the second arm segment 17 of the recess 14.
The closed end 18 of the second arm segment 17 limits the extent of rotational movement between the first and second pipe sections (2, 3), and defines an engaged position where the two pipe sections are releasably connected together.
As is most clearly shown in Figure 8B, the closed end 18 of the second arm segment 17 of the recess 14 is configured to be of complementary shape to that of the respective end 12 of the stud 11.
Referring to Figures 5 and 8, the second arm segment 17 has side edges 20 which are angled with respect to each other. In the illustrated embodiment, the side edge 20a of the second arm segment 17 furthest from the free end of the second pipe section 3 is substantially parallel to the free end. The side edge 20b closest to the free edge is angled relative to the free edge and side edge 20a. The angled side edge 20b of the second arm segment 17 is advantageously angled so as to complement the angled side edge 13b of the stud 11.
Advantageously, the angled side edge 20b is not parallel to the angled side edge 13b such that upon insertion towards the engaged position, the forward or ost end of side 13b engages or mates with the angled side edge 20b, whilst the rear end of side 13b is spaced from edge 20b. This ve angle configuration provides advantages in terms of reducing the degree of friction between the two edges (13b, 20b) when they are engaged and sliding relative to each other. It also provides advantages in terms of favourable wear characteristics of the stud which improve the working life of the stud 11.
] The complementary angled faces of the stud 11 and recess 14 enable substantially face-to-face sliding ment between side edges (13b, 20b) during relative rotation of the first and second pipe sections when connecting the section together. Due to the orientation of the angled side edges (13b, 20b) and the g ment therebetween, the side edges (13b, 20b) act on one another such that, upon relative rotation between the first and second pipe sections (2, 3), the first and second pipe sections are positively driven s one another in an axial direction. It will be appreciated that the positive driving action advantageously facilitates in achieving a sealing ment between the free end face of the male end 6 of the first pipe section 2 and an inner seat 21 formed within an or of the female end 8 of the second pipe section 3. ing to Figures 1, 5, 6 and 7, each recess 14 has a positive locking member in the form of a locking ramp 22 for ining the first and second pipe sections (2, 3) against rotational displacement away from the engaged position. The locking ramp 22 is arranged within the second arm segment 17 of the recess 14 so as to be spaced from the closed end 18 such that the respective stud 11 can be captively retained between the closed end 18 of the second arm segment 17 and the locking ramp 22 (i.e. in the engaged position). The spacing between the positive locking member and the closed end may be such that there may be some degree of rotational play when the stud is in the engaged position.
As most clearly seen in s 1 and 7, the locking ramp 22 has a first ramp wall 23 facing lly towards the open end 16 of the recess 14, and a second ramp wall 24 facing generally towards the closed end 18 of the recess 14.
The locking ramp has a curved or rounded peak 25 where the first and second locking ramps (23, 24) meet to facilitate ease of passage of the stud 11 past the peak 25 of the locking ramp 22, during the final stages of movement to the engaged position.
The first ramp wall 23 has a different profile to that of the second ramp wall 24 in order to provide different shaped obstructions with corresponding different levels of resistance to movement of the protrusion past the locking ramp 22.
The first ramp wall advantageously es less resistance during tion of the first and second pipe sections, relative to the resistance provided when disconnecting the pipe sections. It will be appreciated that this difference in resistance levels is advantageous as a lower resistance when connecting pipes aids a user when installing the pipe ns in situ. A higher resistance is beneficial for the reverse ure is it acts to inhibit undesirable inadvertent disconnection of the pipe sections.
The first ramp wall 23 s from a floor 26 of the recess 14 to the peak 25 of the locking ramp 22 at a generally constant gradient or slope, before the curving into the peak.
The second ramp wall 24 may have a steeper gradient to that of the first ramp wall. The second ramp wall 24 has a first portion 27 extending from, and lly orthogonally to, the floor 26 of the recess 14, and a second angled (bevelled, chamfered) or curved portion 28 extending into the peak 25. The chamfered or curved portion 28 acts in combination with the respective side of the rounded peak 25 of the locking ramp 22 to e mating surfaces which enable the stud and ramp to move relative to each other when disconnecting the pipe sections.
