NO166035B - PROCEDURE FOR THE PREPARATION OF ORGANIC CARBONATES BY TRANSFERING A CARBON ACID DIETER. - Google Patents

PROCEDURE FOR THE PREPARATION OF ORGANIC CARBONATES BY TRANSFERING A CARBON ACID DIETER. Download PDF

Info

Publication number
NO166035B
NO166035B NO875347A NO875347A NO166035B NO 166035 B NO166035 B NO 166035B NO 875347 A NO875347 A NO 875347A NO 875347 A NO875347 A NO 875347A NO 166035 B NO166035 B NO 166035B
Authority
NO
Norway
Prior art keywords
carbon atoms
catalyst
alcohol
carbonate
chain
Prior art date
Application number
NO875347A
Other languages
Norwegian (no)
Other versions
NO166035C (en
NO875347L (en
NO875347D0 (en
Inventor
Yves Proux
Michel Pellegrina
Original Assignee
Organo Synthese Ste Fse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Synthese Ste Fse filed Critical Organo Synthese Ste Fse
Publication of NO875347D0 publication Critical patent/NO875347D0/en
Publication of NO875347L publication Critical patent/NO875347L/en
Publication of NO166035B publication Critical patent/NO166035B/en
Publication of NO166035C publication Critical patent/NO166035C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

1. Process for the preparation of organic carbonates by transesterification of a diester of carbonic acid and of at least one alcohol heavier than that or those formed by transesterification, in the presence of a transesterification catalyst based on a basic ionic salt, characterized in that the said transesterification operation is additionally carried out in the presence of a complexing compound capable of at least partially solubilizing the said salt in the reaction mixture by complexing its cation and at least partially dissociating the said salt.

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for fremstilling av organiske karbonater ved omestring av en karbonsyrediester med en alkhol. The present invention relates to a method for producing organic carbonates by transesterification of a carbonic acid diester with an alcohol.

Disse og ytterligere trekk ved oppfinnelsen fremgår av patentkravene. These and further features of the invention appear in the patent claims.

Fra US-PS nr. 3.642.858 og DE-PS nr. 2.749.754 er det kjent å fremstille dialkylkarbonater ved omestring av et alkylenkar-bonat eller et dimetylkarbonat med en alkohol i nærvær av et alkalimetallsalt som katalysator. From US-PS No. 3,642,858 and DE-PS No. 2,749,754 it is known to prepare dialkyl carbonates by transesterification of an alkylene carbonate or a dimethyl carbonate with an alcohol in the presence of an alkali metal salt as catalyst.

Man har nå funnet en fremgangsmåte som tillater nedsettelse av mengden basisk katalysator som anvendes og/eller forkorte reaksjonstiden. A method has now been found which allows the amount of basic catalyst used to be reduced and/or the reaction time to be shortened.

Den foreliggende oppfinnelse vedrører således en fremgangsmåte for fremstilling av organiske karbonater ved omestring av en karbonsyrediester med minst en alkohol som er tyngre enn den eller de alkoholer som dannes ved ovennevnte omestring, i nærvær av en omestringskatalysator på basis av et basisk ionesalt, og det særegne ved fremgangsmåten i henhold til oppfinnelsen er at nevnte omestring dessuten gjennomføres i nærvær av en kompleksdannende forbindelse som er istand til å oppløse, i det minste delvis, ovennevnte salt i reaksjonsblandingen ved kompleksdannelse av dets kation og dissosiere, i det minste delvis, ovennevnte salt. The present invention thus relates to a method for the production of organic carbonates by transesterification of a carbonic acid diester with at least one alcohol that is heavier than the alcohol or alcohols formed by the above-mentioned transesterification, in the presence of a transesterification catalyst based on a basic ion salt, and the distinctive in the method according to the invention, said transesterification is also carried out in the presence of a complex-forming compound which is capable of dissolving, at least partially, the above-mentioned salt in the reaction mixture by complexing its cation and dissociating, at least partially, the above-mentioned salt.

Karbonsyrediesteren som anvendes har den generelle formel: The carbonic acid diester used has the general formula:

hvori R og R' er like eller forskjellige og representerer rettkjedede eller forgrenede Ci-C1Q-alkylradikaler, foretrukket C1-C3 alkylradikaler, eller rettkjedet eller forgrenet C3-C1Q-alkenyl, foretrukket C3-C4<a>lkenyl. wherein R and R' are the same or different and represent straight-chain or branched C1-C1Q alkyl radicals, preferably C1-C3 alkyl radicals, or straight-chain or branched C3-C1Q alkenyl, preferably C3-C4<a>lkenyl.

