NO20162002A1 - Method of repairing crack damage in steel structures - Google Patents

Method of repairing crack damage in steel structures Download PDF

Info

Publication number
NO20162002A1
NO20162002A1 NO20162002A NO20162002A NO20162002A1 NO 20162002 A1 NO20162002 A1 NO 20162002A1 NO 20162002 A NO20162002 A NO 20162002A NO 20162002 A NO20162002 A NO 20162002A NO 20162002 A1 NO20162002 A1 NO 20162002A1
Authority
NO
Norway
Prior art keywords
exhaust duct
plate
damaged
doubling plate
steel structure
Prior art date
Application number
NO20162002A
Other languages
Norwegian (no)
Other versions
NO344485B1 (en
Inventor
Knuth Jahr
Original Assignee
Turbine Power Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Turbine Power Sl filed Critical Turbine Power Sl
Priority to NO20162002A priority Critical patent/NO344485B1/en
Publication of NO20162002A1 publication Critical patent/NO20162002A1/en
Publication of NO344485B1 publication Critical patent/NO344485B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/04Repairing fractures or cracked metal parts or products, e.g. castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/04Repairing fractures or cracked metal parts or products, e.g. castings
    • B23P6/045Repairing fractures or cracked metal parts or products, e.g. castings of turbine components, e.g. moving or stationary blades, rotors, etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/20Mounting or supporting of plant; Accommodating heat expansion or creep
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Pipe Accessories (AREA)

Abstract

Doblingsplaten (3) festes til sprekkskadet område (2) med selvopprettende strekk-bolter (4), med en forlengelseshylse (6) som hindrer at bolten (4) strekkes i flyt ved start av turbinen, og hvor forlengerhylsen (6) har konveks sfærisk anleggsflate (8) som ligger an mot mutter (5) konkav sfærisk flate (7), slik at flatene stiller seg inn og tar opp skjevheter og hindrer bøying av bolten (4), og hvor enden av hylsen (6) som ligger an mot utvendig forsterkningsplate (11) er utført med en krave med en tetningskant (10) som hindrer eksoslekkasje gjennom boltehull. I metoden for utbedring av et sprekkskadet hjørne i en gassturbin eksoskanal inngår en utvendig forsterkningsplate (11) utført med et hjørne med hul-kil (12) som omslutter eksoskanalens utvendige hjørne, og hvor strekkboltens hylsekrage (10) ligger an mot forsterkningsplaten (11) slik at sprekkskadet vegg i eksoskanalen (11) klemmes sammen mellom doblingsplaten (3) og forsterkningsplaten (11).The double plate (3) is fastened to cracked area (2) with self-erecting tension bolts (4), with an extension sleeve (6) which prevents the bolt (4) from being stretched in flow at the start of the turbine and where the extension sleeve (6) has a convex spherical abutment surface (8) abutting nut (5) concave spherical surface (7), so that the surfaces align and absorb bias and prevent bending of the bolt (4), and where the end of the sleeve (6) abuts outer reinforcement plate (11) is provided with a collar with a sealing edge (10) which prevents exhaust leakage through bolt holes. In the method of repairing a cracked corner in a gas turbine exhaust duct, an external reinforcing plate (11) is provided with a corner wedge (12) enclosing the outer corner of the exhaust duct and the collar plate (11) of the tension bolt (11) abuts the reinforcing plate (11). so that cracked wall in the exhaust duct (11) is squeezed between the doubling plate (3) and the reinforcing plate (11).

Description

Oppfinnelsens benevnelse.  The invention's designation.

Reparasjonsmetode for utbedring av sprekkskader i stålkonstruksjoner.  Repair method for the repair of cracks in steel structures.

Oppfinnelsens anvendelsesområde.  Scope of the Invention.

Metoden anvendes til å utbedre sprekkdannelser i stålkonstruksjoner, slik som for eksempel  sprekkskader i et hjørne i en gassturbin eksoskanal stålstruktur, hvor sprekkskader har  oppstått som følge av en eller flere av følgende typiske årsaker, eller som kombinasjoner av  årsakene.  The method is used to repair cracks in steel structures, such as for example cracks in a corner of a gas turbine exhaust duct steel structure, where cracks have occurred as a result of one or more of the following typical causes, or as a combination of the causes.

Typiske årsaker til sprekkskader er:  Typical causes of crack damage are:

‐ Spenningskonsentrasjoner grunnet mekaniske belastninger i konstruksjonen.  ‐ Stress concentrations due to mechanical loads in the structure.

‐ Spenningskonsentrasjoner som følge av uheldig geometrisk utførelse av konstruksjonen.  ‐ Spenningskonsentrasjoner som følge av temperaturgradienter i konstruksjoner utsatt for  termiske sykler.  ‐ Stress concentrations as a result of unfortunate geometric design of the structure. ‐ Stress concentrations resulting from temperature gradients in structures exposed to  thermal cycling.

‐ Utmatting av konstruksjonens materiale som følge av høyfrekvente og eller lavfrekvente  pulserende belastninger.   - Fatigue of the construction's material as a result of high-frequency and or low-frequency pulsating loads.

Et eksempel på en slik konstruksjon er en eksoskanal for en offshore installert gassturbin,  hvor eksoskanalen typisk utføres i et Austenittisk rustfritt materiale.  An example of such a construction is an exhaust duct for an offshore installed gas turbine, where the exhaust duct is typically made of an austenitic stainless material.

