NO780893L - MAGNETIC CORE FOR INDUCTION COILS AND PROCEDURE FOR ITS MANUFACTURE - Google Patents

MAGNETIC CORE FOR INDUCTION COILS AND PROCEDURE FOR ITS MANUFACTURE

Info

Publication number
NO780893L
NO780893L NO780893A NO780893A NO780893L NO 780893 L NO780893 L NO 780893L NO 780893 A NO780893 A NO 780893A NO 780893 A NO780893 A NO 780893A NO 780893 L NO780893 L NO 780893L
Authority
NO
Norway
Prior art keywords
core
produced
cores
magnetic
approx
Prior art date
Application number
NO780893A
Other languages
Norwegian (no)
Inventor
Niels Hvidtfeldt
Adam Ruttkay
Original Assignee
Wicon Kondensatorfab As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wicon Kondensatorfab As filed Critical Wicon Kondensatorfab As
Publication of NO780893L publication Critical patent/NO780893L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Soft Magnetic Materials (AREA)
  • General Induction Heating (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

Foreliggende oppfinnelse angår en magnetisk kjerne for induksjonsspoler samt en fremgangsmåte for dens frem- The present invention relates to a magnetic core for induction coils and a method for its production

stilling. score.

Ved fremstilling av induksjonsspoler for bruk i tonefrekvensområdet og av den art som benyttes i delefiltret for hoy- When manufacturing induction coils for use in the tone frequency range and of the type used in the dividing filter for high-

talere, er det vanlig å anvende kjerner av ferromagnetisk material. speakers, it is common to use cores of ferromagnetic material.

De mest benyttede verdier av selvinduksjoner for dette formål har storrelser fra 0,1 til 10 millihenry og en motstand n<£ 1 ohm, således at kobberforbruket i luftspoler fra 1 mH og oppover er meget betydelig. The most commonly used values of self-inductances for this purpose have sizes from 0.1 to 10 millihenry and a resistance n<£ 1 ohm, so that the copper consumption in air coils from 1 mH and upwards is very significant.

Magnetiske kjerner nedsetter dette kobberforbruk til 15 - 30 % av kobberforbruket i luftspoler. Det har vært vanlig å anvende spoler viklet på lamelJcjérnar av transformatorblikk i det laveste frekvensområdet, men med de stadig stigende krav som stilles til korrekt lydgjengivelse, har medfort at det nå foretrekkes å anvende kjerner av ferrit, særlig Mangan/ Zink-ferrit, som er et dksydmaterial med spineistruktur. Magnetic cores reduce this copper consumption to 15 - 30% of the copper consumption in air coils. It has been common to use coils wound on lamellar cores of transformer tin in the lowest frequency range, but with the ever-increasing demands placed on correct sound reproduction, it is now preferred to use cores of ferrite, especially Manganese/Zinc ferrite, which is a dksyd material with spinei structure.

Herved unngås i det vesentlige all signalforvrengning, idet ferritmaterialet permeabilitet varierer mindre med spolens strømbelastning enn jernmaterialets permeabilitet. This essentially avoids all signal distortion, as the permeability of the ferrite material varies less with the current load of the coil than the permeability of the iron material.

Ferritmaterialet blir imidlertid magnetisk mettet ved lav feltstyrke og kan på denne måte gi forvrengning av kraftige musikkavsnitt, hvis det ikke tas spesielt hensyn til dette forhold. The ferrite material, however, becomes magnetically saturated at low field strength and can in this way cause distortion of powerful musical sections, if special attention is not paid to this condition.

Det er således nodvendig å unngå lukkede magnetislcéVkretser ved anvendelse av ferrit. Den faktor som luftspolens selvinduksjon okes med ved anvendelse av vedkommende kjerne-materiale, bor ikke overskride ca. 5. It is thus necessary to avoid closed magnetic circuits when using ferrite. The factor by which the air coil's self-induction is increased when using the relevant core material must not exceed approx. 5.