Som eksempler på karbonsyrediesteren kan nevnes dimetylkarbonat, dietylkarbonat, dipropylkarbonat, metyletylkarbonat, diallylkarbonat, metylallylkarbonat, propylallylkarbonat og dimetylallylkarbonat. Examples of the carboxylic acid diester include dimethylcarbonate, diethylcarbonate, dipropylcarbonate, methylethylcarbonate, diallylcarbonate, methylallylcarbonate, propylallylcarbonate and dimethylallylcarbonate.

Den eller de alkoholer som anvendes er monoalkoholene eller polyolene hvis eneste egenskap er at de er tyngre enn den eller de alkoholer som dannes ved omestringen. The alcohol(s) used are the monoalcohols or polyols whose only property is that they are heavier than the alcohol(s) formed during transesterification.

Således kan den eller de ovennevnte alkoholer være en mettet eller umettet, rettkjedet eller forgrenet alifatisk monoalkohol med 2 til 22 karbonatomer, foretrukket 8 til 18 karbonatomer, en cykloalifatisk monoalkohol med 6 karbonatomer, en mettet eller umettet, rettkjedet eller forgrenet alifatisk polyol med 2 til 10 karbonatomer, foretrukket 2 til 6 karbonatomer, inneholdende fra to til fire alkoholfunksjoner, en monoalkyleter med 1 til 3 karbonatomer, foretrukket 1 til 2 karbonatomer, av en mettet eller umettet, rettkjedet eller forgrenet alifatisk diol med 2 til 10 karbonatomer, foretrukket 2 til 6 karbonatomer, en polyoksyalkylenglykol eller en polyoksyalkylenglykolmonoeter, med formel HO—£—r-o—J—nZ hvori Z er hydrogen eller et alkylradikal med 1 til 3 karbonatomer, foretrukket 1 til 2 karbonatomer, r er et rettkjedet eller forgrenet alkylenradikal med 2 til 3 karbonatomer og n går fra 2 til 4, foretrukket fra 2 til 3, benzylalkohol, fenol, 4,4'-bifenyldiol og/eller bis(hydroksyfenyl)-alkaner med en alifatisk kjede med 1 til 3 karbonatomer. Thus, the above-mentioned alcohol(s) can be a saturated or unsaturated, straight-chain or branched aliphatic monoalcohol with 2 to 22 carbon atoms, preferably 8 to 18 carbon atoms, a cycloaliphatic monoalcohol with 6 carbon atoms, a saturated or unsaturated, straight-chain or branched aliphatic polyol with 2 to 10 carbon atoms, preferably 2 to 6 carbon atoms, containing from two to four alcohol functions, a monoalkyl ether with 1 to 3 carbon atoms, preferably 1 to 2 carbon atoms, of a saturated or unsaturated, straight-chain or branched aliphatic diol with 2 to 10 carbon atoms, preferably 2 to 6 carbon atoms, a polyoxyalkylene glycol or a polyoxyalkylene glycol monoether, with the formula HO—£—r—o—J—nZ in which Z is hydrogen or an alkyl radical with 1 to 3 carbon atoms, preferably 1 to 2 carbon atoms, r is a straight-chain or branched alkylene radical with 2 to 3 carbon atoms and n ranges from 2 to 4, preferably from 2 to 3, benzyl alcohol, phenol, 4,4'-biphenyldiol and/or bis(hydroxyphen yl)alkanes with an aliphatic chain of 1 to 3 carbon atoms.

Som eksempler på alkoholer kan det nevnes etanol, propanol, isopropanol, butanolene, 2-etylheksanol, laurylalkohol, cetyl-alkohol, cykloheksanol, allylalkohol, metallylalkohol, butan-diolene, heksandiolene, glycerol, pentaerytriol, mono-, di-, tri- og tetraetylenglykolene, mono-, di-, tri- og tetrapro-pylenglykolene og likeledes deres metyl- eller etylmonoeter eller 2,2-bis(4-hydroksyfenyl)-propan. Examples of alcohols include ethanol, propanol, isopropanol, butanols, 2-ethylhexanol, lauryl alcohol, cetyl alcohol, cyclohexanol, allyl alcohol, methallyl alcohol, butanediols, hexanediols, glycerol, pentaerytriol, mono-, di-, tri- and the tetraethylene glycols, the mono-, di-, tri- and tetrapropylene glycols and likewise their methyl or ethyl monoether or 2,2-bis(4-hydroxyphenyl)-propane.

