NO854749L - BUILDING ELEMENT, SPECIAL PANEL, OF FIBER REINFORCED CEMENT. - Google Patents

BUILDING ELEMENT, SPECIAL PANEL, OF FIBER REINFORCED CEMENT.

Info

Publication number
NO854749L
NO854749L NO854749A NO854749A NO854749L NO 854749 L NO854749 L NO 854749L NO 854749 A NO854749 A NO 854749A NO 854749 A NO854749 A NO 854749A NO 854749 L NO854749 L NO 854749L
Authority
NO
Norway
Prior art keywords
plate
elements
reinforcement
cement
stated
Prior art date
Application number
NO854749A
Other languages
Norwegian (no)
Inventor
Edward Kempster
Original Assignee
Permanent Formwork Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permanent Formwork Ltd filed Critical Permanent Formwork Ltd
Publication of NO854749L publication Critical patent/NO854749L/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • E04C3/293Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete
    • E04C3/294Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete of concrete combined with a girder-like structure extending laterally outside the element
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • E01D19/125Grating or flooring for bridges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • E04C5/073Discrete reinforcing elements, e.g. fibres
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/262Concrete reinforced with steel fibres
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/264Concrete reinforced with glass fibres
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/266Concrete reinforced with fibres other than steel or glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Panels For Use In Building Construction (AREA)
  • Laminated Bodies (AREA)

Description

Glassfiberarmert sement ("GAS") har vært kjent i mangeGlass fiber reinforced cement ("GAS") has been known in many

år. Hovedfordelene med dette materiale er at det i det minste opprinnelig har stor bøyningsstyrke sammenlignet med betong. På bakgrunn av det store sementinnhold er det meget vannfast, og det kan formes til tynne plater med en tykkelse av størrelsesorden 10 mm med tiltalende overflatestruktur. Materialet kan derfor brukes til for eksempel fremstilling year. The main advantages of this material are that, at least initially, it has great bending strength compared to concrete. Due to the high cement content, it is very waterproof, and it can be formed into thin plates with a thickness of around 10 mm with an attractive surface structure. The material can therefore be used for, for example, manufacturing

av betongkonstruksjoner der permanent forskaling bygges opp av GAS-plater, og betong blir derpå utstøpt der GAS-platene benyttes som en form og opptar betongtrykket mens betongen herdner. Betongen binder til GAS-platene som danner en permanent, vannfast, estetisk tiltalende ytre kledning på den ut-støpte betong. GAS-platene er videre vanligvis utformet slik at de under oppbyggingen er så sterke at de kan oppta vekten av en arbeider, og dette er spesielt fordelaktig når det benyttes GAS-plater ved oppbygging av et brodekke. of concrete structures where permanent formwork is built up from GAS plates, and concrete is then poured where the GAS plates are used as a form and absorb the concrete pressure while the concrete hardens. The concrete binds to the GAS plates which form a permanent, waterproof, aesthetically pleasing outer covering on the poured concrete. Furthermore, the GAS plates are usually designed so that during construction they are so strong that they can absorb the weight of a worker, and this is particularly advantageous when GAS plates are used when building a bridge deck.

GAS har imidlertid også noen ulemper. Under den tid-However, GAS also has some disadvantages. During that time-