En eksoskanal for en gassturbin er utsatt for belastninger slik som:  An exhaust duct for a gas turbine is subjected to loads such as:

‐ Eksostemperatur i området 500°C og høyere.  ‐ Exhaust temperature in the range of 500°C and higher.

‐ Høyfrekvente og lavfrekvente strukturelle vibrasjoner som følge av pulsasjoner i eksosstrømmen.  ‐ High‐frequency and low‐frequency structural vibrations as a result of pulsations in the exhaust flow.

‐ Temperaturgradienter i konstruksjonen, som følge av hurtig oppvarming og hurtig  nedkjøling av konstruksjonen, slik som ved start og stopp av gassturbinen.  - Temperature gradients in the structure, as a result of rapid heating and rapid cooling of the structure, such as when starting and stopping the gas turbine.

‐ Belastninger fra omgivelser, slik som vindlaster og globalbevegelser.  ‐ Environmental loads, such as wind loads and global movements.

‐ Sprekkskade som følge av spenningskorrosjon.   - Cracking damage as a result of stress corrosion cracking.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Teknikkens stand.  State of the art.

Kjente metoder for å utbedre oppståtte sprekkskader i eksoskanaler er:  Known methods for repairing cracked damage in exhaust ducts are:

‐ Reparasjon ved sveising av sprekkskade.  - Repair by welding of crack damage.

‐ Reparasjon av sprekkskade ved inn‐sveising av en forsterkningsplate over sprekkskaden.  ‐ Reparasjon av sprekkskade ved innfesting av en forsterkningsplate over sprekkskade med  bolter.  - Repair of crack damage by welding in a reinforcement plate over the crack damage. - Repair of crack damage by attaching a reinforcement plate over crack damage with bolts.

Erfaringer viser at typiske metoder for utbedring av sprekker har en kort levetid, og egner seg  ikke for å oppnå en permanent utbedring.  Experience shows that typical crack repair methods have a short lifespan and are not suitable for achieving a permanent repair.

Årsaker til kort levetid for typiske reparasjoner er:  Reasons for the short life of typical repairs are:

● Reparasjon ved sveising av sprekk.  ● Repair by welding of crack.

 

o Sveising tilfører lokalt ytterligere spenninger i sveisesonen, som bidrar til  utvidede sprekkdannelser.  o Welding locally introduces additional stresses in the weld zone, which contributes to  extended cracks.

o Opptredende belastinger forårsaker at sprekk reparert ved sveising sprekker opp  igjen etter kort tid.  o Occurring loads cause cracks repaired by welding to crack again after a short time.

o Sprekkdannelser i en gassturbin eksoskanal svekker konstruksjonens mekaniske  styrke, og kan resultere i farlige situasjoner med eksoskanal sammenbrudd og  uønsket stans av gassturbinen.  o Cracks in a gas turbine exhaust duct weaken the mechanical strength of the structure, and can result in dangerous situations with exhaust duct collapse and unwanted shutdown of the gas turbine.

o Sprekker i en gassturbin eksoskanal fører til at varm eksos strømmer ut gjennom  sprekker og ut til omgivelser, og kan føre til farlige situasjoner slik som brann,  eksplosjon, og personskade.   o Cracks in a gas turbine exhaust duct cause hot exhaust to flow out through cracks and into the environment, and can lead to dangerous situations such as fire, explosion, and personal injury.

o Reparasjon ved sveising er tidkrevende og medfører lang stansperiode for  turbinen, og for en offshore installert gassturbin vil varmt arbeid kreve  omfattende forberedelser for en sikker gjennomføring av arbeidet.  o Repair by welding is time-consuming and entails a long period of downtime for the turbine, and for an offshore installed gas turbine, hot work will require extensive preparation for the safe execution of the work.

● Reparasjon av sprekkskade ved sveising av en forsterkningsplate til sprekkskadet område.  ● Repair of crack damage by welding a reinforcement plate to crack damaged area.

o Sveising tilfører lokalt ytterligere spenninger i sveisesonen.  o Welding locally adds additional stresses in the weld zone.

o Opptredende belastinger og spenninger tilført ved sveising forårsaker at sprekk  reparert ved sveising sprekker opp igjen etter kort tid.  o Occurring loads and stresses introduced by welding cause cracks repaired by welding to re-crack after a short time.

o Erfaringen viser at også den inn‐sveisede doblingsplaten sprekker etter kun få  start / stopp‐sykler for turbinen.  o Experience shows that even the welded-in doubling plate cracks after only a few start/stop cycles for the turbine.

o Ved å feste en doblingsplate til den skadede overflaten, vil doblingsplaten  skjerme det skadede området for varme fra eksosen under oppstart av  gassturbinen, og skjerme den skadede overflaten mot kald luft under stans av  turbinen, slik at det oppstår uønskede temperatur‐gradienter i materialet i den  skadede overflaten.  Temperaturgradienter medfører lokale termiske spenninger, som fører til nye  sprekkdannelser.  o By attaching a doubler plate to the damaged surface, the doubler plate will shield the damaged area from heat from the exhaust during start-up of the gas turbine, and shield the damaged surface from cold air during turbine shutdown, thus creating unwanted temperature gradients in the material the  damaged  surface. Temperature gradients introduce local thermal stresses, which lead to new crack formations.

o Sprekkdannelser i en gassturbin eksoskanal svekker konstruksjonens mekaniske  styrke, og kan resultere i farlige situasjoner med eksoskanal sammenbrudd og  uønsket stans av gassturbinen.  o Cracks in a gas turbine exhaust duct weaken the mechanical strength of the structure, and can result in dangerous situations with exhaust duct collapse and unwanted shutdown of the gas turbine.