Figures 7A to 7E show details of the relative positions and ctions between the stud 11 and locking ramp 22 during various tial stages which occur when connecting the first and second pipe sections (2, 3) together. The locking ramp 22 is configured such that, upon rotational movement between first and second pipe sections (2, 3) towards the engaged position, the stud 11 abuts the first ramp wall 23, whereby further on causes the male end 6 carrying the stud 11 to resiliently deform (see Figures 7C and 7D) enabling the stud to slide along the first ramp wall 23, past the peak 25 into the engaged position. Once the stud 11 has passed the locking ramp 22 the male end 6 springs back to its original configuration such that the stud 11 is securely locked in behind the locking ramp 22.
It will be appreciated that the stud 11 and locking ramp 22 act in combination to provide a snap-locking mechanism for securely retaining the first and second pipe sections together. The snap-locking mechanism ageously provides a tactile and/or e signal to the user as the stud 11 engages and then moves past the locking ramp 22, indicating when the first and second pipe sections are secured in the d position, and when the pipe sections are released from the engaged position. For example, a user may feel the stud freely drop into the engaged position as it moves past the locking ramp. An audible click may also be detected at this time, signalling to the user that the stud is in the engaged position.
The inner surface 9 of the female end 8 of the second pipe section 3 has a stepped profile which defines the seat 21 (Figure 16A) for limiting inward axial movement of the male end 6 of the first pipe section 2 into the female end 8.
] Referring to s 16A and 16B, the female end 8 of the second pipe section 2 houses a sealing means for providing a seal between the first and second pipe sections (2, 3), when the pipe sections are in the d position.
The sealing means includes a primary seal in the form of a compressible r washer 29 arranged over the seat 21 within the female end 8 of the second pipe n 2.
When the first and second pipe sections are connected together in the engaged position, the free end face of the male end 6 of the first pipe section 2 abuts against the washer 29 (rather than directly against the seat 21) in sealing engagement.
] The female end 8 includes a seal retaining ion in the form of a circumferential groove 30 in which the washer 29 is seated. The groove 30 is complementary in shape to at least a portion of the washer. The washer 29 may advantageously have a stepped crosssection e (e.g. L-shaped) forming a shoulder and flange (not shown) which facilitates locating and/or retaining the washer within the groove 30. In the rated embodiment, the washer 29 has a rounded inner surface 29a. Advantageously, the surface 29a is convexly curved to facilitate the male end retention against the washer after the stud 11 has passed the locking ramp 22. In some instances, the temporary deformation of the male end, which occurs as it passes the locking ramp, may cause the male end to partially pass into the central opening of the washer whilst bearing against the inner surface 29a. As the male end cally returns to its undeformed shaped, the rounding of the inner surface 29a enables the male end to slide back out of the washer opening such that the washer is not dislodged and the male end can seal against the front face of the washer.
Again referring to Figures 16A and 16B, the sealing means also includes a secondary seal in the form of a compressible o-ring 31. The o-ring 31 may be arranged within the female end of the second pipe section and adapted to sealingly engage an outer side face of the male end of the first pipe section. The o-ring 31 is spaced from the washer 29 such that it is closer to the free end of the female end 8 of the second pipe section than the washer 29.
The female end 8 has a second seal retaining formation in the form of a circumferential notch in which the o-ring is d.
The studs 11 are spaced back from the free edge of the male end to provide a continuous/uninterrupted edge/face that can abut the seat 21 or washer 29 within the female end 8, when in the engaged position.
The first pipe section 2 includes a gripping formation in the form of a continuous raised rib grip 32 extending ferentially about the first pipe section 2. It will be iated that the raised rib grip 32 facilitates ng of the first pipe section 2 during connection and disconnection with the second pipe section 3. The grip 32 enables a greater lever or g force to be applied to the first pipe body 2.
The gripping formation is configured such that it can be used as a handgrip and/or as lever point for a mechanical lever. It is envisaged that the grip 32 (Figure 1) may be used as a handgrip when connecting the first and second pipe sections together, and as an anchor point when disconnecting the first and second pipe sections.
The raised rib grip 32 has a plurality of gripping elements in the form of axially extending notches 33 ed in spaced relation about the rib 32. As best seen in Figure 3, the grip 32 has eight ng notches arranged symmetrically about the rib 32. The notches 33 are offset with respect to the studs 11 on the male end 6 of the first pipe section 2.