lige utvikling av GAS ble alkalisk angrep på glassfibrene et alvorlig problem. Dette har i noen grad blitt forbedret ved bruk av spesialglass, for eksempel glass som har et høyt Zirkoninnholdr Aldring er imidlertid fortsatt et problem. Etterhvert som materialet reduseres vil glassfibrene etter omtrent 2 0 år under normale værforhold ha liten eller ingen innvirkning på materialegenskapene. Fig. 1 på de medfølgende tegninger er et spennings-, forlengelsesdiagram for GAS der fullt opptrukne linjer og prikkede linjer viser oppførselen til ny, respektive aldret GAS og gjelder for strekk. For moderate spenninger vil både ny og aldret GAS virke i hoved-saken som elastiske materialer. Ved større spenninger vil aldret GAS svikte, mens ny GAS ikke gjør det, idet strekk-spenningene i stor utstrekning opptas av glassfibrene. Byggekonstruksjoner blir vanligvis utformet slik at GAS bare blir belastet i det elastiske området. På grunn av ukorrekte konstruksjonsberegninger eller overbelastning av konstruksjonen kan GAS bli utsatt for strekkspenninger over den elastiske grense. Ny GAS kan motstå slike påkjenninger, mens aldret gas vil sprekke. Gjentatte for store belastninger av ny GAS vil bryte ned massen omkring glassfibrene, med det As GAS developed, alkaline attack on the glass fibers became a serious problem. This has been improved to some extent by the use of special glass, for example glass that has a high zirconium content. However, aging is still a problem. As the material is reduced, after approximately 20 years under normal weather conditions, the glass fibers will have little or no effect on the material properties. Fig. 1 of the accompanying drawings is a stress-strain diagram for GAS where solid lines and dotted lines show the behavior of new and aged GAS respectively and apply to tension. For moderate stresses, both new and aged GAS will mainly act as elastic materials. At higher stresses, aged GAS will fail, while new GAS will not, as the tensile stresses are largely absorbed by the glass fibres. Building structures are usually designed so that GAS is only loaded in the elastic region. Due to incorrect construction calculations or overloading of the construction, GAS may be exposed to tensile stresses above the elastic limit. New GAS can withstand such stresses, while aged gas will crack. Repeated heavy loads of new GAS will break down the mass around the glass fibres, with it

resultat at materialet etter kort tid vil fremvise de samme egenskaper som for aldret GAS. En ytterligere ulempe med GAS er at materialet krymper mer enn betong, og unntatt i tilfelle av relativt små elementer eller plater vil det være en tendens til at sprekker oppstår i den svakeste sone. result that after a short time the material will exhibit the same properties as aged GAS. A further disadvantage of GAS is that the material shrinks more than concrete and, except in the case of relatively small elements or plates, there will be a tendency for cracks to occur in the weakest zone.

Kortfattet kan det derfor sies at selv om GAS kan væreIn short, it can therefore be said that although GAS can be

et bidrag ved produksjon av betongkonstruksjoner og til å begynne med kan oppvise vannfasthet og kan gi en estetisk tiltalende ytre kledning på betongen, vil materialet sprekke med tiden og/eller på grunn av for store belastninger, og værfastheten og det estetiske utseendet blir dermed redusert. a contribution in the production of concrete constructions and may initially exhibit water resistance and may provide an aesthetically pleasing external coating on the concrete, the material will crack over time and/or due to excessive loads, and the weather resistance and aesthetic appearance will thus be reduced.

Formålet med foreliggende oppfinnelse er å tilveiebringe et materiale som har de samme fordeler som GAS slik som beskrevet foran, men som i det minste i mindre utstrekning er belemret med de foran beskrevne ulemper. The purpose of the present invention is to provide a material which has the same advantages as GAS as described above, but which is at least to a lesser extent burdened with the disadvantages described above.

Oppfinnelsen tilveiebringer en bygningsplate som bestårThe invention provides a building board which consists of

av eller har et ytre lag av fiberarmert sement og et arrangement av en strekkfast armering innleiret i minst én del av platen eller støtende opp til den fiberarmerte sement, der armeringen omfatter en rekke langstrakte elementer som er festet sammen der de skjærer hverandre, for derved å forsterke materialet i platen over hele den sone hvori armeringen ligger. of or having an outer layer of fiber-reinforced cement and an arrangement of tensile reinforcement embedded in at least one part of the slab or abutting the fiber-reinforced cement, the reinforcement comprising a series of elongate elements fastened together where they intersect, thereby reinforce the material in the slab over the entire zone in which the reinforcement is located.

Armeringsaarangementet omfatter fortrinnsvis et nettverk. Armeringen er fortrinnsvis av stål som kan være galvanisert eller rustfritt, men nettverket kan også være av plastmateriale med høy elastisitetsmodul, f.eks. "Netlon" (varemerke). The reinforcement arrangement preferably comprises a network. The reinforcement is preferably made of steel, which can be galvanized or stainless, but the network can also be made of plastic material with a high modulus of elasticity, e.g. "Netlon" (trademark).

Fibrene i den fiberarmerte sement er fortrinnsvis av glass, men de kan være av ett eller flere av følgende materialer: Glassfibre, mineralfibre, syntetiske fibre med høy elastisitetsmodul og vegetabilske fibre. The fibers in the fibre-reinforced cement are preferably made of glass, but they can be of one or more of the following materials: Glass fibres, mineral fibres, synthetic fibers with a high modulus of elasticity and vegetable fibres.

