NO811606L - CLEANING PROCEDURE FOR USED SPA. - Google Patents

CLEANING PROCEDURE FOR USED SPA.

Info

Publication number
NO811606L
NO811606L NO811606A NO811606A NO811606L NO 811606 L NO811606 L NO 811606L NO 811606 A NO811606 A NO 811606A NO 811606 A NO811606 A NO 811606A NO 811606 L NO811606 L NO 811606L
Authority
NO
Norway
Prior art keywords
anion
washing
pickling
zinc
litre
Prior art date
Application number
NO811606A
Other languages
Norwegian (no)
Inventor
Lars Yngve Baecklund
Lars Ivar Rennerfelt
Original Assignee
Lars Ivar Rennerfelt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lars Ivar Rennerfelt filed Critical Lars Ivar Rennerfelt
Publication of NO811606L publication Critical patent/NO811606L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/30Fluxes or coverings on molten baths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)

Description

Oppfinnelsen vedrører en rensefremyanysmåte for brukte beisebad, fortrinnsvis basert på saltsyre som har blitt benyttet for beising av stålartikler. The invention relates to a cleaning method for used pickling baths, preferably based on hydrochloric acid which has been used for pickling steel articles.

I varmdypninysgalvanisering av stålartikler-må stålet forbenandles nvis sinken skal vedhenge. Denne for-behandling kan eksempelvis innbefatte trinnene av avfetting, beising, vasking, nøytralisering, flussbad-behandling og deretter neddypning i smeltet sink. Beising består i å In hot-dip galvanizing of steel articles, the steel must be pre-galvanized if the zinc is to adhere. This pre-treatment can, for example, include the steps of degreasing, pickling, washing, neutralisation, flux bath treatment and then immersion in molten zinc. Pickling consists of

dyppe i et beisebad som er vanligvis saltsyre, men som også kan være svovelsyre. Flussbadet har en^høy^konsentrasjon av sinkklorid og ammoniumklorid. Uår stålartikler beises er den normale utgangskonsentrasjon av saltstyre i beisebadet ca. 10-15%. Under beising forurenses badet med blant annet jernioner og beisebadet kan sies å vare brukt når konsentrasjonen av Fe er ca. 80-120 g/liter oy når saltsyrekonsentrasjonen har gått ned til ca. 5-10%. Beisebadet forurenses også uunngålig med sink som primært kommer fra uheldige galvaniseringer hvor sink må fjernes ved beising før en ny galvanisering kan foretas (såkalt avbrenning-beisebad).-. Beisebadet forurenses også av sink-støv som omgir varmdypningsgalvaniseringsprosessen og fra kroker som fører artiklene forbi de forskjellige stasjoner. i4engden av sink i et brukt beisebad kan være ca. 1-20 g/liter Zn. dip in a pickling bath which is usually hydrochloric acid, but which can also be sulfuric acid. The river bath has a high concentration of zinc chloride and ammonium chloride. When steel articles are pickled, the normal starting concentration of sodium chloride in the pickling bath is approx. 10-15%. During pickling, the bath is contaminated with, among other things, iron ions, and the pickling bath can be said to be used when the concentration of Fe is approx. 80-120 g/litre oy when the hydrochloric acid concentration has dropped to approx. 5-10%. The pickling bath is also inevitably contaminated with zinc, which primarily comes from unfortunate electroplating where zinc must be removed by pickling before a new electroplating can be carried out (so-called burn-off pickling bath).-. The pickling bath is also contaminated by zinc dust that surrounds the hot-dip galvanizing process and from hooks that carry the articles past the various stations. The amount of zinc in a used pickling bath can be approx. 1-20 g/litre Zn.

I dagens kjemiske prosesser er det spesielt av viktignet at de dannede brukte oppløsninger er i stand til å gjenanvendes, innkapsles, skadeliggjøres eller på annen måte nindret fra å påvirke ytre omgivelser. In today's chemical processes, it is particularly important that the used solutions formed are able to be reused, encapsulated, rendered harmful or otherwise prevented from affecting the external environment.

