JP2000114022A - Powder-molded magnetic core - Google Patents

Powder-molded magnetic core

Info

Publication number
JP2000114022A
JP2000114022A JP11218256A JP21825699A JP2000114022A JP 2000114022 A JP2000114022 A JP 2000114022A JP 11218256 A JP11218256 A JP 11218256A JP 21825699 A JP21825699 A JP 21825699A JP 2000114022 A JP2000114022 A JP 2000114022A
Authority
JP
Japan
Prior art keywords
powder
magnetic core
binder
powders
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11218256A
Other languages
Japanese (ja)
Inventor
Yasuo Shimoda
康生 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ferrite Electronics Ltd
Original Assignee
Hitachi Ferrite Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ferrite Electronics Ltd filed Critical Hitachi Ferrite Electronics Ltd
Priority to JP11218256A priority Critical patent/JP2000114022A/en
Publication of JP2000114022A publication Critical patent/JP2000114022A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powder-molded magnetic core which is improved in space factor by normal- or low-pressure molding and composed of a soft magnetic material. SOLUTION: A powder-molded magnetic core is manufactured in such a way that two kinds of soft magnetic powder A and B having remarkably different particle sizes, with the most frequent value of the particle size distribution of the powder A being as high as five times or more of that of the powder B, are mixed together at a mixing ratio of 85-40 vol.% powder A and 15-60 vol.% powder B. Then the mixed powder is slurried by mixing a liquid binder in the mixed powder, and the slurry is injected into a mold and molded to the shape of a prescribed magnetic core by curing the binder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は電子回路に用いら
れるチョークコイル、トランス等のインダクタンス素子
に関する。
The present invention relates to an inductance element such as a choke coil and a transformer used in an electronic circuit.

【0002】[0002]

【従来の技術】従来、スイッチング電源の平滑用チョー
クコイル、ノイズフィルター用ノーマルモードチョーク
コイル等には、軟磁性金属粉末をプレス成形したトロイ
ダル形状の圧粉磁芯が広く用いられてきた。この軟磁性
金属粉末としてFe−Al−Si合金、パーマロイ、純
鉄粉等が用いられ、数ton/cmから20ton/
cmもの非常に高い成形圧で、前記粉末をプレス成形
して所定の形状を得ている。
2. Description of the Related Art Conventionally, a toroidal dust core formed by press-molding a soft magnetic metal powder has been widely used for a smoothing choke coil of a switching power supply, a normal mode choke coil for a noise filter, and the like. Fe-Al-Si alloy, permalloy, pure iron powder, or the like is used as the soft magnetic metal powder, and several ton / cm 2 to 20 ton /
The powder is press-molded with a very high molding pressure of cm 2 to obtain a predetermined shape.

【0003】トロイダル形状の圧粉磁芯を用いてチョー
クコイルを構成する場合、透磁率の低い前記圧粉磁芯で
所定のインダクタンスを得るためには、コイル巻回数を
多くする必要があり、一般にトロイダル形状への巻線は
自動化が困難であり、特に使用する線材の線径が太い場
合にはほとんど人手によって巻線がおこなわれており、
トロイダル形状の巻線工程に多数の人員を必要とし、さ
らに線径が太い場合には、熟練作業者を必要をした。
When a choke coil is formed using a dust core having a toroidal shape, it is necessary to increase the number of coil turns in order to obtain a predetermined inductance with the dust core having a low magnetic permeability. It is difficult to automate the winding to the toroidal shape, and especially when the wire diameter of the wire used is large, the winding is almost performed manually.
A large number of personnel were required for the toroidal winding process, and when the wire diameter was large, a skilled worker was required.

【0004】この巻線の煩雑さを解消するために、E字
型あるいはU字型の圧粉磁芯を二個組み合わせてチョー
クコイルを構成する事例が最近増加している。これはあ
らかじめ自動機による巻線を施した樹脂製のボビンに磁
芯を組み込むことによって、容易にチョークコイルとす
ることができる。
In order to eliminate the complexity of the winding, the number of cases in which two E-shaped or U-shaped dust cores are combined to form a choke coil has recently increased. This can be easily made into a choke coil by incorporating a magnetic core into a resin bobbin which has been previously wound by an automatic machine.

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0005】しかし、このような磁芯はトロイダル形状
に比べ形状が複雑であるため、プレス成形時に金型の凹
部に応力が集中し、金型が破損しやすく、金型設計に十
分な配慮が必要である。このため圧粉磁芯では複雑な形
状を成形することは困難であった。また同様の理由で、
コーナーが直角である板状の磁芯もプレス成形のみによ
って所定の形状を得ることは困難であり、成形性を考慮
してコーナーに大きなRを取った形状でプレスした後
に、切削加工を施すことによって所定形状を得ていた。
However, since the shape of such a magnetic core is more complicated than that of the toroidal shape, stress is concentrated on the concave portion of the mold at the time of press molding, the mold is easily damaged, and sufficient consideration is given to the design of the mold. is necessary. For this reason, it was difficult to form a complicated shape with a dust core. Also for the same reason,
It is difficult to obtain a predetermined shape of a plate-shaped magnetic core with a right-angled corner only by press molding, and it is necessary to press the corner with a large radius in consideration of formability and then perform cutting. Thus, a predetermined shape was obtained.