Ifølge et annet trekk ved foreliggende oppfinnelse erAccording to another feature of the present invention is

det tilveiebrakt en permanent forskalingsplate som omfatter et bygningspanel i samsvar med den første utførelse ifølge oppfinnelsen. it provided a permanent formwork board comprising a building panel in accordance with the first embodiment according to the invention.

Ifølge et tredje trekk ved foreliggende oppfinnelse erAccording to a third feature of the present invention is

det tilveiebrakt en bygningskonstruksjon med en ytre flate som dannes av en permanent forskalingsplate i samsvar med den annen utførelse av foreliggende oppfinnelse og en last-bærende betongdel som forskalingsplaten er permanent bundet til. it provided a building structure with an outer surface formed by a permanent formwork plate in accordance with the second embodiment of the present invention and a load-bearing concrete part to which the formwork plate is permanently bonded.

Når forskalingsplaten på bygningskonstruksjonen blir strekkbelastet vil armeringsarrangementet i platen i stor utstrekning oppta påkjenningene, og spenningsmønstret over platen vil derved bli jevnt eller det vil variere jevnt i stedet for å bli avbrutt på grunn av sprekkdannelser. Fiberarmeringen i sementen vil til gjengjeld forsterke sementen mellom elementene i armeringsarrangementet. Det forefinnes således to armeringsnivåer. For det første sørger det ytterligere armeringsarrangement for en totalarmering av platen, og fiberarmeringen sørger for en lokal armering av sementen inne i det ytterligere eller ekstra armeringsarrangement. When the formwork plate on the building structure is subjected to tensile stress, the reinforcement arrangement in the plate will absorb the stresses to a large extent, and the stress pattern across the plate will thereby become uniform or it will vary evenly instead of being interrupted due to cracking. The fiber reinforcement in the cement will in return reinforce the cement between the elements in the reinforcement arrangement. There are thus two reinforcement levels. Firstly, the additional reinforcement arrangement provides for a total reinforcement of the plate, and the fiber reinforcement provides for a local reinforcement of the cement inside the additional or additional reinforcement arrangement.

Prøver har vist at overbelastning av platene ikke med-fører få og store sprekker, men medfører istedet mikrosprekker innenfor de områder av armeringsarrangementet som har liten skadelig innvirkning på både platenes værmotstandsdyktighet og platenes utseende. Tests have shown that overloading the boards does not lead to few and large cracks, but instead leads to micro-cracks within the areas of the reinforcement arrangement that have little harmful effect on both the boards' weather resistance and the boards' appearance.

I tillegg til å redusere stor oppsprekking på grunn av overbelastning av platene vil armeringsarrangementet også avlaste spenninger som er bygd opp i platen under herding, krymping, fukting og/eller termiske bevegelser. In addition to reducing large cracking due to overloading of the plates, the reinforcement arrangement will also relieve stresses built up in the plate during curing, shrinkage, wetting and/or thermal movements.

Det er selvsagt kjent å benytte stålarmering i betongkonstruksjoner for å øke konstruksjonens evne til å oppta strekkspenninger. Selv om armeringsarrangementet som benyttes i samsvar med oppfinnelsen også har denne effekt, er dette ikke den eneste virkning. Armeringsarrangementet og armeringsfibrene virker sammen og gis spesielle fordeler ved at det er sørget for en totrinns armering som bevirker en forbedring av platens strukturelle integritet over lang tid. It is of course known to use steel reinforcement in concrete structures to increase the structure's ability to absorb tensile stresses. Although the reinforcement arrangement used in accordance with the invention also has this effect, this is not the only effect. The reinforcement arrangement and the reinforcement fibers work together and are given special advantages by the fact that a two-stage reinforcement is provided, which results in an improvement in the structural integrity of the plate over a long period of time.

Det skal nå vises til tegningene, hvor:It must now be shown to the drawings, where:

Fig. 1 på tegningene allerede er beskrevet foran.Fig. 1 of the drawings has already been described above.