o Sprekker i en gassturbin eksoskanal fører til at varm eksos strømmer ut gjennom  sprekker og ut til omgivelser, og kan føre til farlige situasjoner slik som brann,  eksplosjon, og personskade.   o Cracks in a gas turbine exhaust duct cause hot exhaust to flow out through cracks and into the environment, and can lead to dangerous situations such as fire, explosion, and personal injury.

o Reparasjon ved sveising er tidkrevende og medfører lang stansperiode for  turbinen, og for en offshore installert gassturbin vil varmt arbeid kreve  omfattende forberedelser for en sikker gjennomføring av arbeidet.  o Repair by welding is time-consuming and entails a long period of downtime for the turbine, and for an offshore installed gas turbine, hot work will require extensive preparation for the safe execution of the work.

 

Reparasjon av sprekkskade ved fastbolting av en forsterkningsplate til sprekkskadet  område.  Repair of crack damage by bolting a reinforcement plate to the crack damaged area.

 

o Sprekkskader og deformasjoner fra opptredende belastninger medfører at  overflaten i det skadede området endrer geometri, ved at det oppstår bulker,  vridninger og forhøyninger i overflaten.  o Crack damage and deformations from applied loads cause the surface in the damaged area to change geometry, with dents, twists and elevations in the surface.

o Ved å legge en doblingsplate inn mot en slik overflate, vil doblingsplate ligge an  mot forhøyninger og deformasjoner i overflaten i den skadede overflaten.  o Ved innfesting av en doblingsplate med bolter, viser erfaringer at boltene etter  kort tid mister sin forspenning. Dette skyldes at det oppstår material‐flyt i  forhøyninger og deformasjoner i den skadede overflaten, og material‐flyt i  doblingsplaten hvor denne ligger an mot forhøyninger og deformasjoner i skadet  overflate.  Når material‐flyt som beskrevet oppstår i overflatene reduseres boltenes  forspenning, og boltene løsner når utsatt for belastninger som beskrevet.  o Sprekkdannelser i en gassturbin eksoskanal svekker konstruksjonens mekaniske  styrke, og kan resultere i farlige situasjoner ved sammenbrudd i eksoskanal  stålstruktur, samt uønsket stans av gassturbinen.  o By placing a doubler board into such a surface, the doubler board will but against elevations and deformations in the surface in the damaged surface. o When attaching a doubling plate with bolts, experience shows that the bolts lose their preload after a short time. This is due to material flow occurring in elevations and deformations in the damaged surface, and material flow in the doubling plate where it abuts elevations and deformations in the damaged surface. When material flow as described occurs in the surfaces, the bolts' preload is reduced, and the bolts loosen when subjected to loads as described. o Crack formations in a gas turbine exhaust duct weaken the mechanical strength of the structure, and can result in dangerous situations in the event of a breakdown in the exhaust duct steel structure, as well as an unwanted shutdown of the gas turbine.

o Sprekker i en gassturbin eksoskanal fører til at varm eksos strømmer ut gjennom  sprekker og ut til omgivelser, og kan føre til farlige situasjoner slik som brann,  eksplosjon, og personskade.  o Cracks in a gas turbine exhaust duct cause hot exhaust to flow out through cracks and into the environment, and can lead to dangerous situations such as fire, explosion, and personal injury.

o Ved å feste en doblingsplate til det skadede området, vil doblingsplaten skjerme  det skadede området mot varme fra eksosen under oppstart av gassturbinen, og  skjerme det skadede området mot kald luft under stans av turbinen, slik at det  oppstår uønskede temperatur‐gradienter i materialet som er dekket av  doblingsplaten.  Temperaturgradienter medfører lokale termiske spenninger, som fører til  sprekkdannelser.  o By attaching a doubler plate to the damaged area, the doubler plate will shield the damaged area from heat from the exhaust during start-up of the gas turbine, and shield the damaged area from cold air during shutdown of the turbine, so that unwanted temperature gradients occur in the material that is covered by  the doubling plate. Temperature gradients introduce local thermal stresses, leading to cracking.

Det som oppnås med oppfinnelsen.  That which is achieved by the invention.

Ved å benytte metoden for utbedring av sprekkskader i en stålstruktur oppnås det en  permanent reparasjon av sprekkskader i konstruksjonen, som for eksempel for en gassturbin  eksoskanal som beskrevet som et eksempel i det følgende.   By using the method of repairing cracks in a steel structure, a permanent repair of cracks in the structure is achieved, as for example for a gas turbine exhaust duct as described as an example in the following.

Dette begrunnes med:  This is justified by:

● Reparasjonsmetoden tilfører ikke nye spenninger i skadet område, slik som ved  utbedring med sveising, hvor tilførte spenninger fra sveisevarme bidrar til nye  sprekkdannelser.  ● The repair method does not add new stresses to the damaged area, as is the case with welding, where added stresses from welding heat contribute to new crack formations.

● Reparasjonsmetoden reduserer temperaturgradienter med resulterende lokale  spenningskonsentrasjoner og sprekkdannelser. Dette oppnås ved at varm eksos under  start av turbinen strømmer gjennom spor i doblingsplatens anleggsflate mot området  som repareres, og likedan ved at kald luft strømmer gjennom de samme sporene ved  stans av turbinen.   ● The repair method reduces temperature gradients with resulting local  stress concentrations and cracking. This is achieved by warm exhaust during start-up of the turbine flowing through slots in the doubler plate's installation surface towards the area being repaired, and likewise by cold air flowing through the same slots when the turbine is stopped.