It has been found that by offsetting the notches 33 with respect to the studs 11 there is less stiffening of the male end 6 of the first pipe n 2, thereby allowing the male end to resiliently deform to a ient extent which enables the studs to pass the respective locking ramp 22 during connection and disconnection of the first and second pipe sections (2, 3).
Figures 17 shows an example embodiment of a mechanical lever 34 which may be used to engage the notches 33 of the rib 32. The ical lever 34 has an elongate lever arm 35 with an engaging formation in the form of an engaging head 36 at its distal end for engaging at least a portion of the gripping formation. The engaging head 36 has a semicircular shaped base plate 37 which is sized and shaped to complement at least a portion of the circumferential rib 32. The base plate 37 carries five outwardly extending prongs 38 for engaging respective notches 33 in the rib 32.
It will be appreciated that the gripping formation will provide significant advantages to a wide range of embodiments, but will be particularly advantageous in those embodiments incorporating a positive locking member (e.g. locking ramp), where the positive g member resists the free passage of the studs to and from the engaged position. s 9A to 9K show various pipe sections which could be employed as the first and second pipe sections. One end of these pipe sections has either a first connector with studs or a second connector with recesses as described . The other end of these ns may also be configured to have a male end with a first connector (studs), or a female end with a second connector (recesses) as described herein (see Figures 9C, 9F, 9I). In other forms, the other end of the first pipe section may be configured as a slip-on g (male or female) which can, for example, be glued to another fitting or pipe. Figures 9J and 9K show examples of closed end caps with a second connector (recesses) and a first connector (studs), respectively. s 10A to 10F shows various angled pipe sections (e.g. elbows) which could be employed as the first and second pipe sections. Again, the other end of these pipe sections may have a first or second connector as described herein, or may be configured as a slip-on fitting (male or female) which can, for example, be glued to another fitting or pipe.
Figures 11A to 11D shows pairs of connecting means with a male end of a first connector and a female end with a second tor in which two, three, four and eight sions and es are formed on the pipe sections, respectively. Again, it will be appreciated that the first and second connectors are not limited to these configurations which have been provided by way of example only.
It has also been found that advantages arise in connection with angular fittings where an increased number of protrusions (e.g. three or more) are arranged at the male end of the first pipe section. The increased number of protrusions provides advantages in terms of enabling a corresponding increase in the number of discrete angular increments in which the angular pipe section can be connected to the second pipe section. ing to Figure 12, the invention provides a pipe fitting assembly 40 which can be ageously installed in a fixed pipeline to facilitate clean and efficient repair of broken pipes, to provide a means of inspection along the pipeline, and/or to enable temporary removal of pipes for nance, access or other es. The pipe fitting assembly 40 is not limited to use in repair or other retrofit applications but rather can be installed with new pipelines. The pipe fitting assembly, as with pipe fittings with first or second tors as described herein, may be used in temporary pipeline applications at, for example, worksites.
In the embodiment of Figure 12, the pipe fitting assembly 40 is configured as a removable assembly with a T-shaped body 41 having a first open end 42 and a second open end 43.
A first pipe member 44 having an inner end 45 and an outer end 46 is telescopically received within the first open end 42 of the body 41. The first pipe member 44 is adapted for sliding movement between a retracted position as shown in Figure 12, and an extended position. T he outer end 46 has a first connecting means for releasably ting the first pipe member 44 to an upstream pipe section 50.
A second pipe member 47 has an inner end 48 and an outer end 49. The inner end 48 of the second pipe member 47 is telescopically received within the second open end 43 of the body 41. The second pipe member 47 is d for sliding movement between a retracted position as shown in Figure 12, and an extended position. The outer end 49 has a first connecting means for releasably connecting the second pipe member 47 to a downstream pipe section 51.
] The outer ends (46, 49) of the first and second pipe members (44, 47) are configured as male ends 6 such that the first connector is in the form of four spaced apart circumferentially arranged studs 11, as described herein.
The upstream and downstream pipe sections (50, 51) are configured to have at least one female end 8 to complement the male outer ends of the first and second pipe s (44, 47). The female end 8 of the upstream and downstream pipe sections have a second connector in the form of a plurality of recesses 14 for releasably engaging with the studs 11 of the respective first and second pipe members (44, 47) in the manner described herein.