Kjerner av ferrit er kostbare på grunn av materialetsk komliserte fremstilling, som omfatter folgende prosesser: veining, maling, blanding, sintring, ny maling, blanding, , pressing, samt sluttsintring ved hoy temperatur. Cores of ferrite are expensive due to materially complicated production, which includes the following processes: weighing, grinding, mixing, sintering, re-grinding, mixing, pressing, and final sintering at high temperature.

Kjerner fremstillt fa. v~~\jernpulver ble innfort allerede i radions barndom, bl.a. i bruk i superbetrodyn- mottakernes mellomfrekvenstransformatorer og har også vært anvendt i tonefrekyénsområdért, f.eks. i de såkalte pupinspoler. Cores produced fa. v~~\iron powder was introduced already in radio's infancy, i.a. in use in the intermediate frequency transformers of the superpetrodyne receivers and has also been used in the tone frequency range, e.g. in the so-called pupin coils.

Sådant jernpulver blandes oftest med termoplastmaterial eller termohærdende isolasjonsmaterial, og kjernene fremstilles ved pressing. Det er forsokt å gjore disse pulverkjerner anvendbare i hoyfrekvensområdet. Dette medforer at pulverets kornstorrelse bor være under ca. 10 pm, da storre korn gir virvelstromtap ved hoye frekvenser. Denne kjente teknikk er oftest basert på karbonyljern bestående av likeartede, kuleformede partikler med diameter 5-6 um samt jernpulver fremstillt ved reduksjon av jernoksyd med hydrogen og med likeartet partikelstorrelse under 3 jum. Karboninnholdet i disse produkter har oftest vært ca. 1 %. Such iron powder is most often mixed with thermoplastic material or thermosetting insulating material, and the cores are produced by pressing. Attempts have been made to make these powder cores usable in the high frequency range. This means that the grain size of the powder must be below approx. 10 pm, as larger grains cause eddy current losses at high frequencies. This known technique is most often based on carbonyl iron consisting of similar, spherical particles with a diameter of 5-6 µm and iron powder produced by reducing iron oxide with hydrogen and with a similar particle size of less than 3 µm. The carbon content of these products has usually been approx. 1%.

Enhver anvendelse av magnetisk material i pulverform med eller uten pressing"'medforer sterk nedsettelse av permeabiliteten på grunn av de mellomrom som innfores i materialet og som er utfylt med luft eller andre magnetisk passive stoffer. Any application of magnetic material in powder form, with or without pressing, entails a strong reduction in permeability due to the spaces introduced into the material and which are filled with air or other magnetically passive substances.

Det har ikke vært vanlig å oppnå verdier for initiale permeabiliteten/a^på over ca. 20 i sådanne pulver kj erner. It has not been common to achieve values for the initial permeability/a^ of more than approx. 20 in such powder kernels.

Ferritmaterialer som anvendes i delefilterspoler har oftest Ferrite materials used in divider coils most often have

u±> 1000. u±> 1000.

I henhold til oppfinnelsen fremstilles det magnetiske kjerne-material ved kraftig pressing av jernpulver med stor spredning i kornstorrelsen,. idet halvdelen av materialet er fordelt på kornstorrelser over 50 pm med maksimal kornstorrelse 200 pm. According to the invention, the magnetic core material is produced by vigorous pressing of iron powder with a large dispersion in grain size. since half of the material is divided into grain sizes above 50 pm with a maximum grain size of 200 pm.

Spredningen kan oppnås ved blanding av standardprodukter med forskjellig korns torrel ser. Et .gjegnet material for anvendelse i frekvensområdet 25 Hz - 2 5 KHz kan ha 80 % av materialmengden fordelt på kornstorrelser fra 40 til 200 pm og 20 %\under 40 pm. The spread can be achieved by mixing standard products with different grain sizes. A typical material for use in the frequency range 25 Hz - 2 5 KHz can have 80% of the material quantity divided between grain sizes from 40 to 200 pm and 20% under 40 pm.