【0006】本発明は、軟磁性粉末の上記成形性を解決
し、所定の特性が得られ任意の磁芯形状を容易に作製で
きる粉末成形磁芯を提供する。
The present invention provides a powder molded magnetic core which solves the above-mentioned moldability of a soft magnetic powder, provides predetermined characteristics, and can easily produce an arbitrary magnetic core shape.

【0007】[0007]

【課題を解決するための手段】本発明は、軟磁性材料の
粉末Aと粉末Bに液状の結合剤を混合してスラリー状と
し、所定の形状型内に注入し結合剤を硬化させることに
より成形される粉末成形磁芯である。その特徴は、粉末
Aの粒度分布の最頻値が粉末Bのそれの5倍以上であ
り、かつ、粉末Aと粉末Bの配合比は、粉末Aと粉末B
の体積の和全体に対する粉末Bの体積百分率が15%以
上60%以下とする粉末成形磁芯である。
According to the present invention, a soft magnetic material powder A and a powder B are mixed with a liquid binder to form a slurry, and the slurry is injected into a predetermined shape mold to cure the binder. It is a powder molded magnetic core to be molded. The feature is that the mode of the particle size distribution of the powder A is five times or more that of the powder B, and the mixing ratio of the powder A and the powder B is as follows.
The powder molded core has a volume percentage of the powder B of 15% or more and 60% or less with respect to the total sum of the volumes of the powder B.

【0008】使用する軟磁性材料の組成には基本的に制
限がなく、任意の組成の粉末を本発明の粉末A、Bとし
て使用することができる。例えばFe−Al−Si合
金、パーマロイ、珪素鉄、純鉄等の金属粉末、フェライ
ト等の金属酸化物粉末を使用することができる。
[0008] The composition of the soft magnetic material to be used is basically not limited, and powders of any composition can be used as the powders A and B of the present invention. For example, metal powder such as Fe-Al-Si alloy, permalloy, silicon iron, pure iron, and metal oxide powder such as ferrite can be used.

【0009】また、本発明において使用する結合剤は磁
芯成型の過程でいったん液状となり得る樹脂であれば良
く、液状の低分子有機物を加熱重合により高分子化する
工ポキシ樹脂、シリコ一ン樹脂等の熱硬化性樹脂、加熱
により樹脂を一時的に溶融流動化させるナイロン、液晶
ポリマ一、PPS、PBT、PET樹脂等の熱可塑性樹
脂が使用可能である。また、ポリビニルアルロ一ル、ア
クリル系バインダ一を水に溶解する等、有機物を溶媒で
希釈し軟磁性金属粉末A、Bに混合しスラリ一を作成
し、該スラリ一を型に注入後溶媒を蒸発させることによ
り所定形状の磁芯を得ても良い。
The binder used in the present invention may be any resin that can be liquid once in the process of molding the magnetic core, such as an epoxy resin, a silicone resin, or a polyoxy resin which converts a liquid low-molecular-weight organic material into a polymer by heat polymerization. Thermoplastic resins such as nylon, liquid crystal polymer, PPS, PBT, and PET resins that temporarily melt and fluidize the resin by heating can be used. In addition, the organic substance is diluted with a solvent, such as dissolving polyvinyl alcohol and an acrylic binder in water, mixed with the soft magnetic metal powders A and B to form a slurry, and the slurry is poured into a mold and then the solvent is removed. A magnetic core having a predetermined shape may be obtained by evaporation.

【0010】[0010]

【発明の実施の形態】従来、圧粉磁芯はプレス成形によ
ってその所定形状を得ており、そのプレス成形圧が非常
に高いために任意の形状を得ることが困難であるがため
に、巻線作業性の良い形状が作製できず、巻線の自動化
ができない等の問題点があった。しかし、磁性粉末に液
体を加えていったんスラリー化し、常圧下でのポッティ
ングあるいはインジェクション成形等の無加圧または低
圧下で所定形状の型に注形した後、硬化させれば複雑な
形状の磁芯を容易に作製することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Conventionally, a dust core has been obtained in a predetermined shape by press molding, and it is difficult to obtain an arbitrary shape due to an extremely high press molding pressure. There was a problem that a shape having good wire workability could not be manufactured, and the winding could not be automated. However, once the liquid is added to the magnetic powder, it is slurried, cast into a mold of a predetermined shape under no pressure or low pressure such as potting or injection molding under normal pressure, and then cured to form a magnetic core with a complicated shape. Can be easily produced.