Det skal nå gis en beskrivelse i form av et eksempel av en utførelse ifølge oppfinnelsen, idet det vises til de følgende tegninger, hvor: Fig. 2 er et delsnitt av en brodekkeplate ifølge oppfinnelsen. Fig. 3 er et delperspektivriss delvis i utsnitt, av platen på fig. 2, og A description will now be given in the form of an example of an embodiment according to the invention, referring to the following drawings, where: Fig. 2 is a partial section of a bridge deck plate according to the invention. Fig. 3 is a partial perspective view, partly in section, of the plate in fig. 2, and

fig. 4 til 6 viser en ytterligere utførelsesform.fig. 4 to 6 show a further embodiment.

Det skal nå vises fil fig. 2 og 3 der en brodekkeplate 10 har en ytre, nedre flate 12 og en øvre flate 14, hvorpå betongen utstøpes ved fremstillingen av brodekket. Under oppbyggingen av broen vil platen spenne mellom to i avstand fra hverandre anordnede bærere der motstående sidekanter 16 på platen hviler på bærerne. Platen har en rekke flatbunnede V-formede partier 18, og på fig. 2 er det vist to av disse. File fig. should now be displayed. 2 and 3 where a bridge deck plate 10 has an outer, lower surface 12 and an upper surface 14, on which the concrete is poured during the manufacture of the bridge deck. During the build-up of the bridge, the plate will span between two carriers arranged at a distance from each other, where opposite side edges 16 of the plate rest on the carriers. The plate has a number of flat-bottomed V-shaped parts 18, and in fig. 2 two of these are shown.

Platen fremstilles i en hovedsakelig horisontal form som er utformet for å forme den nedre flate på platen. Mørtel sprøytes hovedsakelig vertikalt nedad på formen, sam-tidig som oppkuttede glassfibre med en typisk lengde på 35 mm også sprøytes for å danne en tilfeldig orientert fiberarme-ring i mørtelen. Mørtelen påsprøytes til en tykkelse på omtrent 12 mm på den horisontale del 20 og omtrent 8,5 mm på de hellende partier 22. Den glassfiberarmerte mørtel blir derpå valset for å komprimere denne. The plate is produced in a mainly horizontal shape which is designed to shape the lower surface of the plate. Mortar is sprayed mainly vertically downwards onto the mold, at the same time as chopped glass fibers with a typical length of 35 mm are also sprayed to form a randomly oriented fiber reinforcement ring in the mortar. The mortar is sprayed to a thickness of about 12 mm on the horizontal part 20 and about 8.5 mm on the inclined parts 22. The glass fiber reinforced mortar is then rolled to compact it.

Et armeringsarrangement blir anordnet for hvert av de flatbunnede V-formede deler 18, bestående av et galvanisert stålnettverk 24 med en rekke langsgående elementer 26 og en rekke tversgående elementer 28, som blir sveiset sammen. Hvert element 26, 28 har en diameter på omtrent 2,3 mm og avstanden mellom elementene er omtrent 50 mm. Hvert nettverk 24 er bøyd slik at formen er komplementær til det på-sprøytede GAS-lag, og nettverket blir lagt på og blir i det minste delvis innleiret i GAS-overflaten. En langstrakt stang 30 med trapesformet tverrsnitt av ekspandert polystyren blir derpå opphengt over hvert nettverk, og betong 3 2 som inneholder et super-plastisiseringsmiddel utstøpes i hver renne av GAS, slik at polystyrenstengene 30 innkapsles og at det dannes en øvre plan flate 14 på platen. A reinforcement arrangement is provided for each of the flat-bottomed V-shaped parts 18, consisting of a galvanized steel network 24 with a series of longitudinal members 26 and a series of transverse members 28, which are welded together. Each element 26, 28 has a diameter of approximately 2.3 mm and the distance between the elements is approximately 50 mm. Each web 24 is bent so that the shape is complementary to the sprayed-on GAS layer, and the web is applied and at least partially embedded in the GAS surface. An elongated rod 30 of trapezoidal cross-section of expanded polystyrene is then suspended over each network, and concrete 32 containing a super-plasticizer is poured into each channel of GAS, so that the polystyrene rods 30 are encapsulated and an upper flat surface 14 is formed on the plate .

Platen blir derpå herdet og tatt ut av formen.The plate is then hardened and removed from the mold.

En plate 10 som er fremstilt som foran beskrevet harA plate 10 which is produced as described above has

da en ytre GAS-flate 12 med et armeringsnettverk 24 innleiret i skilleflaten mellom betongen 32 og GAS-lagene. then an outer GAS surface 12 with a reinforcement network 24 embedded in the interface between the concrete 32 and the GAS layers.