Som folge av den sterkt varierende kornstorrelse er det mulig ved et pressetrykk på ca. 5 tonn/cm 2 og oppnå tett pakning av kornene og en kj er neve ktutf^TnTng s: opptil ca. 7, idet de fine partikler utfyller mellomrommene mellom de grove. As a result of the greatly varying grain size, it is possible at a press pressure of approx. 5 tonnes/cm 2 and achieve tight packing of the grains and a kj is neve ktutf^TnTng s: up to approx. 7, as the fine particles fill the spaces between the coarse ones.

Det^kån også anvendes storre eller mindre pressetrykk, fortrinnsvis i områo det 2-10 tonn/cm 2. Materialets sammen-holdning kan oppnås ved molekylærkrefter alene, men hvis det onskes storre mekanisk styrke, kan det også tilsettes bindemidler, som fyller ut materialets fineste porer. It is also possible to use greater or lesser pressing pressure, preferably in the region of 2-10 tons/cm 2. The cohesion of the material can be achieved by molecular forces alone, but if greater mechanical strength is desired, binders can also be added, which fill out the material's finest pores.

For dette formål kan det f.eks. benyttes aluminiumhydroksyd eller bentonit, fortrinnsvis i kolloid form. For this purpose, it can e.g. aluminum hydroxide or bentonite is used, preferably in colloidal form.

Jernpulver med maksimal kornstorrelse under ca. 30 pm kan vanskelig bearbeides med presseteknikk i henhold til oppfinnelsen, idet de selv under vibrasjon ikke flyter lett nok ned i formen. Hvis kornstorrelsen er likeartet, oppnås bare små sammenholdnings krefter. Iron powder with a maximum grain size below approx. 30 pm can hardly be processed with pressing techniques according to the invention, as they do not flow easily enough into the mold even under vibration. If the grain size is similar, only small cohesive forces are achieved.

Det er hensiktsmessig å tilsette ejt smoremiddel til blandingen, hvorved det oppnås at kornene lettere passerer hinannen, så^"'' ledes at det ved et gitt trykk kan oppnås tettere struktur. It is appropriate to add a lubricant to the mixture, whereby it is achieved that the grains pass each other more easily, so that a denser structure can be achieved at a given pressure.

Den ovenfor angitte, kjernevektutfyllihg på ca. 7 oppnås bare The above-mentioned core weight supplement of approx. 7 is only achieved

ved anvendelse av smøremiddel. when using a lubricant.

Smoremidlet kan f.eks. være molybdendisulfid, voks, stearinsyre eller et stearat og kan eventuelt tilfores i opplost form ved fukting av pulver med opplosningen, samt torring og blanding i en roterende trommel. Det kan naturligvis også benyttes et pulverformet smoremiddel. Mengdeandelen kan være 0,2 - 1,5 %. The lubricant can e.g. be molybdenum disulphide, wax, stearic acid or a stearate and can optionally be supplied in dissolved form by wetting powder with the solution, as well as drying and mixing in a rotating drum. Naturally, a powdered lubricant can also be used. The quantity share can be 0.2 - 1.5%.

Et hensiktsmessig material for anvendelse i henhold til opp-fiHnél-sen kan være såkalt "jernsvamp", som kan fåes med karboninnhold under 0,02 %. Det er altså her tale om meget blott jern. Materialer av denne art anvendes bl.a. til fremstilling av legeringer. A suitable material for use according to the invention can be so-called "sponge iron", which can be obtained with a carbon content below 0.02%. It is therefore a matter of very bare iron. Materials of this kind are used i.a. for the production of alloys.

Et lavt karboninnhold medforer lave hysteresetap i materialet A low carbon content means low hysteresis losses in the material

og folgelig mindre signalforvrengning i spolene. and consequently less signal distortion in the coils.