【0011】この製法において、磁性材料として単に一
種類の粉末を用いたのでは、得られる磁芯形状の全体積
に占める磁性材料体積の比率(以下、占積率と呼ぶ)は
低い値のままにとどまり、その結果、磁芯の透磁率、飽
和磁束密度も低くその用途は限定される。しかし、本発
明では粒径の大幅に異なる二種類の粉末を混合すること
により最終的に選られる磁芯の占積率を大幅に改善する
ことができ、透磁率、飽和磁束密度が向上し、広範な用
途に適用した磁芯とすることができた。
In this manufacturing method, if only one type of powder is used as the magnetic material, the ratio of the volume of the magnetic material to the total volume of the obtained magnetic core shape (hereinafter referred to as the space factor) remains low. As a result, the magnetic core has low magnetic permeability and saturation magnetic flux density, and its use is limited. However, in the present invention, the space factor of the finally selected magnetic core can be significantly improved by mixing two kinds of powders having significantly different particle diameters, and the magnetic permeability and the saturation magnetic flux density are improved. The magnetic core could be applied to a wide range of applications.

【0012】[0012]

【実施例】(第1実施例)この例では粉末AとしてFe
−Al−Si合金組成の水アトマイズ粗粒粉末を乾式ボ
ールミルで粉砕した粉(以下粉末A1)と、粉末Bとし
てFe−Al−Si合金組成の水アトマイズ微細粉末
(以下粉末B1)を用いた。粉末A1は粉砕後950℃
の水素中で焼鈍しており、前記A1の粒度分布を図1に
示す。この粒度分布はレーザー散乱法により測定したも
ので、この粉末A1の粒度の最頻値は44〜62μmの
ランクにあり、この中央値53μmが粉末A1の最頻値
となる(以下、この方法により各粉末の粒度最頻値を算
出した)。粉末B1は水アトマイズ後乾燥したものをそ
のまま用いており、その粒度分布を図2に示す。最頻値
は5.5〜7.8μmのランクにあり、中央値6.7μ
mがB1の最頻値となる。粉末A1とB1の最頻値の比
率は7.9である。結合剤としてはフィラーを混入して
いない二液性エポキシ樹脂(ソマール(株)製エピフォ
ーム、主剤R−2100、硬化剤HD−25−1)を用
いた。
EXAMPLE (First Example) In this example, the powder A was Fe
A powder (hereinafter, powder A1) obtained by pulverizing a water atomized coarse-grained powder having a -Al-Si alloy composition by a dry ball mill, and a finely divided water-atomized powder having Fe-Al-Si alloy composition (hereinafter, powder B1) were used as powder B. Powder A1 is 950 ° C after pulverization
FIG. 1 shows the particle size distribution of A1. This particle size distribution was measured by a laser scattering method, and the mode of the particle size of the powder A1 was in the rank of 44 to 62 μm, and the median value of 53 μm was the mode of the powder A1 (hereinafter, this method uses the method). The mode of particle size of each powder was calculated). Powder B1 was used after drying with water atomization, and its particle size distribution is shown in FIG. The mode is in the rank of 5.5-7.8 μm, and the median is 6.7 μm.
m is the mode of B1. The mode ratio between the powders A1 and B1 is 7.9. As the binder, a two-component epoxy resin containing no filler (epiform manufactured by Somar Co., Ltd., base material R-2100, curing agent HD-25-1) was used.

【0013】乳鉢中に粉末A1およびB1を所定量入れ
て攪拌したものに、あらかじめ混合しておいた前記エポ
キシ樹脂を少量ずつ添加しては攪拌することを繰返し、
混合物がスラリー状となり流動を開始するまでエポキシ
樹脂を添加しその添加重量を記録した。このスラリーを
5分間真空脱泡したのち外径26mmφのトロイダル形
状のプラスチックケースに注入し120℃×3時間で加
熱硬化させた。ケースの内容積寸法は外径24mmφ、
内径13.5mmφ、高さ6.6mmである。注入した
スラリー重量とケース内容積からスラリー密度を計算
し、さらに粉末重量と樹脂添加量から磁芯形状における
粉末材料の占積率を計算した。
A predetermined amount of the powders A1 and B1 is put in a mortar and stirred, and the epoxy resin mixed in advance is added little by little and stirring is repeated.
The epoxy resin was added until the mixture became a slurry and began to flow, and the weight added was recorded. This slurry was degassed in vacuum for 5 minutes, and then poured into a toroidal-shaped plastic case having an outer diameter of 26 mmφ, and cured by heating at 120 ° C. for 3 hours. The inner volume of the case has an outer diameter of 24 mmφ,
The inner diameter is 13.5 mmφ and the height is 6.6 mm. The slurry density was calculated from the weight of the injected slurry and the volume in the case, and the space factor of the powder material in the magnetic core shape was calculated from the powder weight and the added amount of the resin.