Såvidt erkjent er det for tiden ingen industri-As far as is known, there are currently no industrial

ell fremgangsmåte i drift for å rense brukte beisebad. Vanlige metoder for å separere mellom jern og sink av ell method in operation for cleaning used pickling baths. Common methods of separating between iron and zinc of

denne type oppløsning,eksempelvis ved fraksjonert nøytral-iseriny ved gradvis øket pH eller ved adsorbsjon på metall-jern adsorberende materiale, f.eks. ioneutvekslere, utøver en dårlig separerinyseffekt, involverer relativt høye om-kostninger oy yir yrunn til residuelle avfallsproblemer i form av slam. this type of solution, for example by fractionated neutral iceriny at gradually increased pH or by adsorption on metal-iron adsorbing material, e.g. ion exchangers, exert a poor separation effect, involve relatively high costs oy yir yrunn to residual waste problems in the form of sludge.

j^n annen fremgangsmåte er i den senere tid ut-viklet for rensing av beisebad, nemlig den såkalte MX-metoden. Prinsippielt omfatter den overføringen av metallionene ved dannelse av komplekser i en kerosenefase som deretter ekstraheres med vann. Denne metode er imidlertid meget kostbar og en novedulempe er at 1 m 3 beisebad be- Another method has recently been developed for cleaning pickling baths, namely the so-called MX method. In principle, it involves the transfer of the metal ions by forming complexes in a kerosene phase which is then extracted with water. However, this method is very expensive and a new drawback is that 1 m 3 pickling bath

3 no 3 no

virker ca. 2 m avfallsvæske som deretter rna tas nand om. works approx. 2 m of waste liquid, which is then taken care of.

Formålet med oppfinnelsen er å tilveiebringeThe purpose of the invention is to provide

en enkel og billig fremgangsmåte for rensing av brukte, fortrinnsvis saltsyrebaserte beisebad som gir grunn til residuelle materialer som kan gjenanvendes i prosessen og/ eller benyttes for andre formål og som er uavhengig av mengdene av metallioner som forurenser beisebadet. a simple and cheap method for cleaning used, preferably hydrochloric acid-based pickling baths which gives rise to residual materials that can be reused in the process and/or used for other purposes and which is independent of the amounts of metal ions contaminating the pickling bath.

Fremgangsmåten ifølge oppfinnelsen erkarakterisert vedat metallioner tilstede i det brukte beisebad i form av anion-komplekset bringes i kontakt med anion-adsorberende materiale som selektivt adsorberer et av metallion-kompleksene hvoretter det adsorberte metallion-kompleks vakses ut under dannelsen av en konsentrert opp-løsning som kan benyttes uten ytterligere behandling. The method according to the invention is characterized by metal ions present in the used pickling bath in the form of the anion complex being brought into contact with anion-adsorbing material which selectively adsorbs one of the metal ion complexes, after which the adsorbed metal ion complex is waxed out during the formation of a concentrated solution which can be used without further treatment.

Det brukte beisebad er således primært forurenset med jern- og sinkioner og fremgangsmåten ifølge oppfinnelsen er primært rettet til adskillelse av disse. Avhengig av saltsyreinnholdet i beisebadet og innholdet The used pickling bath is thus primarily contaminated with iron and zinc ions and the method according to the invention is primarily aimed at separating these. Depending on the hydrochloric acid content of the pickling bath and its contents

av forurensende metallioner er metallionene til stede mer eller mindre i form av klorid-komplekser. Som nevnt inn-ledningsvis er normalt innhold i et brukt beisebad 1-20 g/ liter Zn og 20-120 g/liter Fe. For at alle sink- og jern-ionene skal være tilstede som metallion-kloridkomplekser og kloridinnholdet av beisebadet være ca. 100-500 g/liter og saltsyrekonsentrasjonen være ca. 1-5 ekvivalenter. of polluting metal ions, the metal ions are present more or less in the form of chloride complexes. As mentioned in the introduction, the normal content of a used pickling bath is 1-20 g/liter Zn and 20-120 g/liter Fe. In order for all the zinc and iron ions to be present as metal ion-chloride complexes and the chloride content of the pickling bath to be approx. 100-500 g/litre and the hydrochloric acid concentration be approx. 1-5 equivalents.