● Reparasjon ved innfesting av en doblingsplate til skadet område forsterker eksoskanalens  strukturelle mekaniske styrke.  ● Repair by attaching a doubler plate to the damaged area reinforces the exhaust duct's structural mechanical strength.

● Doblingsplatens overflate, som ligger an mot området som repareres, utføres med  identisk invers geometri av overflaten som skal repareres. Dette oppnås ved å 3D‐skanne  overflaten som skal repareres, og utføre invers prosessering av skannedata for skadet  området, slik at data fra invers prosessering benyttes i maskineringsprogram for  maskinering av doblingsplatens overflate som skal ligge an mot skadet område.  Dette gjør at doblingsplaten har full mekanisk kontakt mot overflaten i området som skal  repareres, og hindrer at doblingsplaten er i mekanisk kontakt kun i høye punkter mellom  overflatene.  Ved full mekanisk kontakt mellom flatene, og ikke kun lokal kontakt mellom høye  punkter i overflatene, unngås material‐flyt i områder med punkt‐kontakt, og relatert  relaksasjon av boltenes forspenning unngås.   ● The surface of the doubling plate, which abuts the area to be repaired, is made with the identical inverse geometry of the surface to be repaired. This is achieved by 3D scanning the surface to be repaired, and performing inverse processing of the scan data for the damaged area, so that data from the inverse processing is used in the machining program for machining the surface of the doubling plate that is to abut against the damaged area. This allows the doubler plate to have full mechanical contact with the surface in the area to be repaired, and prevents the doubler plate from being in mechanical contact only at high points between the surfaces. With full mechanical contact between the surfaces, and not just local contact between high points in the surfaces, material flow in areas of point contact is avoided, and related relaxation of the bolts' preload is avoided.

● Ved at doblingsplaten ligger tett an mot sprekkskadet område og tetter sprekker, hindres  eksoslekkasje gjennom sprekker og ut til omgivelser.  ● By the fact that the doubling plate is in close contact with the crack-damaged area and seals cracks, exhaust leakage through cracks and out into the surroundings is prevented.

● Området som skal repareres er typisk deformert. Ved å bolte sammen deformerte og  ikke‐ parallelle flater med standard bolter, vil boltene utsettes for bøyning og er  eksponert for å løsne.  Doblingsplaten festes til området som skal repareres med selv‐opprettende bolter, som  hindrer bøyning av boltene.  ● The area to be repaired is typically deformed. By bolting together deformed and  non‐ parallel faces with standard bolts, the bolts will be subjected to bending and are exposed to loosening. The doubling plate is attached to the area to be repaired with self-righting bolts, which prevent bending of the bolts.

● Under start og stans av gassturbinen vil termisk ekspansjon i sammen‐boltede materialer  opptre som transvers lav‐frekvent vibrasjon, ved at det oppstår en glidning mellom  sammen‐boltede materialer.  Lav‐frekvent transvers vibrasjon fører typisk til at standard bolter løsner.  Selvopprettende bolter som inngår i løsningen er utført med en forlengerhylse med  konveks sfærisk flate mot boltens mutter, og mutter er utført med en konkav sfærisk  flate mot hylsen.  Ved at boltene er selvopprettende, og under start og stans av gassturbinen tar opp  relative bevegelser mellom doblingsplaten og området som doblingsplaten boltes til,  reduseres faren for at boltene løsner som følge av bøyning, og faren for at boltene løsner  som følge av transvers lavfrekvent transvers vibrasjon.  ● During start-up and stop-down of the gas turbine, thermal expansion in bolted-together materials will act as transverse low-frequency vibration, as a result of slippage between bolted-together materials. Low‐frequency transverse vibration typically causes standard bolts to loosen. Self-righting bolts included in the solution are made with an extension sleeve with a convex spherical surface towards the nut of the bolt, and the nut is made with a concave spherical surface towards the sleeve. By the fact that the bolts are self-righting, and during the start and stop of the gas turbine take up relative movements between the doubler plate and the area to which the doubler plate is bolted, the risk of the bolts loosening due to bending and the risk of the bolts loosening due to transverse low frequency transverse vibration is reduced. .

● Ved at boltene er utført med en forlenger‐hylse reduseres den relative forlengelsen av  bolten under termisk vekst av de sammen‐boltede materialene, som hindre at bolter  under start av gassturbinen strekkes i flyt som følge av termisk vekst av de sammenboltede materialene.  ● By the fact that the bolts are made with an extension sleeve, the relative elongation of the bolt during thermal growth of the bolted together materials is reduced, which prevents bolts from being stretched in flow during the start of the gas turbine as a result of thermal growth of the bolted together materials.

 

Beskrivelse av løsningen.  Description of the solution.

Oppfinnelsen gjelder en metode for utbedring av sprekkskader i en stålstruktur, for eksempel  en gassturbin eksoskanal, som typisk skades av termiske sykler med resulterende  temperaturgradienter og relaterte spenningskonsentrasjoner.  The invention relates to a method for repairing crack damage in a steel structure, for example a gas turbine exhaust duct, which is typically damaged by thermal cycling with resulting temperature gradients and related stress concentrations.