【0014】上記で得られた磁芯に巻線を施し、LCR
メーターにより100kHzにおける実効透磁率μeを
測定した。また、B−Hアナライザーにより100kH
z、50mTにおける単位体積磁芯損失Pcvを測定し
た。また各磁性材料個別の飽和磁束密度に体積百分率を
掛けた総和を合成飽和磁束密度とし、これに占積率を掛
けたものを、得られた磁芯の合成飽和磁束密度Bsとみ
なし、この値も合わせて示す。
A winding is applied to the magnetic core obtained above, and LCR is applied.
The effective magnetic permeability μe at 100 kHz was measured by a meter. In addition, 100 KH by B-H analyzer
The unit volume core loss Pcv at z and 50 mT was measured. The sum of the saturation magnetic flux density of each magnetic material and the volume percentage multiplied by the volume percentage is defined as the composite saturation magnetic flux density. Also shown.

【0015】粉末A1とB1の配合比を変化させたとき
の占積率、電気的特性の一覧を表1に示す。粉末B1の
配合比が45vol%のとき占積率、μeは最大値とな
り、コア損失を最小とすることができ、粉末A1、B1
それぞれの単一組成からなる場合に比べ大幅に特性改善
がなされている。
Table 1 shows a list of space factors and electrical characteristics when the mixing ratio of powders A1 and B1 is changed. When the compounding ratio of the powder B1 is 45 vol%, the space factor and μe become the maximum values, the core loss can be minimized, and the powders A1 and B1
The characteristics are greatly improved as compared with the case where each of them has a single composition.

【0016】[0016]

【表1】 [Table 1]

【0017】本発明では、粉末A、Bのそれぞれの粒度
を代表する指標として粒度分布の最頻値を用いている。
本発明の内容は粗い粒子の粒間の空隙に微細粒子を充填
することにより磁芯全体の空隙率を減少させることを意
図したものである。粉末A、Bの粒度を記述するための
指標としては一般に平均粒径(d50)を用いることが
多いが、粗粒と微粒の粒度の比率を単に平均粒径の比と
して定義するだけでは十分な効果が得られないことがあ
る。例えば粉末A、Bが図3に示すような粒度分布をと
る場合、粉末Aの粒間空隙の大きさはその平均粒径では
なく、最も多く存在する粒子のサイズ、言い換えれば粒
度分布の最頻値によって規定される傾向にある。同様に
粒間空隙を埋める粉末Bの粒度はその平均粒径ではなく
粒度分布の最頻値によつて記述されるべきである。粉末
Aの平均粒径の値に対して単に粉末Bの粒径を小さくす
るだけでは効果的な充填が得られないことがある。実際
に図3に示すような粒度分布の場合には、粉末Aの平均
粒径は粉末Bの平均粒径の約9.8倍であるが占積率の
改善は低い値にとどまる。
In the present invention, the mode of the particle size distribution is used as an index representing the respective particle sizes of the powders A and B.
The content of the present invention is intended to reduce the porosity of the whole magnetic core by filling fine particles into the voids between coarse particles. In general, an average particle diameter (d 50 ) is often used as an index for describing the particle diameters of the powders A and B, but it is sufficient to simply define the ratio of the particle diameters of the coarse particles and the fine particles as the ratio of the average particle diameters. Effects may not be obtained. For example, when the powders A and B have a particle size distribution as shown in FIG. 3, the size of the intergranular voids of the powder A is not the average particle size but the size of the most abundant particles, in other words, the mode of the particle size distribution. Tends to be dictated by the value. Similarly, the particle size of the powder B that fills the intergranular voids should be described not by its average particle size but by the mode of the particle size distribution. Effective filling may not be obtained simply by reducing the particle size of the powder B with respect to the value of the average particle size of the powder A. Actually, in the case of the particle size distribution as shown in FIG. 3, the average particle size of the powder A is about 9.8 times the average particle size of the powder B, but the improvement of the space factor remains at a low value.

【0018】(第2実施例)粉末Aとして4.5%Si
残Fe組成の水アトマイズままの粉末を用い、これを粉
末A2とし、該粉末の粒度最頻値は37.5μmであ
る。粉末Bとしては前述のB1を用いた。A2とB1の
最頻値比率は5.6である。結合剤として水溶性アクリ
ル系バインダー(中央理化工業製、SA−200)を水
に溶解して固形分5%水溶液としたものを用いた。
(Second embodiment) 4.5% Si as powder A
A powder of water atomized as-is having the remaining Fe composition was used, and this was designated as powder A2. The mode of particle size of the powder was 37.5 μm. As the powder B, the aforementioned B1 was used. The mode ratio between A2 and B1 is 5.6. As a binder, a water-soluble acrylic binder (manufactured by Chuo Rika Kogyo Co., Ltd., SA-200) was dissolved in water to form a 5% solids aqueous solution.