I visse tilfeller imidlertid kan sinkkonsentra-sjonen være meget lav, f.eks. 0,5 g/liter eller sågar 0,1 g/liter. Selv ved disse lave konsentrasjoner virker fremgangsmåten ifølge oppfinnelsen tilfredsstillende og fra et innhold på ca. 0,1 g/liter Zn før rensning kan det oppnås et innnold på størrelsesorden 0,001 g/liter sink etter rensing. In certain cases, however, the zinc concentration can be very low, e.g. 0.5 g/litre or even 0.1 g/litre. Even at these low concentrations, the method according to the invention works satisfactorily and from a content of approx. 0.1 g/litre Zn before purification, a concentration of the order of 0.001 g/litre zinc can be achieved after purification.

ivlår beisebadet har virket som et avbrenningsbad etter uheldig galvaniseringer er derimot sinkinnholdet i badet meget høyt, eksempelvis ca. 80 g/liter eller noen ganger høyere, samtidig som jerninnholdet kan være meget lavt, eksempelvis ca. 20-30 g/liter. Selv i disse tilfeller virker fremgangsmåten ifølge oppfinnelsen like tilfredsstillende som den gjør i de tilfeller hvor jerninn-noldet går opp til 150 g/liter eller høyere. If the pickling bath has acted as a burn-off bath after unfortunate electroplating, the zinc content in the bath is, on the other hand, very high, for example approx. 80 g/litre or sometimes higher, while the iron content can be very low, for example approx. 20-30 g/litre. Even in these cases, the method according to the invention works as satisfactorily as it does in cases where the iron content goes up to 150 g/litre or higher.

Hvis kloridinnholdet av det brukte beisebadIf the chloride content of the used pickling bath

ikke er tilstrekkelig for kompleksdannelse, kan klorid-innnoldet justeres enkelt ved tilsetning av HC1. is not sufficient for complex formation, the chloride concentration can be easily adjusted by adding HC1.

Pga. det faktum at metallionene er til stede i form av anionekomplekser kan de separeres ved hjelp av et anionadsorberende materiale som tilveiebringer en vesentlig bedre selektivitet enn ved den tidligere nevnte separering ved hjelp av kation-utvekslere. Because of. the fact that the metal ions are present in the form of anion complexes, they can be separated with the help of an anion absorbent material which provides a significantly better selectivity than with the previously mentioned separation with the help of cation exchangers.

Eksempeler på anion-adsorberende materialerExamples of anion-adsorbing materials

som kan benyttes er aktivert kull, molekylær sikter o.l. Vanlige anion-utvekslingsmaterialer som "Amberlite'. IRA-400" har vist seg å være spesielt godt egnet. Under fremnerskende betingelser adsorberes sinkkloridet selektivt, mens jernklorid-koinplekset følger med oppløsningen når beisebadet bringes i kontakt med det anion-utvekslende materiale. Den gjenblivende oppløsning som passerer gjennom ion-utveksleren og som inneholder jernklorid-komplekset kan benyttes direkte for fremstilling av vannrensningskjemikaer eksempelvis, hvilket er en av de store fordeler ifølge oppfinnelsen. Men, selvsagt kan et hvilket som helst egnet anion-adsorberende materiale benyttes, som selektivt adsorberer sinkklorid-komplekset. that can be used are activated carbon, molecular sieves, etc. Common anion exchange materials such as "Amberlite'. IRA-400" have been found to be particularly suitable. Under pickling conditions, the zinc chloride is selectively adsorbed, while the ferric chloride coinplex accompanies the solution when the pickling bath is brought into contact with the anion-exchange material. The remaining solution which passes through the ion exchanger and which contains the iron chloride complex can be used directly for the production of water purification chemicals, for example, which is one of the great advantages according to the invention. However, of course any suitable anion-adsorbing material can be used which selectively adsorbs the zinc chloride complex.