Under bruk sammensettes platene som en forskaling, og derpå utstøpes betongen bak platene i kontakt med flaten During use, the plates are put together as a formwork, and then the concrete is poured behind the plates in contact with the surface

14, slik at betongen under herdingen bindes til flaten 14. 14, so that the concrete bonds to the surface 14 during curing.

Det skal nå vises til fig. 4 til 6 på de medfølgende tegninger som viser en lignende brodekkeplate som på figurene 2 og 3, og like deler er blitt betegnet med de samme hen-visningstall. De viktige forskjeller er at armeringsnett-verket 24 bare grenser opp til bunndelene i de flatbunnede V-formede partier 18 og strekker seg ikke opp langs sidene på de V-formede partier, slik som i den tidligere beskrevne konstruksjon. Delene i nettverket 24 er også i sin helhet innleiret i det glassfiberarmerte sementpanel. Ytterligere viktige forskjeller er at polystyrenstengene 30 som benyttes ved støpingen av de øvre flater 14 på platene bare er plassert delvis nede i uttagningene i de V-formede partier 18, slik at det kan støpes et ikke bærende flassfiberarmert sementlag på toppen av stengene 30 til et nivå tett under toppflaten på dekkeplaten. Et fullstendig lukket hulrom er således skapt under stengene 30 i den ferdige konstruksjon. Reference should now be made to fig. 4 to 6 in the accompanying drawings which show a similar bridge cover plate as in figures 2 and 3, and like parts have been designated with the same reference numbers. The important differences are that the reinforcing mesh 24 only adjoins the bottom parts of the flat-bottomed V-shaped parts 18 and does not extend up along the sides of the V-shaped parts, as in the previously described construction. The parts in the network 24 are also entirely embedded in the glass fiber reinforced cement panel. Further important differences are that the polystyrene rods 30 that are used in the casting of the upper surfaces 14 of the plates are only placed partially down in the recesses in the V-shaped parts 18, so that a non-bearing flake fiber-reinforced cement layer can be cast on top of the rods 30 to a level closely below the top surface of the cover plate. A completely closed cavity is thus created under the rods 30 in the finished construction.

Claims (7)

1. Bygningsplate bestående av eller har et ytre lag av fiberarmert sement med et arrangement av en strekkfast armering innleiret i det minste i en del av platen i eller støtende opp til den fiberarmerte sement der armeringen omfatter en rekke langstrakte elementer som er arrangert i et nettverk med elementene festet sammen slik at de skjærer hverandre, for derved å forsterke materialet i platen over hele den sone hvori armeringen ligger.1. Building board consisting of or having an outer layer of fiber-reinforced cement with an arrangement of tensile reinforcement embedded in at least part of the board in or abutting the fiber-reinforced cement where the reinforcement comprises a series of elongated elements arranged in a network with the elements attached so that they intersect, thereby reinforcing the material in the plate over the entire zone in which the reinforcement is located. 2. Plate som angitt i krav 1, karakterisert ved at nettverket omfatter et sett av parallelt forløpende elementer som strekker seg på tvers av det første sett og som er festet til disse der de skjærer det første sett elementer.2. Plate as stated in claim 1, characterized in that the network comprises a set of parallel running elements which extend across the first set and which are attached to these where they intersect the first set of elements. 3. Plate som angitt i krav 2, karakterisert ved at en typisk lengde på fibrene i sementen og størrelsen av avstanden mellom elementene i nettverket er av samme stør-relsesorden.3. Plate as stated in claim 2, characterized in that a typical length of the fibers in the cement and the size of the distance between the elements in the network are of the same order of magnitude. 4. Plate som angitt i et hvilket som helst av de foranstående krav, karakterisert ved at armerings-elementene er laget av stål eller av plastmateriale og at elementene er festet sammen ved sveising.4. Plate as stated in any of the preceding claims, characterized in that the reinforcing elements are made of steel or of plastic material and that the elements are fixed together by welding. 5. Plate som angitt i et hvilket som helst av de foranstående krav, karakterisert ved at fibrene i sementen er ett eller flere av følgende materialer: glassfibre, mineralfibre, stålfibre, syntetiske fibre eller vegetabilske fibre.5. Plate as stated in any of the preceding claims, characterized in that the fibers in the cement are one or more of the following materials: glass fibres, mineral fibres, steel fibres, synthetic fibers or vegetable fibres. 6. Permanent forskalingsplate omfattende en bygningsplate som angitt i et hvilket som helst av foranstående krav.6. Permanent formwork board comprising a building board as set forth in any one of the preceding claims. 7. Bygningskonstruksjon med en ytre flatedel som dannes av en permanent forskalingsplate som angitt i et hvilket som helst av de foranstående krav, samt en strukturell betongdel som er bundet til den permanente forskalingsplate.7. Building construction with an outer surface part which is formed by a permanent formwork plate as specified in any of the preceding claims, as well as a structural concrete part which is bonded to the permanent formwork plate.
NO854749A 1984-11-28 1985-11-27 BUILDING ELEMENT, SPECIAL PANEL, OF FIBER REINFORCED CEMENT. NO854749L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB848429992A GB8429992D0 (en) 1984-11-28 1984-11-28 Fibre reinforced cement