【0019】実験の手順は第1実施例と同様である。ス
ラリーを注入したケースを95℃×3時間乾燥硬化させ
た。第2実施例の評価結果を表2に示す。従来例とし
て、成形圧20ton/cmで成形し700℃で焼鈍
したFe−Al−Si合金圧粉磁芯の特性値もあわせて
示す。
The experimental procedure is the same as in the first embodiment. The case into which the slurry was injected was dried and cured at 95 ° C. for 3 hours. Table 2 shows the evaluation results of the second example. As a conventional example, the characteristic values of an Fe—Al—Si alloy dust core molded at a molding pressure of 20 ton / cm 2 and annealed at 700 ° C. are also shown.

【0020】[0020]

【表2】 [Table 2]

【0021】本発明に係る上記第2実施例に対する更な
る比較例を以下に述べる。粉末Aとしては第2実施例の
粉末A2をフルイで分級し(#200〜325メッシュ
通過分)、微細粉のみ選別して用いた。粒度最頻値は2
6.5μmである(粉末A3とする)。粉末Bとしては
前述のB1を用いた。A3とB1の最頻値比率は4.0
である。結合剤および実験の手順は第2実施例と同様で
ある。評価結果を表3に示す。粉末A(A3)、B(B
1)の粒度最頻値の比率が5未満であると占積率の改善
効果は小さくなり、最適な磁気特性が得られなかった。
A further comparative example of the second embodiment according to the present invention will be described below. As the powder A, the powder A2 of the second example was classified with a sieve (the amount passed through # 200 to 325 mesh), and only the fine powder was selected and used. Granularity mode is 2
6.5 μm (powder A3). As the powder B, the aforementioned B1 was used. The mode ratio between A3 and B1 is 4.0
It is. The binder and the experimental procedure are the same as in the second embodiment. Table 3 shows the evaluation results. Powder A (A3), B (B
If the ratio of the mode of the particle size in 1) is less than 5, the effect of improving the space factor becomes small, and the optimum magnetic properties cannot be obtained.

【0022】[0022]

【表3】 [Table 3]

【0023】(第3実施例)粉末Aとしては、第1実施
例に記載したFe−Al−Si合金組成の水アトマイズ
粗粒粉末を粉砕して得た粉末A1を、さらにフルイ分級
し#200〜325メッシュを通過した粉末を用いた
(粉末A4とする)。粒度最頻値は60.5μmであ
る。粉末Bとしては前述のB1を用いる。A4とB1の
最頻値比率は9.0である。結合剤としては無溶剤ワニ
ス(スチレン重合不飽和ポリエステル系)を使用した。
(Third Embodiment) As powder A, powder A1 obtained by pulverizing a coarse atomized water atomized powder of the Fe-Al-Si alloy composition described in the first embodiment was further classified by sieve with # 200. Powder having passed through 3325 mesh was used (hereinafter referred to as powder A4). The mode of the particle size is 60.5 μm. As the powder B, the aforementioned B1 is used. The mode ratio between A4 and B1 is 9.0. Solvent-free varnish (styrene polymerized unsaturated polyester type) was used as a binder.

【0024】実験の手順は第1実施例と同様である。ス
ラリーを注入したケースを110℃×2時間で硬化させ
た。評価結果を表4に示す。粉末B配合比40vol%
付近では、本発明による磁芯の単位体積磁芯損失が、F
e−Al−Si合金圧粉磁芯より優れた値を示した。
The experimental procedure is the same as in the first embodiment. The case in which the slurry was injected was cured at 110 ° C. × 2 hours. Table 4 shows the evaluation results. Powder B compounding ratio 40vol%
In the vicinity, the unit volume magnetic core loss of the magnetic core according to the present invention is F
The value was superior to that of the e-Al-Si alloy dust core.

【0025】[0025]

【表4】 [Table 4]

【0026】(第4実施例)粉末Aとして、第2実施例
に記載した粉末A2を用いた。粒度最頻値は37.5μ
mである。粉末BとしてMn−Znフェライト焼結体を
ボールミルで微粉砕したものを使用する(粉末B2)。
この粉末の粒度最頻値は2.5μmである。A2とB2
の最頻値比率は15.0である。結合剤としてはアクリ
ル系バインダー5%水溶液を使用した。
(Fourth Embodiment) As the powder A, the powder A2 described in the second embodiment was used. The mode of particle size is 37.5μ
m. The powder B is obtained by finely pulverizing a sintered Mn-Zn ferrite with a ball mill (powder B2).
The mode of particle size of this powder is 2.5 μm. A2 and B2
Is 15.0. A 5% aqueous solution of an acrylic binder was used as a binder.