The opposite end of the upstream and downstream pipe sections may be formed as a male or female end. In the embodiment of Figure 12, the opposite end of the upstream and downstream pipe sections is formed as a slip-on female fitting which can be glued to an existing male fitting or pipe. It will be appreciated that the telescopic arrangement of the first and second pipe members enables the length between the outer ends (46, 49) of the first and second pipe members (44, 47) to be readily adjustable. This adjustability makes it possible to readily install and remove the pipe fitting assembly 40 to and from a pipeline for a range of purposes including ng, repair, replacement, inspection of the surrounding pipes or other maintenance and access purposes. The adjustability also makes the pipe fitting assembly 40 y adapted for use as a pipe joiner which is ularly ageous when repair of an existing fixed pipe is required. The section of broken pipe can be cut out and removed and replaced with the pipe fitting assembly 40. It will thus be appreciated that the pipe fitting assembly 40 itself may be removable or it may render the ing pipe removable while the assembly 40 is secured in place.
A sealing mechanism is arranged within the body 41 and configured to provide a seal between an inner e of the first open end 42 of the body 41 and an outer surface of the inner end 45 of the first pipe member 44. The seal is ured to maintain the seal when the first pipe member is at or between the extended and retracted ons. In the illustrated embodiment, the seal has two sealing members arranged in spaced apart y-side relation. Each sealing member is in the form of an o-ring 52 . The inner surface of the first open end has two retaining formations in the form of a circumferential grooves in which sealing members are seated.
A sealing mechanism is also arranged within the body 41 and configured to provide a seal n an inner surface of the second open end 43 of the body 41 and an outer surface of the inner end 48 of the second pipe member 47. The seal is configured to maintain the seal when the first pipe member is at or n the extended and retracted positions. In the illustrated embodiment, the seal has two g members arranged in spaced apart sideby-side relation. Each sealing member is in the form of an o-ring 52 . The inner surface of the first open end has two retaining formations in the form of circumferential grooves in which sealing members are seated.
The first and second pipe members (44, 47) have a gripping formation 32 adapted to facilitate grasping of the first pipe section during connection and disconnection with the second pipe section, thereby enabling a r lever or turning force to be applied to the first pipe body. The gripping formation of the first and/or second pipe members may be configured as a handgrip and/or adapted to provide a lever point for a mechanical lever as described herein.
The T-shaped body 41 has a leg 53 in which a third opening 54 is formed. The third opening 54 is ed intermediate the first and second open ends. The third opening 54 advantageously provides an tion portal for facilitating visual inspection into the main body of the pipe fitting assembly 40 and surrounding pipes.
A cap 55 for covering the third opening 54 is threadingly engagable with an external thread of the leg. A gasket 56 is arranged to seat between an inner e of the cap and the leg of the body to tate sealing engagement therebetween. It will be appreciated that the cap 55 can be readily removed when it is desired to inspect the ne. Advantageously, the first open end of the body and the first pipe member (and similarly the second open end of the body and the second pipe member) are preferably configured such that the inner end of the pipe members are clear of (i.e. do not overlap) the leg of the body when the pipe members are in the extended on, such that they do not obstruct a view path of the main body from the inspection portal.
The right hand side of Figure 12 shows an alternative embodiment in which cover/cap 55 and the third leg 53 may instead have respective first and second connectors (4, ) for releasably attaching the cap/cover 55 to the leg 53 of the body 41 to seal the opening 54.
For e, the third leg may be configured to have a female second connector as described herein, and the cap/cover has a male first connector as described herein to enable releasable connection between the cap and third leg. In this form, the cap/cover 55 may act as a plug.
] The left hand side of Figure 12 shows an alternative embodiment in which a branch line 57 may be releasably connected to the third leg 53 either directly or indirectly via a fitting as described herein, rather than a cap/cover/plug. Again, respective first and second connectors (4, 5) as described herein may be used to enable the branch line 57 to be releasably connected to the third leg 53.