For at en ionutvekslerprosess kan være egnet i industrielle prosesser derimot, må ione-utveksleren være i stand til å regenereres til det samme aktive nivå uten kostbare prosedyrer eller materialer. However, for an ion exchange process to be suitable in industrial processes, the ion exchanger must be capable of being regenerated to the same active level without expensive procedures or materials.

Dette er mulig med fremgangsmåten ifølge oppfinnelsen. Ion-utveksleren elueres eller vaskes med vann. Ionekonsentrasjonen blir således fortynnet og sinkklorid- komplekset disintegrerer. Vaskevannet medfører sinkklorid og saltstyre samtidig som ion-utvekslerene regenereres og igjen inneholder kloridioner. Ion-utveksleren er derved full-stendig restaurert med samme aktivitet og bare vann benyttes som et elueringsmiddel, et meget billig råmateriale. This is possible with the method according to the invention. The ion exchanger is eluted or washed with water. The ion concentration is thus diluted and the zinc chloride complex disintegrates. The wash water contains zinc chloride and sodium chloride at the same time as the ion exchangers are regenerated and again contain chloride ions. The ion exchanger is thereby completely restored with the same activity and only water is used as an eluent, a very cheap raw material.

Som tidligere nevnt omfatter varmdypningsgalvani-seringprosessen et flusstrinn hvori flussbadet har en høy konsentrasjon av sinkklorid og ammoniumklorid. Hvis nu sinkkloridet oppnådd i regenereringen av ion-utveksleren kan oppnås i tilstrekkelig høy konsentrasjon kan vaskevæsken resirkuleres direkte tilbake til varmdypningsgalvaniseringsprosessen. As previously mentioned, the hot-dip galvanizing process includes a flux step in which the flux bath has a high concentration of zinc chloride and ammonium chloride. Now if the zinc chloride obtained in the regeneration of the ion exchanger can be obtained in a sufficiently high concentration, the washing liquid can be recycled directly back to the hot dip galvanizing process.

Ifølge oppfinnelsen oppnås dette ved å utføre vasketrinn i motstrøm til den normale strøm gjennom ion-utveksleren. Bare begrensede mengder av vann benyttes, som er holdt adskilt og benyttet således at volumet med den høyeste grad av forurensning vakses først, idet forurensnings-innholdet i tillegg nedsettes. Således i hver regenererings-cykel fjernes bare en liten mengde vaskevæske med høyt sinkinnhold og en liten mengde rent vann tilsettes. Dette res-ulterer i ca. 10-100 liters vaskevæske med høyt nok sinkklorid-innhold til at den kan direkte settes til flussbadet pr. 1 m 3 tirukt beisebad. At dette er et vesentlig frem-skritt vises eksempelvis ved en sammenligning av ovennevnte 3 - 3 MX-metode hvor 2 m avfallsvæske ble oppnådd pr. lm beisebad og hvor denne avfallsvæske deretter krever ytterligere behandling. Ingen del av beisebadet kasseres, da en del kan resirkuleres i prosessen og den andre del kan benyttes for fremstilling av vannrensende kjemikalier. According to the invention, this is achieved by performing washing steps in countercurrent to the normal flow through the ion exchanger. Only limited quantities of water are used, which are kept separate and used in such a way that the volume with the highest degree of contamination is waxed first, as the contamination content is also reduced. Thus, in each regeneration cycle, only a small amount of washing liquid with a high zinc content is removed and a small amount of clean water is added. This results in approx. 10-100 liters of washing liquid with a high enough zinc chloride content that it can be directly added to the flux bath per 1 m 3 heated pickling bath. That this is a significant advance is shown, for example, by a comparison of the above-mentioned 3 - 3 MX method where 2 m of waste liquid was obtained per lm pickling bath and where this waste liquid then requires further treatment. No part of the pickling bath is discarded, as part can be recycled in the process and the other part can be used for the production of water-purifying chemicals.

Oppfinnelsen skal i det følgende forklaresThe invention will be explained below

nærmere ved hjelp av noen eksempler utført i laboratorie-målestokk. in more detail with the help of some examples carried out on a laboratory scale.