【0027】実験の手順は上記と同様である。スラリー
を注入したケースを95℃×2時間で硬化させた。評価
結果を表5に示す。
The experimental procedure is the same as described above. The case in which the slurry was injected was cured at 95 ° C. × 2 hours. Table 5 shows the evaluation results.

【0028】[0028]

【表5】 [Table 5]

【0029】(第5実施例)前述の実施例では粉末に添
加する結合剤は液状であった。樹脂製の任意形状を成形
する方法として一般的であるのは射出成形法、トランス
ファ一成形法である。これらの方法では無機物フイラ一
を混合した熱可塑性樹脂粉末を加熱して流動化させ、加
圧して所定形状の型に注入、冷却させることによって成
形している。これらの成形方法によって軟磁性材料の成
形を行なう場合でも、本発明の粉末配合方法を実施する
ことにより磁気特性を改善することができる。第1実施
例に示した粉末A1、B1と6ナイロン粉末を混合し射
出成形機によって板状の成形体を作製、これからリング
コアを切り出して磁気特性を測定した結果を表6に示
す。射出成形法の場合でも、本発明の粉末配合比率によ
って磁気特性が改善されていることがわかる。
(Fifth Embodiment) In the above embodiment, the binder added to the powder was liquid. Injection molding and transfer molding are common methods for molding an arbitrary resin shape. In these methods, the thermoplastic resin powder mixed with the inorganic filler is heated and fluidized, pressurized, poured into a mold having a predetermined shape, and cooled to be molded. Even when the soft magnetic material is molded by these molding methods, the magnetic properties can be improved by implementing the powder blending method of the present invention. Table 6 shows the results of mixing the powders A1, B1 and 6 nylon powder shown in the first example with an injection molding machine to produce a plate-like molded body, cutting out a ring core from the molded body and measuring magnetic properties. It can be seen that even in the case of the injection molding method, the magnetic characteristics are improved by the powder compounding ratio of the present invention.

【0030】[0030]

【表6】 [Table 6]

【0031】(第6実施例)粉末A、Bとしては、第2
実施例に記載した4.5%Si残Fe組成水アトマイズ
粉A2、Fe−Al−Si合金組成水アトマイズ粉B1
を用いる。結合剤としてはアクリル系バインダー5%水
溶液を使用した。
(Sixth Embodiment) As powders A and B,
4.5% Si residual Fe atomized water atomized powder A2, Fe-Al-Si alloy composition water atomized powder B1 described in Examples
Is used. A 5% aqueous solution of an acrylic binder was used as a binder.

【0032】A2:70vol%,B1:30vol%
の粉末を混合し、今までの実施例と同様の手順によって
ケースにスラリーを注入する。前記ケースにはあらかじ
め被覆銅線が巻回され、この銅線に所定の直流電流を印
加することにより、ケース内のスラリーに磁界を印加す
る。そして、この状態を保ちながらスラリーを95℃×
2Hで硬化させた。一方、磁界を印加しないでスラリー
を硬化させたものを比較例とした。結果は下記表7に示
す通りである。
A2: 70 vol%, B1: 30 vol%
And the slurry is poured into the case by the same procedure as in the previous examples. A coated copper wire is wound around the case in advance, and a predetermined direct current is applied to the copper wire to apply a magnetic field to the slurry in the case. Then, the slurry is kept at 95 ° C. ×
Cured with 2H. On the other hand, those obtained by curing the slurry without applying a magnetic field were used as comparative examples. The results are as shown in Table 7 below.

【0033】[0033]

【表7】 [Table 7]

【0034】硬化時に磁界を印加させることにより、磁
界無印加に比べて透磁率を改善することができる。な
お、印加する磁界は直流磁界に限定されず、低周波の交
流磁界を印加しても同様の効果を得ることができる。
By applying a magnetic field at the time of curing, the magnetic permeability can be improved as compared with the case where no magnetic field is applied. The applied magnetic field is not limited to a DC magnetic field, and the same effect can be obtained by applying a low-frequency AC magnetic field.

【0035】[0035]

【発明の効果】本発明の粉末成形磁芯は、粒径が大幅に
異なる二種類の粉末を混合したことにより、常圧、低圧
下で磁芯の占積率を大幅に改善できたことにより、透磁
率、飽和磁束密度、磁芯損失等の特性を向上させること
ができ、プレス成形では不可能な形状も容易に作製でき
る。また、圧力が低い成形方法であるため、作業安全性
を著しく改善することができた。さらに、スラリーの硬
化時に磁束を印加することで、粉末成形磁芯の透磁率を
向上させることができた。
According to the powder molded magnetic core of the present invention, by mixing two kinds of powders having significantly different particle diameters, the space factor of the magnetic core can be greatly improved under normal pressure and low pressure. In addition, properties such as magnetic permeability, saturation magnetic flux density, and core loss can be improved, and a shape that cannot be obtained by press molding can be easily produced. In addition, since the molding method has a low pressure, work safety can be significantly improved. Further, by applying a magnetic flux during the curing of the slurry, the magnetic permeability of the powder molded magnetic core could be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の粉末成形磁芯の第1実施例に用いた粉
末Aの粒径分布図
FIG. 1 is a particle size distribution diagram of powder A used in a first embodiment of a powder molded magnetic core of the present invention.