Referring to Figures 18 to 21, another embodiment of the pipe fitting system 100 is shown in exploded form. A first pipe n 200 includes a protrusion 210 from the outside surface 220, the protrusion 210 forming part of a locking means 800. A second pipe section 300 includes a recess 310 in the inside surface 320, the recess 310 forming another part of the locking means 800. The end 230 of the first pipe section 200 forms a male connecting portion that fits inside the female connecting portion 330 of the second pipe section 300.
Referring to Figure 19A to 19C, the embodiment of Figure 18 is shown in an assembled or retained position. It can be seen that the protrusion 210 is inside the recess 310. The wall 35 0 of the recess 310 abuts the sion 210, thereby preventing the pipe sections 200, 300 from being ted simply by providing a tension force along the central axis 600.
In this embodiment, the protrusion 210 is set back from the edge 240 of the male ting portion 230. This provides a continuous edge 240 that abuts the taper 340 of the female connecting portion 330 when in the retained position. The locking mechanism 800 in addition to retaining the pipe sections 200, 300 together provides a force that allows this edge 240 and taper 340 to create a watertight seal.
To separate the pipe sections 200, 300 they must first be rotated relative to one another so that the protrusion 210 moves along the axis 610 of the lateral portion of the recess 310. The pipe sections 20 0, 300 can then be separated by pulling the pipes apart in a longitudinal direction 600.
In the ment of Figures 18 and 19, the recess 310 is an ed channel, however other suitable shapes should also be considered to be part of the present invention.
For example, the channel could have an angle greater than 90 degrees, where the n of the channel 310 currently aligned with the axis 600 is at an angle to the axis 600. This would then require the male portion 200 to be d in a direction te to the g ion as it is first inserted into the female portion 300. Similarly, the section of the channel 31 0 aligned with the axis 610 could be angled to provide a more secure lock, preventing accidental disconnection.
As previously described, while the embodiment of Figures 18 and 19 is shown with two sets of locking means 800, it will be appreciated by those skilled in the art that any suitable number may be used. A greater number of locking means 800 may be advantageous for ing a stronger connection. Alternatively, a single locking means 800 may be sufficient if located at the top of the pipe sections so that gravity retains the bottom portion in place without the need of a locking means 800.
The pipe bend 400 is typically used to improve the flow of water from the stormwater piping system to a water tank, such as the in the setup illustrated in Figure 21A. The join 45 0 shown in s 19A and 19B is a standard pipe join. Such a join would typically be glued to retain the sections of pipe to one another and to prevent leaking.
Referring to Figures 20A to 20C, an alternative ment of the pipe fitting system is shown. In this embodiment, the system includes an O-ring 360 to aid in sealing the connection. The taper 340 shown in Figure 19B is now formed as a step defining a seat in front of the edge 240, with the O-ring 360 sitting between the step and the edge 240 of the male sealing portion. The dimensions of various other parts, including the recess 310 and the protrusion 210, have now changed compared to those shown in Figures 19A to 19C. It should be tood that the ular dimensions are not critical to the ion, with either dimensions or any other sizes being suitable to either the taper or O-ring g versions of the invention. Various other sealing methods may also be used in place of the O-ring, such as different forms of washers and gaskets. However, as described herein, the dimensions should be such that a degree of resilient deformation can occur at the pipe ends during connection and disconnection of the pipe sections (see the sequence shown in Figure 7). For example, the wall thickness of the pipe sections should not be so thick that its prevents the pipe sections from being able to resiliently deform in this manner.
Referring to Figure 21A and 21B, a pipe fitting system 100 is shown in use with a water tank 500. Figure 21A shows the system 100 in the ed position. Figure 21B shows a n of the pipe (200, 400) placed on the ground after it has been disconnected from portion 300 to allow unrestricted access to the opening 510 of the water tank 500.
] It will be appreciated that the ion in its various aspects and preferred embodiments provides a number of advantages. In its red embodiments, the present invention advantageously provides a robust pipe fitting system and assembly that allows reliable, fast, clean and repeated connection and disconnection of pipe sections, as and when required.
Preferred embodiments of the pipe g system advantageously facilitate end of line connections to provide unrestricted access to a work area requiring regular routine maintenance; for example, a drain or a strainer over an inlet to a water tank. Embodiments of the pipe fitting system and assembly can also ageously tate clean and efficient repair or replacement of fixed existing pipes, including not only end of line sections but intermediate pipe sections. Temporary removal of pipes for maintenance or access purposes is also advantageously facilitated by embodiments of the pipe fitting system and assembly.