Katalysatorene som anvendes er vanlige anvendte katalysatorer for omestring valgt blant de basiske ionesaltene av typen hydrider, hydroksyder, alkoholater, acetater, karbonater, The catalysts used are commonly used catalysts for transesterification selected from among the basic ion salts of the type hydrides, hydroxides, alcoholates, acetates, carbonates,

bikarbonater eller acetylacetonater av alkalimetaller. bicarbonates or acetylacetonates of alkali metals.

Det skal spesielt nevnes natriumhydroksyd, kaliumhydroksyd, litiumhydroksyd, natrium- eller kaliumkarbonat. Particular mention should be made of sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium or potassium carbonate.

Den kompleksdannende forbindelse som er istand til å oppløse og dissosiere, i det minste delvis, omestringskatalysatoren velges fra: et sekvestrerende middel som angitt i FR-PS nr. 2.450.120 The complexing compound capable of dissolving and dissociating, at least partially, the transesterification catalyst is selected from: a sequestering agent as disclosed in FR-PS No. 2,450,120

med formel: with formula:

N( CHR1-CHR2-0-(CHR3-CHR4-o)n-R5)3 (I) N(CHR1-CHR2-0-(CHR3-CHR4-o)n-R5)3 (I)

hvori n er et helt tall som er større eller lik 0 og mindre where n is an integer greater than or equal to 0 and less

eller lik 10 (O^n^lO), R^, R2, R3 og R4 er like eller forskjellige og representerer et hydrogenatom eller et alkylradikal med 1 til 4 karbonatomer og R5 representerer et alkylradikal eller cykloalkyl med 1 til 12 karbonatomer, et fenylradikal eller et radikal -Cm H2m - 0 eller <cmH>2m+l-0-' hvori m er et tal1 mellom 1 og 12 (lsm£l2), or equal to 10 (O^n^lO), R^, R2, R3 and R4 are the same or different and represent a hydrogen atom or an alkyl radical of 1 to 4 carbon atoms and R5 represents an alkyl radical or cycloalkyl of 1 to 12 carbon atoms, a phenyl radical or a radical -Cm H2m - 0 or <cmH>2m+l-0-' in which m is a number1 between 1 and 12 (lsm£l2),

en makrocyklisk polyeter kalt "kronetere" angitt i FR-PS a macrocyclic polyether called "crown ethers" specified in FR-PS

nr. 2.026.481, dvs. en makrocyklisk polyeter med 12 til 40 atomer i ringen og bestående av 4 til 10 -O-X- enheter hvori X er enten -CHR6-CHR7- eller -CHR5-CHR8CR9R7-, idet Rg, R7, Rq og R9 er like eller forskjellige og er et hydrogenatom eller et alkylradikal med 1 til 4 karbonatomer og en av X'ene kan være -CHR6-CHR3-CR9R7 når -O-X-enhetene omfatter gruppen -O-CHR6-CHR7-, eller No. 2,026,481, i.e., a macrocyclic polyether having 12 to 40 ring atoms and consisting of 4 to 10 -O-X- units wherein X is either -CHR6-CHR7- or -CHR5-CHR8CR9R7-, wherein Rg, R7, Rq and R9 are the same or different and are a hydrogen atom or an alkyl radical of 1 to 4 carbon atoms and one of the X's can be -CHR6-CHR3-CR9R7 when the -O-X units comprise the group -O-CHR6-CHR7-, or

en makrocyklisk eller bicyklisk forbindelse kalt "kryptat", som angitt i FR-PS nr. 2.052.947 og med generell formel Ila og Ilb: a macrocyclic or bicyclic compound called "cryptate", as stated in FR-PS No. 2,052,947 and with general formula Ila and Ilb:

hvori: in which:

Y representerer N, Y represents N,

A representerer en alkylengruppe med 1 til 3 karbonatomer, D representerer 0 eller N-R^ hvori R^ representerer et A represents an alkylene group with 1 to 3 carbon atoms, D represents 0 or N-R^ in which R^ represents a

alkylradikal med 1 til 6 karbonatomer, alkyl radical with 1 to 6 carbon atoms,

R^ representerer et alkylradikal med 1 til 6 karbonatomer og p, q og r som er like eller forskjellige er hele tall mellom 1 og 5. R^ represents an alkyl radical of 1 to 6 carbon atoms and p, q and r which are the same or different are whole numbers between 1 and 5.