Fremgangsmåten for utbedringen av sprekkskader i en eksoskanal baseres på å forsterke  stålstrukturens sprekkskadede område med en doblingsplate.  The procedure for the repair of crack damage in an exhaust duct is based on reinforcing the cracked area of the steel structure with a doubling plate.

Doblingsplatens overflate som skal ligge an mot skadet område utføres med et antall  maskinerte spor, slik at varm eksos under start av turbinen strømmer gjennom sporene og  varmer opp overflaten som er dekket av doblingsplaten, og slik at kald luft under stans av  turbinen strømmer gjennom sporene og kjøler ned overflaten som er dekket av  doblingsplaten.  Dette vil bidra til å redusere lokale temperaturgradienter og relaterte spenninger slik at faren  for nye sprekkdannelser i flaten som dekkes av doblingsplaten reduseres.   The surface of the doubler plate that will be in contact with the damaged area is made with a number of machined grooves, so that hot exhaust during start-up of the turbine flows through the grooves and heats the surface covered by the doubler plate, and so that cold air during shutdown of the turbine flows through the grooves and cooling the surface that is covered by  the  doubling  plate. This will help to reduce local temperature gradients and related stresses so that the danger  of new cracks formation in the surface covered by the doubling plate is reduced.

Doblingsplatens overflate som ligger an mot skadet overflate utføres med en invers eksakt lik  geometri som skadet overflate for å oppnå full mekanisk kontakt mellom anleggsflaten i  doblingsplaten og anleggsflaten i den skadet overflaten, for å unngå mekanisk kontakt kun  mellom høye punkter i overflatene.  The surface of the doubling plate that abuts the damaged surface is made with an inverse geometry exactly like the damaged surface in order to achieve full mechanical contact between the installation surface of the doubling plate and the installation surface of the damaged surface, to avoid mechanical contact only between the high points of the surfaces.

  Doblingsplaten festes til eksoskanalens skadede område med selvopprettende strekk‐bolter,  som hindrer bøyning av boltene som følge av deformerte flater og som følge av at flatene  som boltes sammen ikke er parallelle.  The doubling plate is attached to the damaged area of the exhaust duct with self-healing tension bolts, which prevent bending of the bolts as a result of deformed surfaces and as a result of the surfaces being bolted together not being parallel.

Doblingsplatens overflate som ligger an mot skadet overflate er utført med invers eksakt lik  geometri som skadet overflate slik at det ved full mekanisk kontakt mellom flatene oppnås  en mekanisk tetting av sprekker som hindrer eksoslekkasje gjennom sprekker ut til  eksoskanalens utside.  The surface of the doubling plate that is in contact with the damaged surface is made with inverse geometry exactly the same as the damaged surface, so that with full mechanical contact between the surfaces, a mechanical sealing of cracks is achieved which prevents exhaust leakage through cracks to the outside of the exhaust duct.

  Doblingsplaten utføres i et materiale med mindre utvidelseskoeffisient enn for materialet i  eksoskanalens stålstruktur, for å oppnå at doblingsplaten holder igjen utvidelse av sprekkene  ved stigende temperatur i materialene.  The doubling plate is made of a material with a lower coefficient of expansion than the material in the steel structure of the exhaust duct, in order to achieve that the doubling plate keeps the expansion of the cracks at a rising temperature in the materials.

Claims (1)