Hvis det for visse formål onskes storre mé.kanisk styrke i kjernen, kan man foruten den allerede nevnte tilsetning av kolloide bindemidler benytte en tilsetning av ca. 1 % fenolharpiks. Dette stoff hærdes ved passasje gjennom en tunnel-ovn efter pressingen, og det er altså ikke nodvendig å efter-<Jlate/kjerneemnet i presseformen under hærdingen, slik som ved bakelitpressing. If, for certain purposes, greater mechanical strength is desired in the core, in addition to the already mentioned addition of colloidal binders, an addition of approx. 1% phenolic resin. This material is hardened by passage through a tunnel oven after pressing, and it is therefore not necessary to leave the core blank in the press mold during curing, as is the case with bakelite pressing.

Det var ventet at en kjerne fremstilt på den angitte måte It was expected that a core produced in the indicated manner

ville være uégriét . ved hoyfrekvens på grunn av innholdet av (<g>rbj/e jernkorn, og at den i tonef rekvensområdet ville oppvise egenskaper som lå mellom egenskapene for henholds- would be uégriét. at high frequency due to the content of (<g>rbj/e iron grains), and that in the tone frequency range it would exhibit properties that were between the properties of the corresponding

vis jernlamelkj erner og fer£itkjerner. show iron lamellar cores and fer£ite cores.

Det er derfor overraskende at de '^fremstilte kjerner har tekniske data som nesten er identiske med tilsvarende data for godt ferritmateriale, når det er tale om stavkjerner for anvendelse i tonefrekvensområdet. It is therefore surprising that the manufactured cores have technical data that are almost identical to corresponding data for good ferrite material, when it comes to rod cores for use in the tone frequency range.

Spoler med stavkjerner fremstilt i henhold til oppfinnelsen Coils with rod cores manufactured according to the invention

har konstant selvinduksjon og jerntap under 5 % i heie has constant self-induction and iron loss below 5% in heat

frekvensområdet fra 25 Hz til 2 5 kHz. Dette har forbindelse med materialets ^lave karboninnhold. frequency range from 25 Hz to 2 5 kHz. This has to do with the material's low carbon content.

Den faktor hvormed luftspolens selvinduksjon forøkes ved innsetning av kjernen, også kalt tilsynelatende permeabilitet, utgjor ved stavkjerner i henhold til oppfinnelsen 90 - 95 % The factor by which the air coil's self-induction is increased when the core is inserted, also called apparent permeability, is 90 - 95% for rod cores according to the invention

av den tilsynelatende permeabilitet som kan oppnås ved å benytte en ferritkjerne med samme dimensjoner og samme spole. Dette er overraskende i betraktning ,av at u. for ferritmaterialet målt i en ringkjerne er over 1000, /méns den tilsvarende verdi for kjernematerialet i henhold til oppfinnelsen er = ca.60. of the apparent permeability that can be achieved by using a ferrite core of the same dimensions and the same coil. This is surprising in view of the fact that u for the ferrite material measured in a ring core is over 1000, while the corresponding value for the core material according to the invention is = approx.60.

Impedansen varierer meget lite med spolestrommen. The impedance varies very little with the coil current.

Summen av de harmoniske stromkomponenter gjennom en forsoksspole på 0,87 mH og 0,3 ohm belastet med meget nær sinusformet spenning ved frekvenser på lQO, 500, 1000, 5000 og 10 000 Hz samt ved strømmer varierende fra 0,25 til 5 A, ligger under 1 %, og en- sammenligning med samme luftspole efter insettning av en ferri±kjerne med samme dimensjoner og med p.^ ^> 1000 oppviste nesten identiske data, når det ses bort fra at det ved strømstyrken 5 Ampere og frekvensene 100 og 500 Hz oppstår en vesentlig signalforvrengning i ferritspolen på grunn av metning. The sum of the harmonic current components through a pilot coil of 0.87 mH and 0.3 ohm loaded with very close sinusoidal voltage at frequencies of lQO, 500, 1000, 5000 and 10,000 Hz and at currents varying from 0.25 to 5 A, is below 1%, and a comparison with the same air coil after inserting a ferri±core with the same dimensions and with p.^ ^> 1000 showed almost identical data, when it is disregarded that at the current strength of 5 Amps and the frequencies 100 and 500 Hz, a significant signal distortion occurs in the ferrite coil due to saturation.