Når den kompleksdannende forbindelse er et sekvestrerende middel med formel (I) er foretrukket R^, R2, R 3 og R4 et hydrogenatom eller et metylradikal og R5 og n har den ovennevnte betydning. When the complex-forming compound is a sequestering agent of formula (I), R 1 , R 2 , R 3 and R 4 are preferably a hydrogen atom or a methyl radical and R 5 and n have the above meaning.

Blant de sistnevnte anvendes særlig foretrukket de midler hvori n er større eller lik 0 og mindre eller lik 6 og hvori R5 representerer et alkylradikal med 1 til 4 karbonatomer. Among the latter, the agents in which n is greater than or equal to 0 and less than or equal to 6 and in which R 5 represents an alkyl radical with 1 to 4 carbon atoms are particularly preferably used.

Som eksempler på sekvestrerende midler kan det nevnes: tris-(3-oksabutyl)amin med formel: Examples of sequestering agents include: tris-(3-oxabutyl)amine with formula:

N-(CH2-CH2-0-CH3)3, N-(CH2-CH2-0-CH3)3,

tris-(3,6-dioksaheptyl)amin med formel: tris-(3,6-dioxaheptyl)amine with formula:

N-(CH2-CH2-0-CH2-CH2-0-CH3)3, N-(CH2-CH2-0-CH2-CH2-0-CH3)3,

tris-(3,6,9-trioksadecyl)amin med formel: tris-(3,6,9-trioxadecyl)amine with formula:

N-(CH2-CH2-0-CH2-CH2-0-CH2-CH2-0-CH3)3, tris-(3,6-dioksaoktyl)amin med formel: N-(CH2-CH2-0-CH2-CH2-0-C2H5)3, tris-(3,6,9-trioksaundecyl)amin med formel: N-(CH2-CH2-0-CH2-CH2-0-CH2-CH2-0-C2<H>5)3, N-(CH2-CH2-0-CH2-CH2-0-CH2-CH2-0-CH3)3, tris-(3,6-dioxaoctyl)amine with formula: N-(CH2-CH2-0-CH2-CH2-0-C2H5)3, tris-(3,6,9-trioxaundecyl)amine with formula: N-(CH2-CH2-0-CH2-CH2-0-CH2-CH2-0-C2<H>5)3,

tris-(3,6-dioksanonyl)amin med formel: N-(CH2-CH2-0-CH2-CH2-0-C3H7)3, tris-(3,6,9-trioksadodecyl)amin med formel: N-(CH2-CH2-0-CH2-CH2-0-CH2-CH2-0-C3H7)3, tris-(3,6-dioksadecyl)amin med formel: N-(CH2-CH2-0-CH2-CH2-0-C4H9)3, tris-(3,6,9-trioksatridecyl)amin med formel: N-(CH2-CH2-0-CH2-CH2-0-CH2-CH2-0-C4<H>9)3, tris-(3,6,9,12-tetraoksatridecyl)amin med formel: N-(CH2-CH2-0-(CH2-CH2-0)3-CH3)3, tris-(3,6-dioxanonyl)amine with formula: N-(CH2-CH2-0-CH2-CH2-0-C3H7)3, tris-(3,6,9-trioxadodecyl)amine with formula: N-(CH2-CH2-0-CH2-CH2-0-CH2-CH2-0-C3H7)3, tris-(3,6-dioxadecyl)amine with formula: N-(CH2-CH2-0-CH2-CH2-0-C4H9)3, tris-(3,6,9-trioxatridecyl)amine of formula: N-(CH2-CH2-0-CH2-CH2-0-CH2-CH2-0-C4<H>9)3, tris-(3,6 ,9,12-tetraoxatridecyl)amine with formula: N-(CH2-CH2-0-(CH2-CH2-0)3-CH3)3,

tris-(3,6,9,12,15,18-heksaoksanonadecyl)amin med formel: tris-(3,6,9,12,15,18-hexaoxanonedecyl)amine with formula:

N-(CH2-CH2-0-(CH2-CH2-0)5-CH3)3, N-(CH2-CH2-0-(CH2-CH2-0)5-CH3)3,

- tris-(3,6-dioksa-4-metylheptyl)amin med formel: N-(CH2-CH2-OCH-(CH3)-CH2-0-CH3)3, - tris-(3,6-dioxa-4-methylheptyl)amine with formula: N-(CH2-CH2-OCH-(CH3)-CH2-0-CH3)3,

tris-(3,6-dioksa-2,4-dimetylheptyl)amin med formel: tris-(3,6-dioxa-2,4-dimethylheptyl)amine with formula:

N-(CH2CH-(CH3)-OCH(CH3)-CH2-0-CH3)3, N-(CH2CH-(CH3)-OCH(CH3)-CH2-0-CH3)3,

Som eksempler på kronetere som kan anvendes i henhold til den foreliggende oppfinnelse kan det nevnes: As examples of crown ethers that can be used according to the present invention, the following can be mentioned:

Som eksempler på makrocykliske eller blcykliske "kryptat"-forbindelser kan det nevnes: Examples of macrocyclic or bicyclic "cryptate" compounds can be mentioned:

I overensstemmelse med fremgangsmåten i henhold til den foreliggende oppfinnelse gjennomføres omestringen med hen-holdsvis følgende forhold mellom de forskjellige reaksjonskomponenter: forholdet mellom antall alkoholfunksjoner/antall mol karbonsyrediester avhenger av antall esterfunksjoner (en eller to) som skal omsettes idet omestring av to ester-funks joner foretrukket gjennomføres i nærvær av overskudd av alkohol i forhold til den aktuelle støkiometri og omestring av en esterfunksjon gjennomføres fortrukket i nærvær av overskudd av en karbonsyrediester i forhold til den aktuelle støkiometri, idet det ovennevnte forhold er i størrelseorden fra 1/20 til 20/1, foretrukket i In accordance with the method according to the present invention, the transesterification is carried out with respectively the following ratio between the various reaction components: the ratio between the number of alcohol functions/number of moles carboxylic acid diester depends on the number of ester functions (one or two) to be converted, as transesterification of two ester functions is preferably carried out in the presence of an excess of alcohol in relation to the relevant stoichiometry and transesterification of an ester function is preferably carried out in the presence of an excess of a carboxylic acid diester in ratio to the relevant stoichiometry, the above ratio being in the order of magnitude from 1/20 to 20/1, preferred in

størrelsesorden fra 0,2 til 2,5, order of magnitude from 0.2 to 2.5,

molforholdet katalysator/reaksjonskomponent (dvs. mol katalysator/mol karbonsyrediester i tilfellet med omestring av to esterfunksjoner eller mol katalysator/- alkoholfunksjon i tilfellet med omestring av en eneste -4 -3 esterfunksjon) er i størrelsesorden fra 10 til 5 x 10 -4 -3 foretrukket i størrelsesorden fra 2 x 10 til 2 x 10 molforholdet kompleksdannende forbindelse/katalysator er i størrelsesorden fra 0,001 til 0,1, foretrukket i størrel-sesorden fra 0,003 til 0,1, og særlig i størrelsesorden fra 0,004 til 0,03, idet dette forhold således kan variere innen et stort område, men foretrukket anvendes det ikke en for stor mengde basisk katalysator, særlig når diesteren og/eller alkoholen som anvendes er umettet (umettede) for å unngå misfarging av sluttproduktet. the molar ratio catalyst/reaction component (i.e. mol catalyst/mol carboxylic acid diester in the case of transesterification of two ester functions or mol catalyst/- alcohol function in the case of transesterification of a single -4 -3 ester function) is in the order of magnitude from 10 to 5 x 10 -4 - 3 preferably in the order of magnitude from 2 x 10 to 2 x 10 the molar ratio of complexing compound/catalyst is in the order of magnitude from 0.001 to 0.1, preferably in the order of magnitude from 0.003 to 0.1, and especially in the order of magnitude from 0.004 to 0.03, since this ratio can thus vary within a large range, but preferably an excessively large amount of basic catalyst is not used, especially when the diester and/or alcohol used are unsaturated (unsaturated) to avoid discoloration of the final product.

Fremgangsmåten i henhold til den foreliggende oppfinnelse kan gjennomføres i nærvær av en "azeotropdannende" forbindelse som er i stand til å danne azeotroper med den eller de alkoholer som dannes ved omestringen for å forenkle eliminering av denne eller disse alkoholer, idet naturen av ovennevnte "azeotropdannende" forbindelse selvfølgelig er en funksjon av naturen av den eller de alkoholer som skal fjernes. En fagkyndig på området vil uten vanskeligheter finne den "azeotropdannende" forbindelse som passer best, men det kan f.eks. nevnes heksan, heptan, cykloheksan, cyklopentan, toluen, xylen osv. The process according to the present invention can be carried out in the presence of an "azeotrope-forming" compound capable of forming azeotropes with the alcohol or alcohols formed by the transesterification in order to facilitate the elimination of this or these alcohols, the nature of the above-mentioned "azeotrope-forming " compound, of course, is a function of the nature of the alcohol(s) to be removed. A person skilled in the art will find the "azeotrope-forming" compound that is most suitable without difficulty, but it can e.g. mention is made of hexane, heptane, cyclohexane, cyclopentane, toluene, xylene, etc.