【図2】本発明の粉末成形磁芯の第1実施例に用いた粉
末Bの粒径分布図
FIG. 2 is a particle size distribution diagram of powder B used in a first embodiment of the powder molded magnetic core of the present invention.

【図3】軟磁性粉末A、Bの平均粒径と粒度最頻値の関
係を示す粒度分布図
FIG. 3 is a particle size distribution diagram showing the relationship between the average particle size of soft magnetic powders A and B and the mode of particle size.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 二種類の粒径の異なる軟磁性粉末A、B
と液状の結合剤を混合してスラリー状とし、所定の形状
型内に注入し結合剤を硬化させることにより成形される
粉末成形磁芯において、粉末Aの粒度分布の最頻値が粉
末Bのそれの5倍以上であり、かつ、粉末Aと粉末Bの
配合比は、粉末Aと粉末Bの体積の和全体に対する粉末
Bの体積百分率が15%以上60%以下であることを特
徴とする粉末成形磁芯。
1. Soft magnetic powders A and B having two different particle sizes.
And a liquid binder are mixed to form a slurry, and the mode of the particle size distribution of the powder A is the same as that of the powder B in the powder molded magnetic core formed by injecting into a predetermined shape mold and curing the binder. The compounding ratio of the powder A and the powder B is 5 times or more, and the volume percentage of the powder B to the total sum of the volumes of the powder A and the powder B is 15% or more and 60% or less. Powder molded magnetic core.
【請求項2】 二種類の軟磁性粉末に混合する液状の結
合剤が有機物を溶媒で希釈したものであって、溶媒を蒸
発させることによって所定形状に成形することを特徴と
する請求項1記載の粉末成形磁芯。
2. The liquid binder to be mixed with the two kinds of soft magnetic powders is obtained by diluting an organic substance with a solvent, and is formed into a predetermined shape by evaporating the solvent. Powder molded magnetic core.
【請求項3】 二種類の軟磁性粉末に混合する液状の結
合剤が含有する低分子有機物を重合させることにより粉
末を結合し、所定形状に成形することを特徴とする請求
項1記載の粉末成形磁芯。
3. The powder according to claim 1, wherein the powders are combined by polymerizing a low molecular weight organic substance contained in a liquid binder mixed with the two kinds of soft magnetic powders and formed into a predetermined shape. Molded magnetic core.
【請求項4】 二種類の軟磁性粉末に混合する結合剤が
熱可塑性樹脂であって、加熱することにより粉末を結合
し所定形状に成形することを特徴とする請求項1記載の
粉末成形磁芯。
4. The powder molded magnet according to claim 1, wherein the binder mixed with the two kinds of soft magnetic powders is a thermoplastic resin, and the powders are combined by heating to form a predetermined shape. core.
【請求項5】 二種類の粒径の異なる軟磁性粉末A、B
と液状の結合剤を混合してスラリー状とし、所定の形状
の型内に注入し結合剤を硬化させることにより成形され
る粉末成形磁芯において、結合剤を硬化させる際にスラ
リーに磁場を印加することを特徴とする請求項1記載の
粉末成形磁芯。
5. Soft magnetic powders A and B having two different particle sizes.
A magnetic field is applied to the slurry when the binder is hardened in the powder molded magnetic core formed by mixing the liquid binder and the slurry into a slurry, injecting the mixture into a mold having a predetermined shape, and curing the binder. The powder molded magnetic core according to claim 1, wherein:
JP11218256A 1998-08-04 1999-08-02 Powder-molded magnetic core Pending JP2000114022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11218256A JP2000114022A (en) 1998-08-04 1999-08-02 Powder-molded magnetic core

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22010798 1998-08-04
JP10-220107 1998-08-04
JP11218256A JP2000114022A (en) 1998-08-04 1999-08-02 Powder-molded magnetic core

Publications (1)

Publication Number Publication Date
JP2000114022A true JP2000114022A (en) 2000-04-21

Family

ID=26522472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11218256A Pending JP2000114022A (en) 1998-08-04 1999-08-02 Powder-molded magnetic core

Country Status (1)