Publications (1)

Publication Number Publication Date
NO854749L true NO854749L (en) 1986-05-29

Family

ID=10570373

Family Applications (1)

Application Number Title Priority Date Filing Date
NO854749A NO854749L (en) 1984-11-28 1985-11-27 BUILDING ELEMENT, SPECIAL PANEL, OF FIBER REINFORCED CEMENT.

Country Status (7)

Country Link
EP (1) EP0183526A1 (en)
AU (1) AU5044885A (en)
ES (1) ES8700372A1 (en)
GB (2) GB8429992D0 (en)
NO (1) NO854749L (en)
WO (1) WO1986003245A1 (en)
ZA (1) ZA859114B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT8721826A0 (en) * 1987-09-08 1987-09-08 Francesco Fatati SYSTEM FOR CREATING STRUCTURES, EVEN PREFABRICATED, HOWEVER COMPLEX, OF EXTREMELY LOW OVERALL WEIGHT, IN CONCRETE, OF SMALL THICKNESS, REINFORCED WITH MESH.
DE4017057C2 (en) * 1990-05-26 1999-11-04 Peter Breidenbach Clay building board and process for its manufacture
DK23896A (en) * 1996-03-04 1997-09-05 Cemsystems I S Roc-composite system
TR199700100A2 (en) * 1997-02-07 1998-08-21 FİBROBETON YAPI ELEMANLARI SAN. İNŞ. ve TİC. LTD. ŞTİ. Self-insulated prefabricated fiber reinforced concrete (GRC) facade panel and method for its production.
GB2365454A (en) * 2000-08-02 2002-02-20 Paragon Holdings Ltd Load bearing GRC panels and building made therefrom
ITVR20010024A1 (en) * 2001-02-20 2002-08-20 Precompressi Ct Nord Spa STRUCTURAL COMPONENT FOR HORIZONTALS AND FLOOR STRUCTURES
KR20030001685A (en) * 2001-06-26 2003-01-08 동국엔지니어링 주식회사 Deck plate for bridge construction
EP1709257A4 (en) * 2004-01-20 2008-07-02 Jetstone Building Systems Pty Composite constructional element and method of manufacturing a composite constructional element
US9914245B2 (en) 2013-09-16 2018-03-13 National Gypsum Properties, Llc Controlling the embedding depth of reinforcing mesh to cementitious board
BR112016005599A8 (en) * 2013-09-16 2020-02-18 Nat Gypsum Properties Llc lightweight cementitious panels that have high durability, system for forming high-durability cementitious board and processes to control depth of incorporation of reinforcement mesh to said board, to form said board using light weight aggregate and to expand polystyrene microspheres small diameter
US9676118B2 (en) 2013-09-16 2017-06-13 National Gypsum Properties, Llc Formation of cementitious board with lightweight aggregate
US9499980B2 (en) 2013-09-16 2016-11-22 National Gypsum Properties, Llc Lightweight cementitious panel possessing high durability background
CN104453079B (en) * 2014-12-08 2017-08-25 重庆市臻成建材有限公司 The anti-folding light cellular partition board of assembled
DK3405476T3 (en) 2016-01-20 2024-05-21 Polypeptide Laboratories Holding Ppl Ab Method for making peptides with psWANG linker
CN112359721A (en) * 2020-11-06 2021-02-12 同济大学建筑设计研究院(集团)有限公司 High-performance fiber reinforced cement-based concrete bridge deck continuous structure and construction method
CN113733299A (en) * 2021-08-18 2021-12-03 河北宏京新型建材有限公司 Production process of glass fiber reinforced concrete GRC