Eksempel 1Example 1

100 ml beisebad bragt til å strømme igjennom100 ml pickling bath brought to flow through

en lagring inneholdende 20 ml anion-utvekslerstoff. Sammensetningen av beisebadet var 147 g/liter Fe, hvorav 6 g/liter a stock containing 20 ml of anion exchange material. The composition of the pickling bath was 147 g/litre Fe, of which 6 g/litre

3+ 3+

var fe ,2,64 g/liter Zn og 42 g/liter HCl. Sinkinnholdet i det behandlede beisebad, dvs. det som har strømmet gjennom stoffet, øker under prøven fra 0,75 mg/liter etter 20 ml til 19 5 ml/liter etter 100 ml. Lagringen ble deretter vasket med 100 ml rent vann som ble bragt til å strømme i gjennom lagringen. Sinkinnholdet i vaskevæsken var etter 40 ml,50 mg/liter, og etter 60 ml, 4 700 ml/liter. 9 3% av det tilsatte sink ble vasket ut. was 2.64 g/liter Zn and 42 g/liter HCl. The zinc content of the treated pickling bath, i.e. that which has flowed through the fabric, increases during the test from 0.75 mg/litre after 20 ml to 19 5 ml/litre after 100 ml. The storage was then washed with 100 ml of clean water which was made to flow through the storage. The zinc content in the washing liquid was after 40 ml, 50 mg/litre, and after 60 ml, 4,700 ml/litre. 9 3% of the added zinc was washed out.

Deretter ble 100 ml beisebad bragt til å strømme igjennom lagringen. Sinkinnholdet var etter 100 ml, 225 mg/ liter. Lagringen ble deretter vasket med det tidligere vaske-vann. Det høyeste sinkinnhold var 500 mg/liter. Lagringen ble vasket med 100 ml rent vann og det høyeste sinkinnhold var da 7700 mg/liter. Then 100 ml pickling bath was brought to flow through the storage. The zinc content after 100 ml was 225 mg/litre. The storage was then washed with the previous wash water. The highest zinc content was 500 mg/litre. The storage was washed with 100 ml of pure water and the highest zinc content was then 7700 mg/litre.

Eksempel 2Example 2

30 liter beisebad ble påført på 2,3 liter anion-utvekslérstoff. Sammensetningen av beisebadet var 4 7 g/liter Fe, hvorav 1,4 g/liter Fe 3+, 3,8 g/liter Zn og 111 g/liter HCl. Sinkinnholdet i det behandlede beisebad var etter 30 liter, 25 mg/liter. Lagringen ble deretter regenerert med 15 liter vann. Sinkinnholdet etter 2 liter var 15 g/ liter, og etter 13 liter 570 g/liter. 62% av tilsatt sink ble vasket ut av lagringen. 30 liters of pickling bath were applied to 2.3 liters of anion exchange material. The composition of the pickling bath was 47 g/litre Fe, of which 1.4 g/litre Fe 3+, 3.8 g/litre Zn and 111 g/litre HCl. The zinc content in the treated pickling bath was, after 30 litres, 25 mg/litre. The storage was then regenerated with 15 liters of water. The zinc content after 2 liters was 15 g/litre, and after 13 liters 570 g/litre. 62% of the added zinc was washed out of the storage.

Eksempel 3Example 3

20 liter beisebad med sammensetningen 41 g/liter Fe, 7,3 g/liter Zn og 14 g/liter HCl ble påført på samme anion-utvekslers lagring som i eksempel 2. Sinkinnholdet i det behandlede beisebad var etter 10 liter, 0,7 g/liter, og etter 20 liter,. 4,0 g/liter. Lagringen ble deretter regenerert med vaskevæske ifølge følgende tabell. 20 liters of pickling bath with the composition 41 g/litre Fe, 7.3 g/litre Zn and 14 g/litre HCl was applied to the same anion exchanger storage as in example 2. The zinc content in the treated pickling bath was after 10 litres, 0.7 g/liter, and after 20 liters, 4.0 g/litre. The storage was then regenerated with washing liquid according to the following table.