Country Link
JP (1) JP2000114022A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024844A (en) * 2004-07-09 2006-01-26 Nec Tokin Corp Magnetic core and coil component using same
JP2008277374A (en) * 2007-04-26 2008-11-13 Toho Zinc Co Ltd Winding inductor and its manufacturing method
JP2011192729A (en) * 2010-03-12 2011-09-29 Sumida Corporation Metallic magnetic material powder, composite magnetic material containing the metallic magnetic material powder, and electronic component using composite magnetic material
WO2014054430A1 (en) * 2012-10-03 2014-04-10 株式会社神戸製鋼所 Soft magnetic mixed powder
JP2015026736A (en) * 2013-07-26 2015-02-05 株式会社デンソー Reactor and method of manufacturing the same
JP2017017326A (en) * 2011-03-24 2017-01-19 住友電気工業株式会社 Composite material, reactor-use core, and reactor
JP2017152654A (en) * 2016-02-26 2017-08-31 株式会社タムラ製作所 Core and reactor
JP2018041955A (en) * 2016-09-07 2018-03-15 サムソン エレクトロ−メカニックス カンパニーリミテッド. Magnetic powder and inductor containing the same
CN111508699A (en) * 2020-04-21 2020-08-07 东莞市南祥磁电科技有限公司 Method for reprocessing magnetic core powder after compression molding

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577759B2 (en) * 2004-07-09 2010-11-10 Necトーキン株式会社 Magnetic core and wire ring parts using the same
JP2006024844A (en) * 2004-07-09 2006-01-26 Nec Tokin Corp Magnetic core and coil component using same
JP2008277374A (en) * 2007-04-26 2008-11-13 Toho Zinc Co Ltd Winding inductor and its manufacturing method
JP2011192729A (en) * 2010-03-12 2011-09-29 Sumida Corporation Metallic magnetic material powder, composite magnetic material containing the metallic magnetic material powder, and electronic component using composite magnetic material
JP2017017326A (en) * 2011-03-24 2017-01-19 住友電気工業株式会社 Composite material, reactor-use core, and reactor
US9818519B2 (en) 2012-10-03 2017-11-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Soft magnetic mixed powder
JP2014090152A (en) * 2012-10-03 2014-05-15 Kobe Steel Ltd Soft magnetic powder mixture
WO2014054430A1 (en) * 2012-10-03 2014-04-10 株式会社神戸製鋼所 Soft magnetic mixed powder
JP2015026736A (en) * 2013-07-26 2015-02-05 株式会社デンソー Reactor and method of manufacturing the same
JP2017152654A (en) * 2016-02-26 2017-08-31 株式会社タムラ製作所 Core and reactor
JP2018041955A (en) * 2016-09-07 2018-03-15 サムソン エレクトロ−メカニックス カンパニーリミテッド. Magnetic powder and inductor containing the same
CN111508699A (en) * 2020-04-21 2020-08-07 东莞市南祥磁电科技有限公司 Method for reprocessing magnetic core powder after compression molding
CN111508699B (en) * 2020-04-21 2022-06-10 东莞市南祥磁电科技有限公司 Method for reprocessing magnetic core powder after compression molding

Similar Documents

Publication Publication Date Title
JP2001068324A (en) Powder molding core
US7532099B2 (en) Inductive component and method for producing the same
JP2002057039A (en) Composite magnetic core
JP2000294418A (en) Powder molded magnetic core
JP6277426B2 (en) Composite magnetic body and method for producing the same
KR100851459B1 (en) Permanent magnet, magnetic core having the magnet as bias magnet, and inductance parts using the core
TW536714B (en) Magnetic core including bias magnet and inductor component using the same
US7230514B2 (en) Inductive component and method for producing same
US5160447A (en) Compressed powder magnetic core and method for fabricating same
JP2001196216A (en) Dust core
JP2000182845A (en) Composite core
JP2000114022A (en) Powder-molded magnetic core
JP2007200962A (en) Composite material, method for manufacturing the same, magnetic core, and coil component
WO2004027795A1 (en) Method for manufacturing bonded magnet and method for manufacturing magnetic device having bonded magnet
JPH05299232A (en) Resin molded magnetic material
JP4166460B2 (en) Composite magnetic material, magnetic element using the same, and method of manufacturing the same
JP2000294429A (en) Compound magnetic core
US20020043303A1 (en) Powder magnetic core
JPH05326240A (en) Dust core and manufacture thereof
JP2005268685A (en) Powder magnetic core and manufacturing method of the same
KR20210072186A (en) Molding Materials Using Amorphous Powder and Toroidal Inductor Using the Same
JP2015185776A (en) Magnetic core component, magnetic element, and manufacturing method of magnetic core component
JPH08264311A (en) Mold resin and its manufacture
DK148400B (en) MAGNETIC CORE FOR INDUCTION COILS AND PROCEDURE FOR ITS MANUFACTURING
JP2724740B2 (en) Manufacturing method of radial anisotropic bonded magnet