For undersøkelse av det nye materialets stabilitet ble det For investigation of the new material's stability it was

X forsøkt å utladfe en kondensator på 1000 uF oppladet til X attempted to discharge a capacitor of 1000 uF charged to

500 Volt/gjennom den nevnte forsoksspole på 0,87 mH. Denne påvirkning forandret hverkén spolens selvinduksjon eller taps-vinkel. 500 Volts/through the aforementioned pilot coil of 0.87 mH. This influence changed either coil's self-inductance or loss angle.

Materialets spesifikke motstand er ca. 0,2 ohm.cm, hvilket The specific resistance of the material is approx. 0.2 ohm.cm, which

er mindre enn', f br" vanlige" pul.yerkj erner, men langt mer enn i kompakt jern. Til anvendelse som stavkjerner i spoler som anvendes i frekvensområdet 25 Hz - 25kHz er det nye materialet, tross fsin lave verdi for p^,like så egnet som ferrit, og det forhold at materialet faktisk tåler hoyere belastning uten metning vil utgjore en sikkerhet mot forvrengning av kraftige musikkavsnitt. is less than', f br" common" pul.yerkj erns, but far more than in compact iron. For use as rod cores in coils used in the frequency range 25 Hz - 25 kHz, the new material, despite its low value for p^, is just as suitable as ferrite, and the fact that the material can actually withstand higher loads without saturation will constitute a safeguard against distortion of powerful music episodes.

I tillegg har det vist seg at vedkommende material';er anvendbart i spoler for radiostoydempning. Det har ved denne .anvendelse ikke uheldig^' -virkning at vedkommende spole har store tap ved hbye frekvenser, og kjernens frem-stillingsmåte muliggjbr en særlig billig fremstilling av spoler med lave vinningstall helt omgitt av magnetisk material. In addition, it has been shown that the material in question can be used in coils for radio noise reduction. In this application, it does not have an unfortunate effect that the coil in question has large losses at high frequencies, and the manufacturing method of the core enables a particularly cheap manufacture of coils with low gain numbers completely surrounded by magnetic material.

Det har for stoydempning ofte vært benyttet hulkjerner som er påfort viklinger ved å fore en isolert tråd frem og tilbake gjennom åpninger i kjernen, hvilket er besværlig og krever meget håndarbeide. For noise reduction, hollow cores have often been used which are attached to the windings by feeding an insulated wire back and forth through openings in the core, which is difficult and requires a lot of manual work.

Med anvendelse av det nye materiale kan det forst dannes en eller flere kjerner, som lett kan fpåfores trådvikling og derefter innsettes i et presseverktøy og presses inn i materiale av samme art, således at viklingen i det ferdige produkt er omgitt av magnetisk material. With the use of the new material, one or more cores can first be formed, which can easily be applied to wire winding and then inserted into a pressing tool and pressed into material of the same type, so that the winding in the finished product is surrounded by magnetic material.

Det vil ofte være hensiktsmessig å benytte denne teknikk It will often be appropriate to use this technique

som medforer at alle magnetiske kretser lukkes. Inpressnings-metoden kan også benyttes for tonefrekvensspoler, og det er i dette tilfelle en særlig fordel ved foreliggende magnetiske material at det tåler hby feltstyrke uten at det oppstår metning. which results in all magnetic circuits being closed. The press-in method can also be used for tone frequency coils, and in this case it is a particular advantage of the present magnetic material that it can withstand high field strength without saturation occurring.