Embodiments of the pipe fitting system provide the y to remove sections of storm water pipe for access to the water tank and then to be able to replace the pipe work back to its working status without having to cut and glue sections. The pipe work is left in its usable state and readily available for disconnection if and when required.
The connecting means of the pipe fitting system may also find use in a wide range of applications, not involving water tanks. For example, other stormwater systems may benefit from using a similar connection to provide access to other types of drains or gutters. The tion may also be used with other types of pipes, such as water pipes other than stormwater, exhaust chimneys, other types of ducting and any other type of pipe where fast and repeated disconnection of a section is desired.
In these and other respects, the invention ents a practical and commercially significant improvement over the prior art. gh the invention has been described with reference to specific examples, it will be appreciated by those skilled in the art that the invention may be embodied in many other forms. It should also be understood that the various s and embodiments of the invention as bed can be implemented either ndently, or in conjunction with all viable permutations and combinations of other aspects and embodiments. All such permutations and combinations should be regarded as having been herein disclosed.

Claims (36)

Claims
1. A pipe fitting system, including: a first hollow pipe section having at least one male end with a first connector, the first connector having two or more sions extending outwardly from an outer surface of the male end of the first pipe section; a second hollow pipe section having at least one female end with a second connector, the second connector having two or more generally L-shaped ing formations associated with an inner e of the female end of the second pipe section, the L-shaped receiving formations having a first arm segment extending axially from an opening at a free end face of the female end of the second pipe n, and a second arm segment extending transversely from a distal end of the first arm t to a closed end, the L-shaped ing formations being formed so as to have no impact on the profile of the outer surface of the second connector of the female end of the second pipe section, y the second connector has a smooth, cylindrical outer surface e, the receiving formations being d to releasably receive and engage a respective protrusion of the first connector; a positive locking member arranged within the second arm segment of each receiving formation, each positive locking member extending from a floor of the associated second arm segment and being spaced from the closed end such that the associated protrusion of the first connector can be captively retained between the closed end of the second arm segment and the positive locking member to releasably restrain the first and second pipe sections against rotational displacement away from an engaged on; a primary seal seated within a first seal retaining formation formed within the female end of the second pipe section, the primary seal being resiliently compressible and adapted to sealingly engage a free end face of the male end of the first pipe n; and a secondary seal seated within a second seal retaining formation formed within the female end of the second pipe section, the secondary seal being resiliently compressible and d to sealingly engage an outer side face of the male end of the first pipe section, wherein the free end face and the outer side face are substantially orthogonal to one another; wherein, the first connector and the second connector form a connecting means for releasably connecting the male end of the first pipe section and the female end of the second pipe section together such that, when the first pipe section and the second pipe section are connected together, the male end of the first pipe section is at least partially received within the female end of the second pipe section.
2. A pipe fitting system according to claim 1, n the first pipe section is a straight pipe fitting or an angled pipe fitting, and the second pipe section is a straight pipe fitting or an angled pipe g.
3. A pipe fitting system according to claim 1 or claim 2, wherein the first connector is spaced back from the free end face of the male end of the first pipe n to provide a uous abutment edge.
4. A pipe fitting system according to any one of the preceding claims, wherein each protrusion has generally flat side faces which extend in a circumferential direction around the outer surface of the male end of the first pipe section.
5. A pipe fitting system according to claim 4, wherein the flat side edges are angled with respect to each other.
6. A pipe fitting system according to claim 5, wherein the flat side edge closest to the free end face of the male end is substantially parallel to the free end face and the flat edge furthest from the free end face extends at an angle relative to the free end face.
7. A pipe fitting system according to claim 6, in which each receiving ion is a generally L-shaped recess, and wherein side edges of the second arm segment are angled with respect to each other.
8. A pipe fitting system according to claim 7, wherein the side edge of the second arm segment furthest from a free end of the second pipe n is substantially parallel to the free end, and the side edge closest to the free end is angled ve to the free end, thereby enabling sliding engagement with the angled face of the protrusion when the first and second pipe sections are rotated relative to one another.