Ved å dele vaskevæsken i deler ble det oppnådd fra 20 liter beisebad med 7,3 g/liter Zn, 20 liter renset beisebad med 1,6 g/liter Zn og 6 liter vaskevæske med 19 g/liter Zn. Således ble den samme sinkmengde som var satt til lagringen fjernet med vaskevæsken. By dividing the washing liquid into parts, it was obtained from 20 liters of pickling bath with 7.3 g/litre Zn, 20 liters of purified pickling bath with 1.6 g/litre Zn and 6 liters of washing liquid with 19 g/litre Zn. Thus, the same amount of zinc that had been added to the storage was removed with the washing liquid.

Oppfinnelsen er ikke bare begrenset til saltsyrebaserte beisebad, men kan også benyttes for svovel-syrebaserte beisebad. I det tilfellet imidlertid, må hele mengden av klorid nødvendig for overføring av metallionene til anion-komplekset,tilsettes. The invention is not only limited to hydrochloric acid-based pickling baths, but can also be used for sulfuric acid-based pickling baths. In that case, however, the entire amount of chloride necessary to transfer the metal ions to the anion complex must be added.

Oppfinnelsen er ikke begrenset bare til separering av jern- og sinkioner. Beisebadet blir forurenset med bly eksempelvis når ståltråd skal galvaniseres pga. det faktum at når ståltråd trekkes, føres den ofte gjennom et bad av smeltet bly for å smøre denne. Dråpér av bly som vedhenger til ståltråden beises deretter av ståltråden i beisebadet. Bly danner også kloridkomplekser og ved egnet balanserte forbindelser kan adskilles fra jernet i beisebadet. The invention is not limited only to the separation of iron and zinc ions. The pickling bath is contaminated with lead, for example when steel wire is to be galvanized due to the fact that when steel wire is drawn, it is often passed through a bath of molten lead to lubricate it. Drops of lead that adhere to the steel wire are then pickled by the steel wire in the pickling bath. Lead also forms chloride complexes and, with suitably balanced compounds, can be separated from the iron in the pickling bath.

Oppfinnelsen skal ikke anses som begrenset bare til rensning av brukte beisebad heller. Den kan selvsagt benyttes i et hvert tilfelle som krever adskillelse av metallioner fra hverandre i saltsyreoppløsning. The invention should not be considered limited only to the cleaning of used pickling baths either. It can of course be used in every case that requires the separation of metal ions from each other in hydrochloric acid solution.

Claims (8)