På utiden av eksoskanalens skadede område, i dette tilfellet et hjørne, monteres en  forsterkningsplate, hvor strekkboltenes hylsekrage ligger an mot forsterkningsplaten slik at  sprekkskadet vegg i eksoskanalen klemmes sammen mellom doblingsplaten og  forsterkningsplaten. On the outside of the damaged area of the exhaust duct, in this case a corner, a reinforcement plate is mounted, where the collar of the tension bolts rests against the reinforcement plate so that the crack-damaged wall of the exhaust duct is clamped together between the doubling plate and the reinforcement plate. Patentkrav 1. Patent claim 1. Oppfinnelsen gjelder en metode for utbedring av sprekkskader i en stålstruktur, for eksempel  en gassturbin eksoskanal, k a ra k te r i s e r t ved at eksoskanalens skadede overflaten (2)  mekanisk forsterkes med en doblingsplate (3), hvor doblingsplaten (3) er utført med et antall  spor (13) i overflaten som ligger an mot den skadede overflaten (2) slik at varm eksos under  start av turbinen strømmer gjennom sporene (13) og varmer opp den skadede overflaten (2),  og hvor kald luft under stans av turbinen  strømmer gjennom sporene (13) og kjøler ned den  skadede overflaten (2) for å unngå temperaturgradienter i skadet område (2), og hvor  doblingsplatens (3) overflate som ligger an mot skadet overflate (2) er utført med invers  eksakt samme overflategeometri  som skadet overflate (2) for å oppnå full mekanisk kontakt  mellom anleggsflaten i doblingsplaten (3) og anleggsflaten i skadet overflate (2) for å unngå  mekanisk kontakt kun mellom høye punkter i overflatene, og ved at det ved full mekanisk  kontakt mellom anleggsflatene oppnås en mekanisk tetting av sprekker (1), og hvor  doblingsplaten (3) festes til sprekkskadet område (2) med selvopprettende bolter (4),og hvor  doblingsplatens (3) utføres i et materiale med termisk utvidelseskoeffisient som er mindre  enn utvidelseskoeffisient for materialet i eksoskanalens stålstruktur (2) slik at doblingsplaten  (3) holder igjen utvidelse av sprekker (1)  i skadet overflate  i eksoskanalens stålstruktur (2),  og hvor det på eksoskanalens utvendige vegg (9) i skadet område (2) monteres en  forsterkningsplate (11) med en hul‐kil (12) i forsterkningsplatens (11) hjørne. The invention relates to a method for repairing crack damage in a steel structure, for example a gas turbine exhaust duct, in that the damaged surface of the exhaust duct (2) is mechanically reinforced with a doubling plate (3), where the doubling plate (3) ) is made with a number of grooves (13) in the surface that abut against the damaged surface (2) so that hot exhaust during start-up of the turbine flows through the grooves (13) and heats the damaged surface (2), and where cold air during shutdown of the turbine, flows through the slots (13) and cools down the damaged surface (2) to avoid temperature gradients in the damaged area (2), and where the surface of the doubling plate (3) that abuts the damaged surface (2) is made with inverse exactly the same surface geometry as the damaged surface (2) to achieve full mechanical contact between the mating surface of the doubling plate (3) and the mating surface of the damaged surface (2) to avoid mechanical contact only between high points of the surfaces, and by ull mechanical contact between the construction surfaces, a mechanical sealing of cracks (1) is achieved, and where the doubling plate (3) is attached to the crack-damaged area (2) with self-healing bolts (4), and where the doubling plate (3) is made of a material with a thermal expansion coefficient that is less than the coefficient of expansion of the material of the steel structure of the exhaust duct (2) so that the doubler plate (3) retains the expansion of cracks (1) in the damaged surface of the steel structure of the exhaust duct (2), and where on the outer wall of the exhaust duct (9) in the damaged area (2 ) a reinforcement plate (11) is fitted with a hollow wedge (12) in the corner of the reinforcement plate (11).     Patentkrav 2. Patent Claim 2. Metode for utbedring av sprekkskader i en stålstruktur, for eksempel en gassturbin  eksoskanal ifølge krav 1 , k a r a k t e r i s e r t  ved at eksoskanalens skadede overflate (2)  mekanisk forsterkes med en doblingsplate (3), hvor doblingsplaten (3) er utført med  maskinerte spor (13) i doblingsplatens overflate som ligger an mot den skadede overflate (2),  og hvor maskinerte spor (13) utføres med tverrsnitt og geometri dimensjonert for optimal  strømning gjennom sporene (13) slik at varm eksos under start av turbinen strømmer  gjennom sporene (13) og varmer opp den skadede overflaten (2) som er skjermet av  doblingsplaten (3), og hvor kald luft under stans av turbinen  strømmer gjennom sporene  (13) og kjøler ned skadet overflate (2) som er skjermet av  doblingsplaten (3) slik at det ikke  oppstår uønskede temperaturgradienter i materialet i skadet område (2), og hvor sporene  (13) er orientert vekk fra sprekkdannelsene  (1) slik at eksos ikke strømmer gjennom sporene  (13) og ut gjennom sprekk (1) til eksoskanalens utside. Method for repairing crack damage in a steel structure, for example a gas turbine exhaust duct according to claim 1, k a r a k t e r i s e r t in that the damaged surface of the exhaust duct (2) is mechanically reinforced with a doubling plate (3), where the doubling plate (3) is made with machined grooves (13) in the doubler plate surface that abuts the damaged surface (2), and where machined grooves (13) are made with a cross-section and geometry dimensioned for optimal flow through the grooves (13) so that hot exhaust during start-up of the turbine flows through the slots (13) and heats the damaged surface (2) which is shielded by the doubling plate (3), and where cold air during shutdown of the turbine flows through the slots (13) and cools down the damaged surface (2) which is shielded by the doubling plate (3) so that no unwanted temperature gradients occur in the material in the damaged area (2), and where the grooves (13) are oriented away from the cracks (1) so that exhaust does not flow through the grooves (13) and out ex through crack (1) to the exhaust duct exterior.     Patentkrav 3. Patent claim 3.   Metode for utbedring av sprekkskader i en stålstruktur, for eksempel en gassturbin  eksoskanal ifølge krav 1‐2, k a r a k t e r i s e r t  ved at eksoskanalens skadede overflate (2)  mekanisk forsterkes med en doblingsplate (3) med invers eksakt samme overflategeometri ,  oppnådd ved at skadet overflate (2) 3D‐skannes og ved at skanne‐data prosesseres til en  datamodell med  invers  geometri, hvor datamodellen programmeres i en verktøymaskin  som maskinerer doblingsplatens (3) geometri, slik at det oppnås full mekanisk kontakt  mellom doblingsplaten (3) og skadet overflate (2) og det unngås kontakt kun mellom høye  punkter og deformasjoner i flatene, og ved at det ikke dannes hulrom mellom doblingsplaten  (3) og skadet område (2) slik at det oppnås en stiv bolteforbindelse med stål mot stål kontakt  mellom bolt (4) og doblingsplate (3) og skadet overflate (2), hvilket er en forutsetning for  å  kunne oppnå en definert og varig forspenning i bolteforbindelsen. Method for repairing crack damage in a steel structure, for example a gas turbine exhaust duct according to claim 1-2, k a r a k t e r i s e r t in that the damaged surface of the exhaust duct (2) is mechanically reinforced with a doubling plate (3) with inverse exact same surface geometry, achieved by 3D scanning the damaged surface (2) and processing the scan data into a computer model with inverse geometry, where the computer model is programmed in a machine tool that machines the geometry of the doubling plate (3), so that full mechanical contact between the doubling plate (3) and damaged surface (2) and contact is avoided only between high points and deformations in the surfaces, and by not creating a cavity between the doubling plate (3) and damaged area (2) so that a rigid bolted connection is achieved with steel-to-steel contact between bolt (4) and doubling plate (3) and damaged surface (2), which is a prerequisite for achieving a defined and permanent preload in the bolt connection.   