Claims (8)

1. Magnetisk kjerne for induksjonsspoler og fremstilt av jernpulver ved pressing, karakterisert vedat det er stor spredning i pulverets kornstorrelse, idet over halvdelen av material-— mengden er fordelt på kornstbrrelser over 50 pm med maksimal kornstorrelse 200 pm.1. Magnetic core for induction coils and produced from iron powder by pressing, characterized by the fact that there is a large spread in the powder's grain size, with more than half of the material quantity distributed among grain sizes above 50 pm with a maximum grain size of 200 pm. 2. Magnetisk kjerne som angitt i krav 1,karakterisert vedat ca. 80 % av jernpulveret er fordelt på kornstbrrelser fra 40 til 200 pm og ca. 20 % ligger under 40 um.2. Magnetic core as stated in claim 1, characterized by approx. 80% of the iron powder is distributed among grain sizes from 40 to 200 pm and approx. 20% are below 40 um. 3. Magnetisk kjerne som angitt i krav 1 eller 2,karakterisert vedat kjernen er fremstilt av jernpulver med karboninnhold^ 0,02 %.3. Magnetic core as specified in claim 1 or 2, characterized in that the core is made of iron powder with a carbon content of 0.02%. 4. Fremgangsmåte for fremstilling av magnetiske kjerner som angitt i krav 1, 2 eller 3, karakterisert vedat kjernen fremstilles ved en enkelt pressningsprosess med trykk fra til 2 til l0-:.1 tonn/cm efter tilsettning av et smoremiddel til pulveret i en mengdeandel fra 0,2 til 1,5 %.4. Process for the production of magnetic cores as stated in claim 1, 2 or 3, characterized in that the core is produced by a single pressing process with pressure from 2 to 10-:.1 ton/cm after adding a lubricant to the powder in a proportion of 0.2 to 1.5%. 5. Fremgangsmåte som angitt i krav 4,karakterisert vedat det tilsettes et bindemiddel som kitter sammen jernkornene under utfylling av materialets fineste porer.5. Method as stated in claim 4, characterized in that a binder is added which glues the iron grains together while filling the material's finest pores. 6. Fremgangsmåte som angitt i krav 5,;'karakterisert vedat det foruten kolloide bindemidler som ikke forandres ved opphetning, tilsettes ca.6. Method as specified in claim 5, characterized in that, in addition to colloidal binders that do not change when heated, approx. 1 % fenolharpiks, hvorefter de fremstilte kjerneemner fullfores efter pressingen med oppvarming i en ovn til harpiksens hærdetemperatur.1% phenolic resin, after which the manufactured core blanks are finished after pressing by heating in an oven to the resin's hardening temperature. 7. Induksjonsspole for radiostoydemping fremstilt ved anvendelse av magnetiske kjerner utfort eller fremstilt som angitt i kravene 1-6, k a r a k t e r i s e r; t ved at det.forst fremstilles en eller flere kjerner som påfores en vikling av isolert ledningstråd og deretter presses inn i magnetisk material av sammen art som er benyttet i kjernene.7. Induction coil for radio noise suppression produced using magnetic cores designed or produced as specified in claims 1-6, c a r a c t e r i s e r; t in that one or more cores are first produced which are applied to a winding of insulated wire and then pressed into magnetic material of the same type used in the cores. 8. Induksjonsspolefø-med kjerne av magnetisk material for anvendelse i frekvensområdet fra 2 5 Hz til 2 5kHz, karakter iert ved at kjernen er utfort eller fremstilt som angitt i krav 1-7.8. Induction coil generator with a core of magnetic material for use in the frequency range from 2 5 Hz to 2 5 kHz, characterized in that the core is extended or produced as specified in claims 1-7.
NO780893A 1977-03-15 1978-03-14 MAGNETIC CORE FOR INDUCTION COILS AND PROCEDURE FOR ITS MANUFACTURE NO780893L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DK112377A DK148400C (en) 1977-03-15 1977-03-15 MAGNETIC CORE FOR INDUCTION COILS AND PROCEDURE FOR ITS MANUFACTURING