1. Fremgangsmåte for å rense brukte beisebad, fortrinnsvis basert på saltsyre som er benyttet for beising av stålartikler, karakterisert ved at beise-, badet med metallionene deri i form av anion-komplekser bringes i kontakt med anion-adsorberende materiale som selektivt adsorberer litt av metallion-komplekset etter-fulgt av simultan vasking og regenerering av det anion-adsorberende materiale.1. Method for cleaning used pickling baths, preferably based on hydrochloric acid which has been used for pickling steel articles, characterized in that the pickling bath with the metal ions therein in the form of anion complexes is brought into contact with anion-adsorbing material which selectively adsorbs some of the metal ion complex followed by simultaneous washing and regeneration of the anion-adsorbing material. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at jernioner og sinkioner er til stede som jernklorid-kompleks og sinkklorid-kompleks respektivt i beisebadet og at sinkklorid-komplekset selektivt adsorberes på det anion-adsorberende materiale.2. Method according to claim 1, characterized in that iron ions and zinc ions are present as iron chloride complex and zinc chloride complex respectively in the pickling bath and that the zinc chloride complex is selectively adsorbed on the anion-adsorbing material. 3. Fremgangsmåte ifølge krav 1, karakterisert ved at det anion-adsorberende materiale er en vanlig kloridion-mettet anion-utveksler.3. Method according to claim 1, characterized in that the anion-adsorbing material is a common chloride ion-saturated anion exchanger. 4. Fremgangsmåte ifølge krav 3, karakterisert ved at anion-utveksleren i samtidig både regenerert og vasket med vann, hvorved sinkklorid-komplekset komponerer sinkklorid og saltsyre dannes og bæres med vaskevannet og at anion-utveksleren deretter degenereres for å gjenvinne sin aktivitet.4. Method according to claim 3, characterized in that the anion exchanger is simultaneously both regenerated and washed with water, whereby the zinc chloride complex composes zinc chloride and hydrochloric acid is formed and carried with the washing water and that the anion exchanger is then degenerated to regain its activity. 5. Fremgangsmåte ifølge krav 4, karakterisert ved at vaskingen finner sted i motstrøm til normal strøm og i flere trinn og at samme vaskeoppløs-ning benyttes flere ganger for å oppnå en høy konsentrasjon i den resulterende oppløsning.5. Method according to claim 4, characterized in that the washing takes place in a counter current to the normal current and in several steps and that the same washing solution is used several times to achieve a high concentration in the resulting solution. 6. Fremgangsmåte ifølge krav 5, karakterisert ved at vaskingen utføres i 2 .- 5 trinn med separate volum av vann og at vaskevolumene i hver cykel benyttes et trinn tidligere i vaskingen.6. Method according to claim 5, characterized in that the washing is carried out in 2-5 steps with separate volumes of water and that the wash volumes in each cycle are used a step earlier in the washing. 7. Fremgangsmåte ifølge krav 2, karakterisert ved at residuoppløsningen inneholdende bare jernioner benyttes for fremstilling av vannrensende kjemikalier.7. Method according to claim 2, characterized in that the residue solution containing only iron ions is used for the production of water purifying chemicals. 8. Fremgangsmåte ifølge krav 5 eller 6, karakterisert ved at vaskeoppløsningen benyttes for fremstilling av flussmiddel for en varmdyppegalvani-seringsprosess.8. Method according to claim 5 or 6, characterized in that the washing solution is used for the production of flux for a hot-dip galvanizing process.
NO811606A 1979-09-13 1981-05-11 CLEANING PROCEDURE FOR USED SPA. NO811606L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7907619A SE7907619L (en) 1979-09-13 1979-09-13 CLEANING PROCEDURE FOR CONSUMED BATH BATH

Publications (1)

Publication Number Publication Date
NO811606L true NO811606L (en) 1981-05-11

Family

ID=20338823

Family Applications (1)

Application Number Title Priority Date Filing Date
NO811606A NO811606L (en) 1979-09-13 1981-05-11 CLEANING PROCEDURE FOR USED SPA.

Country Status (6)