Patentkrav 4. Patent claim 4.   Metode for utbedring av sprekkskader i en stålstruktur, for eksempel en gassturbin  eksoskanal ifølge krav 1‐2‐3, k a r a k t e r i s e r t ved at doblingsplatens (3) overflate som  ligger an mot skadet overflate (2) er utført med invers eksakt lik geometri som skadet  overflate (2) slik at det ved full mekanisk kontakt oppnås en mekanisk tetting av sprekker (1)  som hindrer eksoslekkasje gjennom sprekker (1) til eksoskanalens utside. Method for the repair of crack damage in a steel structure, for example a gas turbine exhaust duct according to claim 1-2-3, k a r a k t e r i s e r t in that the surface of the doubling plate (3) that abuts the damaged surface (2 ) is made with the exact same geometry as the damaged surface (2) so that, with full mechanical contact, a mechanical sealing of cracks (1) is achieved, which prevents exhaust leakage through cracks (1) to the outside of the exhaust duct. Patentkrav 5. Patent Claim 5.   Metode for utbedring av sprekkskader i en stålstruktur, for eksempel en gassturbin  eksoskanal ifølge krav 1‐2‐3‐4, k a r a k t e r i s e r t ved at doblingsplaten (3) festes til  sprekkskadet område (2) med selvopprettende strekk‐bolter (4), hvor strekkbolter (4) er  utført med en forlengelseshylse (6) som hindrer at bolten (4) strekkes i flyt under  oppvarming ved start av turbinen, og hvor forlengerhylsen (6) er utført  med konveks sfærisk  anleggsflate (8) i enden av forlengerhylsen (6) som ligger an mot mutter (5), og mutteren (5)  er utført med en konkav sfærisk anleggsflate (7) som ligger an mot forlengerhylsens (6)  konvekse flate (8) slik at sfæriske flater i forlengerhylse (6) og mutter (5) både under  montasje og under drift av gassturbinen stiller seg inn og tar opp skjevheter mellom  overflatene (2) og (3) og hindrer bøying av bolten (4), og hvor enden av hylsen (6) som ligger  an mot utvendig forsterkningsplate (11) er utført med en krave med en tetningskant (10)  som hindrer eksoslekkasje gjennom boltehull. Method for repairing cracked damage in a steel structure, for example a gas turbine exhaust duct according to requirement 1-2-3-4, k a r a k t e r i s e r t by attaching the doubling plate (3) to the cracked damaged area (2) with self-righting tension bolts (4), where tension bolts (4) are made with an extension sleeve (6) that prevents the bolt (4) from being stretched in flow during heating at the start of the turbine, and where the extension sleeve (6) is made with convex spherical contact surface (8) at the end of the extension sleeve (6) which rests against the nut (5), and the nut (5) is made with a concave spherical contact surface (7) which rests against the convex surface (8) of the extension sleeve (6) so that spherical surfaces in the extension sleeve (6) and nut (5) both during assembly and during operation of the gas turbine align themselves and take up misalignments between the surfaces (2) and (3) and prevent bending of the bolt (4) and where the end of the sleeve (6) which abuts against the external reinforcement plate (11) is made with a collar with a sealing edge (10) which drags exhaust leak through bolt holes.               Patentkrav 6. Patent claim 6. Metode for utbedring av sprekkskader i en stålstruktur, for eksempel gassturbin eksoskanal  ifølge krav 1‐2‐3‐4‐5, k a r a k t e r i s e r t ved at doblingsplaten (3) er støpt eller sveiset opp i  et materiale med termisk utvidelseskoeffisient mindre enn termisk utvidelseskoeffisient for  materialet i eksoskanalens stålstruktur (2) for å sikre at termisk ekspansjon av doblingsplaten  (3) er mindre enn termisk ekspansjon for eksoskanalens stålstruktur (2), slik at  doblingsplaten (3) holder igjen utvidelse av sprekker (1)  i skadet overflate i eksoskanalens  stålstruktur (2). Method for repairing crack damage in a steel structure, for example gas turbine exhaust duct according to claim 1-2-3-4-5, k a r a k t e r i s e r t in that the doubling plate (3) is cast or welded up in a material with a coefficient of thermal expansion smaller than the coefficient of thermal expansion of the material of the steel structure of the exhaust duct (2) to ensure that the thermal expansion of the doubling plate (3) is less than the thermal expansion of the steel structure of the exhaust duct (2), so that the doubling plate (3) retains the expansion of cracks (1)  in the damaged surface of the exhaust duct's steel structure (2).   Patentkrav 7. Patent Claim 7. Metode for utbedring av sprekkskader i en stålstruktur, for eksempel gassturbin eksoskanal  ifølge krav 1‐2‐3‐4‐5‐6, k a r a k t e r i s e r t ved at det på eksoskanalens utvendige vegg i  skadet område (9) monteres en forsterkningsplate (11) som er utført med et hjørne med hulkil (12) som omslutter eksoskanalens utvendige hjørne, og hvor strekkboltens hylsekrage (12)  ligger an mot forsterkningsplaten (11) slik at sprekkskadet vegg (9) i eksoskanalen klemmes  sammen mellom doblingsplaten (3) og forsterkningsplaten (11). Method for repairing crack damage in a steel structure, for example gas turbine exhaust duct according to requirement 1-2-3-4-5-6, k a r a k t e r i s e r t in that on the exhaust duct's outer wall in the damaged area (9) a reinforcement plate (11) is mounted, which is made with a corner with a hollow wedge (12) that encloses the exhaust duct's outer corner, and where the tension bolt's sleeve collar (12) rests against the reinforcement plate (11) so that the crack-damaged wall (9) of the exhaust duct is clamped together between the doubling plate (3) and the reinforcement plate (11).   Patentkrav 8. Patent Claim 8. Metode for utbedring av sprekkskader i en stålstruktur, for eksempel gassturbin eksoskanal  ifølge krav 1‐2‐3‐4‐5‐6‐7, k a r a k t e r i s e r t ved at metoden kan benyttes til forsterkning av  flater og hjørner i nye og ubrukte eksoskanaler, for å hindre at sprekkdannelser oppstår  under start og stans og drift av gassturbinen. Method for repairing crack damage in a steel structure, for example gas turbine exhaust duct according to claim 1-2-3-4-5-6-7, k a r a k t e r i s e r t in that the method can be used for strengthening surfaces and corners in new and unused exhaust ducts, to prevent cracks from occurring during start-up and stoppage and operation of the gas turbine.                                
NO20162002A 2016-12-15 2016-12-15 Method for repairing crack damage in steel structures NO344485B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO20162002A NO344485B1 (en) 2016-12-15 2016-12-15 Method for repairing crack damage in steel structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20162002A NO344485B1 (en) 2016-12-15 2016-12-15 Method for repairing crack damage in steel structures