Publications (1)

Publication Number Publication Date
NO780893L true NO780893L (en) 1978-09-18

Family

ID=8101265

Family Applications (1)

Application Number Title Priority Date Filing Date
NO780893A NO780893L (en) 1977-03-15 1978-03-14 MAGNETIC CORE FOR INDUCTION COILS AND PROCEDURE FOR ITS MANUFACTURE

Country Status (4)

Country Link
DE (1) DE2811227A1 (en)
DK (1) DK148400C (en)
NO (1) NO780893L (en)
SE (1) SE7802912L (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7263761B1 (en) 1995-07-18 2007-09-04 Vishay Dale Electronics, Inc. Method for making a high current low profile inductor
US7034645B2 (en) 1999-03-16 2006-04-25 Vishay Dale Electronics, Inc. Inductor coil and method for making same
CA2180992C (en) 1995-07-18 1999-05-18 Timothy M. Shafer High current, low profile inductor and method for making same
US7921546B2 (en) 1995-07-18 2011-04-12 Vishay Dale Electronics, Inc. Method for making a high current low profile inductor
EP1097463B1 (en) 1998-07-10 2002-11-27 Epcos Ag Magnetizable product, the use thereof and a method for producing the same
US20080036566A1 (en) 2006-08-09 2008-02-14 Andrzej Klesyk Electronic Component And Methods Relating To Same

Also Published As

Publication number Publication date
DE2811227A1 (en) 1978-09-28
SE7802912L (en) 1978-09-16
DK112377A (en) 1978-09-16
DK148400B (en) 1985-06-24
DK148400C (en) 1985-12-30

Similar Documents

Publication Publication Date Title
KR101792088B1 (en) Method for manufacturing powder magnetic core, powder magnetic core, and coil component
US10453599B2 (en) Magnetic core, method for producing magnetic core, and coil component
JP2000294418A (en) Powder molded magnetic core
US2689398A (en) Method of making magnetizable compacts
US10586646B2 (en) Magnetic core and coil component
TWI705146B (en) Alloy powder composition, moldings and the manufacturing method thereof, and inductors
NO780893L (en) MAGNETIC CORE FOR INDUCTION COILS AND PROCEDURE FOR ITS MANUFACTURE
JPH11176680A (en) Manufacture of core
US10468174B2 (en) Magnetic core and coil component
US20020043303A1 (en) Powder magnetic core
US3953251A (en) Method for the production of carbonyl iron containing magnetic devices with selected temperature variation
JP4701531B2 (en) Dust core
CN110853860A (en) Iron-silicon-aluminum-nickel soft magnetic powder core with effective magnetic conductivity of 60 and preparation method thereof
JP2000114022A (en) Powder-molded magnetic core
JP2654944B2 (en) Composite dust core material and manufacturing method thereof
JP2021027345A (en) Manufacturing method of inductive component and inductive component
US1943115A (en) Electrical insulation for magnetic bodies
JPH05326240A (en) Dust core and manufacture thereof
JPH11260617A (en) Dust core, manufacture of the same, and winding component
JPH10270226A (en) Powder-molded magnetic core and manufacture therefor
JPS63271905A (en) Dust core of fe-si-al alloy
KR102311667B1 (en) PRODUCTION METHOD FOR MAGNETIC SUBSTANCE USING Fe-Si SOFT MAGNETIC POWDER
DE2505080B2 (en) Radio interference suppression choke and process for their manufacture
JPH11329821A (en) Dust core and manufacture thereof
JP2003109811A (en) Dust core, its manufacturing method, and choke coil and transformer using it