9. A pipe g system according to claim 7 or claim 8, wherein the angled side edge of each second arm segment is configured to act on the respective protrusion of the first connector such that, upon relative rotation between the first and second pipe sections, the first and second pipe sections are positively driven towards one another in an axial direction.
10. A pipe fitting system according to any one of the preceding claims, wherein the positive locking member is a locking ramp having a first ramp wall facing generally towards the open end of the recess, and a second ramp wall facing generally towards the closed end of the recess.
11. A pipe fitting system according to claim 10, wherein the locking ramp is configured such that, upon rotational movement between first and second pipe sections towards the engaged position, the protrusion abuts the first ramp wall, whereby further rotation causes the male end carrying the protrusion to resiliently deform enabling the protrusion to slide along the first ramp wall, and past the locking ramp into the engaged position.
12. A pipe fitting system according to claim 10 or claim 11, n the first ramp wall has a different profile to that of the second ramp wall, whereby the first ramp wall provides less resistance during tion of the first and second pipe sections relative to the resistance provided by the second ramp wall when disconnecting the pipe sections.
13. A pipe fitting system according to any one of the preceding claims, wherein the first pipe section includes a gripping formation for facilitating grasping of the first pipe section during connection and disconnection with the second pipe section, thereby enabling a greater turning force to be applied to the first pipe body.
14. A pipe fitting system according to claim 13, wherein the gripping formation is configured as a continuous band extending ferentially about the first pipe section, and having a plurality of gripping elements.
15. A pipe fitting system according to claim 13 or claim 14, wherein the gripping formation is an interrupted formation, and the gripping elements are formed by two or more recesses.
16. A pipe fitting system according to claim 14 or claim 15, wherein the continuous band includes a raised rib ing ferentially about the body, and wherein the plurality of ng elements are ed in spaced relation about the rib.
17. A pipe fitting system according to claim 16, n the gripping elements are offset with respect to the protrusions of the first connector on the male end of the first pipe n.
18. A pipe fitting system according to any one of claims 14 to 17, n the gripping elements provide an anchor or pivot point for a mechanical lever.
19. A pipe fitting system ing to any one of the preceding claims, wherein the first pipe section and/or the second pipe section is formed from a substantially rigid plastic material.
20. A pipe g system according to claim 19, wherein the first pipe section and/or the second pipe section is formed from polyvinylchloride (PVC) or polyethylene (PE).
21. A pipe fitting system according to any one of the preceding claims wherein, the first pipe section comprises a body having a first open end and a second open end; and a first pipe member having an inner end and an outer end defining the male end on which the first connector is formed; wherein, the inner end of the first pipe member is telescopically received within the first open end of the body and d for sliding movement between a retracted position and an extended position.
22. A pipe fitting system according to claim 21, wherein a second pipe member is telescopically ed within the second open end of the body and adapted for sliding movement between a retracted position and an extended position, wherein a male outer end of the second pipe member has a first connector with two or more outwardly extending protrusions for releasably connecting the second pipe member to a female end of a ream or upstream pipe section in which two or more generally L-shaped receiving ions are formed on its inner surface.
23. A pipe fitting system according to claim 22, wherein the opposite end to the female end of the upstream or downstream pipe section has an associated connector in the form of one of: a male first connector having two or more protrusions extending outwardly from its outer surface, a female second connector having two or more generally L-shaped receiving formations associated with its inner e, a male or female threaded connector, and a male or female slip-fitting.
24. A pipe g system according to any one of claims 21 to 23, wherein a sealing mechanism is arranged n the first open end of the body and the inner end of the first pipe member.
25. A pipe fitting system according to claim 24, wherein the g mechanism is configured to provide a seal between an inner surface of the first open end of the body and an outer surface of the inner end of the first pipe member, the seal mechanism being adapted to maintain a seal when the first pipe member is at or between the extended and retracted positions.
26. A pipe fitting system according to claim 24 or claim 25, wherein the seal mechanism has two sealing members arranged in spaced apart side-by-side on.
27. A pipe fitting system according to any one of claims 24 to 26, n a second sealing mechanism is arranged between the second open end of the body and an inner end of the second pipe member, the second sealing mechanism being configured to maintain a seal when the second pipe member is at or between the extended and ted positions.