Publications (2)

Publication Number Publication Date
NO20162002A1 true NO20162002A1 (en) 2018-06-18
NO344485B1 NO344485B1 (en) 2020-01-13

Family

ID=63012639

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20162002A NO344485B1 (en) 2016-12-15 2016-12-15 Method for repairing crack damage in steel structures

Country Status (1)

Country Link
NO (1) NO344485B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1113483A (en) * 1997-06-19 1999-01-19 Mitsubishi Heavy Ind Ltd Gas turbine exhaust duct
EP2466070A2 (en) * 2010-12-20 2012-06-20 General Electric Company Method of repairing a transition piece of a gas turbine engine
EP2527077A1 (en) * 2010-01-20 2012-11-28 Mitsubishi Heavy Industries, Ltd. Method for repairing wall member with passage
US20130149107A1 (en) * 2011-12-08 2013-06-13 Mrinal Munshi Gas turbine outer case active ambient cooling including air exhaust into a sub-ambient region of exhaust flow

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1113483A (en) * 1997-06-19 1999-01-19 Mitsubishi Heavy Ind Ltd Gas turbine exhaust duct
EP2527077A1 (en) * 2010-01-20 2012-11-28 Mitsubishi Heavy Industries, Ltd. Method for repairing wall member with passage
EP2466070A2 (en) * 2010-12-20 2012-06-20 General Electric Company Method of repairing a transition piece of a gas turbine engine
US20130149107A1 (en) * 2011-12-08 2013-06-13 Mrinal Munshi Gas turbine outer case active ambient cooling including air exhaust into a sub-ambient region of exhaust flow

Also Published As

Publication number Publication date
NO344485B1 (en) 2020-01-13

Similar Documents

Publication Publication Date Title
JP5288767B2 (en) Jet pump diffuser weld repair equipment
KR20160105502A (en) Method for repairing cast steel member
Djukic et al. Development of a fibre reinforced polymer composite clamp for metallic pipeline repairs
JP2009041449A (en) Repair method for gas turbine rotor vane
NO20162002A1 (en) Method of repairing crack damage in steel structures
KR101825817B1 (en) Maintenance method for welding part of small pipe for nuclear reactor
US20190093692A1 (en) Reparaturanordnung und gasturbine
JP3425262B2 (en) Jet pump sealing device and jet pump inspection and repair method using the same
CN113638325A (en) Steel structure fatigue crack reinforcing structure and reinforcing method thereof
Jinescu et al. A method based on the principle of critical energy for calculating flange joints
WO2018000540A1 (en) Unmanned shipborne maintenance fixture
RU2375632C1 (en) Procedure of pipeline repair
JP5106310B2 (en) Boiling water reactor
CN112423930B (en) Repair welding method
Squires Steam Inlet Expansion Joint Design & Case Study: Surface Condenser Application
JP7153125B2 (en) Water sparger repair
JP2002286013A (en) Components of high temperature, high pressure device
JP2007092730A (en) Gas outflow preventing method of turbine casing
JPH08122485A (en) Repairing method of shroud in nuclear reactor pressurized container
RU2484359C1 (en) Method of pipeline repair and device to this end
Fairushin et al. Study of efficiency of application of locally reinforced fitting units with stiffening ribs
Titus* et al. NSTX-U Construction Related Analysis Issues
Miglietti et al. Evaluation of Platform Weld Repairs on F-Class, Stage 1 Buckets
Berry et al. Coke Drum Bottom Head Flange Design Optimisation
Zarghamee et al. Ultimate strength prediction of steel liners using nonlinear finite element analysis

Legal Events

Date Code Title Description
PLED Pledge agreement as registered by the authority (distraint, execution lien)
CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: NOBLE AS, NO

CREP Change of representative