Country Link
EP (1) EP0035515A1 (en)
DK (1) DK209181A (en)
FI (1) FI802821A (en)
NO (1) NO811606L (en)
SE (1) SE7907619L (en)
WO (1) WO1981000728A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3338258A1 (en) * 1983-10-21 1985-05-02 Hamm Chemie GmbH, 4100 Duisburg METHOD FOR TREATING IRON AND ZINC-CONTAINING SALT ACID
US4770788A (en) * 1985-04-25 1988-09-13 Kollmorgen Technologies Corp. Process for removing metal complexes from waste solutions
FI81127C (en) * 1988-04-18 1990-09-10 Outokumpu Oy Process for the regeneration of beet acids in zinc galvanizing process r
AT398986B (en) * 1989-02-06 1995-02-27 Prior Eng Ag METHOD FOR THE PROCESSING OF ACIDS, FE-CONTAINING SOLUTIONS, IN PARTICULAR WASTE STICKING SOLUTIONS
DE4204892A1 (en) * 1992-02-19 1993-08-26 Wiegel Verwaltung Gmbh & Co Iron and zinc salts sepn. from acid etching soln. - by using organic extn. agent to remove zinc salt and sulphate ion producing agent to convert salt into insol. zinc sulphate, for pure prods.
NL9500065A (en) * 1995-01-12 1996-08-01 Bammens Groep B V Method for selectively removing zinc from acidic waste streams.
CN104762581A (en) * 2015-03-23 2015-07-08 成都振中电气有限公司 Anticorrosion processing method used for surface of metal member
CN104762580A (en) * 2015-03-23 2015-07-08 成都振中电气有限公司 Galvanizing technology good for uniformity of galvanizing layer thickness
CN113479939A (en) * 2021-06-09 2021-10-08 南京护航环保科技有限公司 Separating treatment agent for ferrous chloride and zinc chloride in hot galvanizing waste hydrochloric acid liquid and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB584481A (en) * 1944-12-28 1947-01-15 Distillers Co Yeast Ltd Improvements in or relating to the regeneration of hydrogen-exchange materials
BE510506A (en) * 1951-04-12
DE1276979B (en) * 1961-07-05 1968-09-05 Budenheim Rud A Oetker Chemie Process for pickling metals
DE1621577A1 (en) * 1966-01-22 1971-07-08 Gewerk Keramchemie Process for the selective removal of zinc ions from strongly hydrochloric iron pickles
DE1936253A1 (en) * 1969-07-16 1971-01-28 Chemical Separations Corp Metal pickling using an ion exchange resin to
DE2026162A1 (en) * 1970-05-29 1971-12-09 Dow Chemical Co Recovery of hydrochloric acid from spent - pickle liquor
FR2179649B1 (en) * 1972-04-14 1974-10-18 Ugine Kuhlmann
DE2526247A1 (en) * 1975-06-12 1976-12-30 Oxy Effluent Control Ltd Recovering acid and metals from spent pickling soln. - using anionic exchange resin to remove metal forming anionic complex
DE2602440A1 (en) * 1976-01-23 1977-07-28 Steinmueller Gmbh L & C Removing zinc from hydrochloric acid-contg. solns. - by forming zinc chloro complex on anion exchanger and then converting to zinc chloride
FR2346457A1 (en) * 1976-04-02 1977-10-28 Elf Aquitaine RECOVERY OF ZINC FROM RESIDUAL ELECTRODEPOSITION SOLUTIONS

Also Published As

Publication number Publication date
WO1981000728A1 (en) 1981-03-19
EP0035515A1 (en) 1981-09-16
DK209181A (en) 1981-05-12
FI802821A (en) 1981-03-14
SE7907619L (en) 1981-03-14

Similar Documents

Publication Publication Date Title
US3658470A (en) Metal ion recovery system
JPH04134054A (en) Purification of amino acid using ion exchange resin
JPH01153509A (en) Production of high-purity hydrogen peroxide
NO811606L (en) CLEANING PROCEDURE FOR USED SPA.
US2733204A (en) Trf atmfimt op wrtca
CN104736484B (en) The desalination process of boron-containing solution
US5324403A (en) Process for salt extraction from hydrogen-sulphide scrubber solution using electrodialysis
Trokhymenko et al. Development of low waste technology of water purification from copper ions
US4049772A (en) Process for the recovery of chromic acid solution from waste water containing chromate ions
JPH03167160A (en) Purification of aqueous solution of quaternary ammonium hydroxide
US3567368A (en) Method for producing rhodium concentrates
CN1061104C (en) Process for regeneration of electrolytes, in particular of Na2SO4 from waste pickles for stainless steel, in particular, stainless steel strips
JPH04231487A (en) Regeneration method of pickling waste liquor containing metal salt and acid
RU2049073C1 (en) Process for ion-exchange purification of sewage and industrial solutions from copper and nickel ions
US6537516B2 (en) Integrated method of preconditioning a resin for hydrogen peroxide purification and purifying hydrogen peroxide
SU990802A1 (en) Process for producing tartaric lime from vinassewaste of winemaking
JP7105619B2 (en) Method for recovering boron from wastewater containing boron
JPS5928617B2 (en) Recovery method for copper in wastewater containing copper pyrophosphate
JPS58174241A (en) Method for regenerating boron selective ion exchange resin
JPS58193378A (en) Treatment of hydrochloric acid pickling liquid for special steel
Zakiyya et al. Spent pickling liquor as industrial waste recover opportunities
SU1563793A1 (en) Method of washing bottles from food products
SU638549A1 (en) Method of purifying electrolytic production waste liquids
JPS6152236B2 (en)
SU890738A1 (en) Method of regenerating ion-exchange resins saturated with noble metals