28. A pipe fitting system ing to claim 27, wherein the second sealing mechanism includes two or more sealing members arranged in spaced apart side-by-side relation.
29. A pipe fitting system according to claim 28, wherein the inner surface of the first open end and the second open end have a g member retaining formation in which the sealing members are tively seated.
30. A pipe fitting system according to any one of claims 21 to 29, wherein one or both of the first and second pipe s has a gripping formation adapted to facilitate grasping of the first pipe section during connection and disconnection with the second pipe section and an upstream or downstream pipe section respectively.
31. A pipe g system according to any one of claims 21 to 29, wherein the body is a T-shaped pipe section having a main body section in which the first and second open ends are formed, and a leg extending transversely from the main body and in which a third opening is
32. A pipe fitting system according to claim 31, wherein the leg has an associated connector in the form of one of: a male first connector having two or more protrusions extending outwardly from an outer e of the leg, a female second connector having two or more generally L-shaped receiving formations associated with an inner surface of leg, a male or female threaded connector, and a male or female slip-fitting.
33. A pipe fitting system according to claim 32, wherein a cover is releasably attachable to the connector of the leg of the body to cover the third opening.
34. A pipe fitting system according to claim 32, wherein a pipe section is releasably attachable to the connector of the leg of the body, the leg thereby providing a connection point for a branch line pipe to extend from the third opening.
35. A pipe fitting system according to any one of the preceding claims, wherein the opposite end to the male end of the first pipe section has an associated connector in the form of one of: a male first connector having two or more sions extending outwardly from its outer surface, a female second connector having two or more generally L-shaped receiving formations associated with its inner surface, a male or female threaded connector, and a male or female slip-fitting.
36. A pipe fitting system ing to any one of the preceding claims, wherein the te end to the female end of the second pipe section has an associated connector in the form of one of: a male first connector having two or more sions extending outwardly from its outer surface, a female second connector having two or more generally L-shaped receiving formations ated with its inner surface, a male or female threaded connector, and a male or female slip-fitting. WO 27277
NZ727474A 2014-08-27 System and method of releasably connecting pipe sections NZ727474B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2013903248A AU2013903248A0 (en) 2013-08-27 System and method of releasably connecting pipe sections
PCT/AU2014/000850 WO2015027277A1 (en) 2013-08-27 2014-08-27 System and method of releasably connecting pipe sections

Publications (2)

Publication Number Publication Date
NZ727474A NZ727474A (en) 2021-03-26
NZ727474B2 true NZ727474B2 (en) 2021-06-29

Family

ID=

Similar Documents

Publication Publication Date Title
US11713840B2 (en) System and method of releasably connecting pipe sections
US6231085B1 (en) Tubing coupling and hose end combination, and related method
RU2764352C2 (en) Pipe, in particular plastic pipe for sewage pipelines
US20140001744A1 (en) Union Coupling With Removable Screen
BR102012002255A2 (en) Quick connect coupling
JP2011516762A (en) Flexible drain trap
EP3006804A1 (en) Device for partially repairing pipe using hose band
US9322157B1 (en) Mechanically coupled drain fixture and outlet fitting
US20150136267A1 (en) Single stream discharge drain hose assembly
CN111226012A (en) Pipe connectors, assemblies, and related methods
CA2227105C (en) Coupling for spiral corrugated pipe
KR200475463Y1 (en) A joint for plumbing connection that angle adjustment is easy
US8910979B1 (en) Pipe repair coupling
US20130043675A1 (en) Pipe-fitting with adaptor assembly and related methods
DE202015106969U1 (en) connection system
NZ727474B2 (en) System and method of releasably connecting pipe sections
CN205189080U (en) Direction adjustable trap head
DE202015106967U1 (en) connection system
CN211574447U (en) Connector with a locking member
US20120242082A1 (en) Fine Thread to Standard Garden Hose Thread Adapter
AU2008101191B4 (en) Improved pipe diversion device and method
RU2539498C2 (en) Fastener of plug of sewage cleanout and inspection junctions
KR200416955Y1 (en) A connection pipe device
KR100743487B1 (en) Connecting tube for hume
KR200414074Y1 (en) El Bouty House