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1352203A (en) * 1971-10-29 1974-05-08 Barnards Ltd Reinforcement for concrete
GB1332621A (en) * 1972-03-24 1973-10-03 Sumaspace Ltd Reinforced concrete structural members
US4021258A (en) * 1972-09-25 1977-05-03 Teijin Limited Concrete structure and method of preparing same
GB1450091A (en) * 1973-04-16 1976-09-22 Chubb & Sons Lock & Safe Co Concrete security structures
DE2357557C2 (en) * 1973-11-17 1975-11-20 Friedrich 7407 Moessingen Haarburger Reinforcement insert for lightweight structures
NL159906C (en) * 1975-11-04 1981-07-16 Veldhoen Jan Hendrik METHOD FOR MANUFACTURING A CEMENT PRODUCT WITH A PLASTIC COATING
DE2753858C3 (en) * 1977-12-02 1980-10-23 Hermann 7622 Schiltach Schemel Process for the production of fiber-reinforced concrete moldings and moldings produced by this process
GB2026585A (en) * 1978-07-26 1980-02-06 Fibermold Ltd Shuttering for casting bridge decks
GB2065742B (en) * 1979-10-03 1984-01-11 Kurimoto Ltd Glass fibre reinforced cement plates and method and apparaus for their manufacture
DE2952783A1 (en) * 1979-12-31 1981-07-23 Histeel S.A., Lausanne Multiphase construction material with low sensitivity to impact - where concrete contg. metal, polymer, and/or glass fibres, is reinforced by steel rods or plate
GB2123048B (en) * 1982-06-10 1986-02-12 Hong An Se Building board and its method of manufacture

Also Published As

Publication number Publication date
GB2167466A (en) 1986-05-29
EP0183526A1 (en) 1986-06-04
AU5044885A (en) 1986-06-05
ZA859114B (en) 1986-08-27
WO1986003245A1 (en) 1986-06-05
ES8700372A1 (en) 1986-10-01
GB8529076D0 (en) 1986-01-02
GB8429992D0 (en) 1985-01-09
ES549327A0 (en) 1986-10-01

Similar Documents

Publication Publication Date Title
NO854749L (en) BUILDING ELEMENT, SPECIAL PANEL, OF FIBER REINFORCED CEMENT.
US3591395A (en) Hydraulic cementitious compositions reinforced with fibrillated plastic film
CN101481930B (en) Construction structure for textile reinforced composite reinforced bar concrete and manufacturing method thereof
JPH03505355A (en) load bearing concrete panels
CN213418183U (en) Heat-preservation sound-insulation composite assembled floor
DE1609690A1 (en) Building panels
CN103233421B (en) Pre-stressed concrete variable cross-section box girder bridge and construction method thereof
Matthys et al. Concrete slabs reinforced with FRP grids. I: One-way bending
WO2006020261A2 (en) Confinement reinforcement for masonry and concrete structures
US4150175A (en) Building panel and method of construction thereof
RU2418920C2 (en) Concrete sandwich panel and method of its manufacturing
CN108755990A (en) The light-duty lattice band reinforcing bar disassembly-free thermal-insulation form board of external wall
US6416693B1 (en) Method of strengthening an existing reinforced concrete member
CA1187307A (en) Cement slab, and a process and an installation for its production
US4205029A (en) Pre-stressed concrete construction
US1670557A (en) Reenforced building element
CN105350790A (en) Method for reinforcing reinforced concrete slab through prefabricating pre-stress TRC sheet
DE2550324A1 (en) Laminated panel for roofs, ceilings and walls - with framework of longitunidal and transverse ribs
JP2010196345A (en) Bamboo-reinforced concrete secondary molded product, and method for molding the concrete secondary molded product
US4105739A (en) Constructional elements of concrete
McKenzie Design of structural masonry
CA1037690A (en) Pre-stressed concrete contruction
SU642446A1 (en) Construction member
US3530629A (en) Filler for concrete joints
US20230349155A1 (en) Laminated beam slab and preparation method thereof