Fremgangsmåten i henhold til den foreliggende oppfinnelse gjennomføres ved et trykk nær atmosfæretrykk. For å unngå misfarging og oksydasjon gjennomføres den generelt under en inert atmosfære, særlig når karbonatet som skal fremstilles har en eller flere allylgrupper (for å unngå polymeriserings-reaksjoner). The method according to the present invention is carried out at a pressure close to atmospheric pressure. To avoid discoloration and oxidation, it is generally carried out under an inert atmosphere, particularly when the carbonate to be produced has one or more allyl groups (to avoid polymerization reactions).

Den minimale temperatur i reaksjonsblandingen er selvfølgelig en funksjon av reaksjonskinetikken idet den må være høy nok til å initiere omestringsreaksjonen og tillate eliminering av den eller de dannede alkoholer eller deres azeotroper ved destillasjon. Denne temperatur er generelt minst 40°C. The minimum temperature in the reaction mixture is of course a function of the reaction kinetics in that it must be high enough to initiate the transesterification reaction and allow the elimination of the alcohol(s) formed or their azeotropes by distillation. This temperature is generally at least 40°C.

Den maksimale temperatur, i reaksjonsblandingen, dvs. ved endt reaksjon er ikke kritisk når den eller de alkoholer og karbonsyrediesteren som anvendes er mettet. Når alkoholen(e) og/eller diesteren derimot er umettet (umettede) må denne temperatur være mindre enn den temperatur som fører til dannelse av biprodukter som gir misfarging. Denne maksimumstemperatur er generelt mindre enn 120°C. The maximum temperature in the reaction mixture, i.e. at the end of the reaction, is not critical when the alcohol(s) and carbonic acid diester used are saturated. When the alcohol(s) and/or the diester, on the other hand, are unsaturated (unsaturated), this temperature must be lower than the temperature that leads to the formation of by-products that cause discolouration. This maximum temperature is generally less than 120°C.

Temperaturen i dampene er nær kokepunktstemperaturen for den eller de alkoholer som dannes eller deres azeotroper for å tillate tilbakeløp av den eller de dannede alkoholer eller deres azeotroper. The temperature of the vapors is close to the boiling point temperature of the alcohol(s) formed or their azeotropes to allow reflux of the alcohol(s) formed or their azeotropes.

Ved endt reaksjon kan overskuddet av dannede reaksjonskomponenter f.eks. fjernes ved destillasjon under redusert trykk. Fremgangsmåten i henhold til den foreliggende oppfinnelse er særlig tilpasset fremstilling av diallylkarbonat og dietylen-gykolbis(allylkarbonat). At the end of the reaction, the excess of formed reaction components can e.g. removed by distillation under reduced pressure. The method according to the present invention is particularly adapted to the production of diallyl carbonate and diethylene glycol bis(allyl carbonate).

Ved fremgangsmåten for den foreliggende oppfinnelse oppnås diallylkarbonat ved omestring av allylalkohol og et dialkylkarbonat med rette eller forgrenede - C3~alkylradikaler i nærvær av ovennevnte omestringskatalysator og kompleksdannende forbindelse. In the method of the present invention, diallyl carbonate is obtained by transesterification of allyl alcohol and a dialkyl carbonate with straight or branched C3~alkyl radicals in the presence of the above-mentioned transesterification catalyst and complexing compound.

Omestringsreaksjonen gjennomføres under en inert atmosfære og foretrukket i nærvær av en azeotropdannende forbindelse som heksan, ved en temperatur slik at temperaturen i reaksjonsblandingen ved endt reaksjon ikke overskrider 120°C og temperaturen for dampene er nær kokepunktstemperaturen for den dannede alkohol eller azeotrop for å tillate tilbakeløp av denne alkohol eller dens azeotrop. The transesterification reaction is carried out under an inert atmosphere and preferably in the presence of an azeotrope-forming compound such as hexane, at a temperature such that the temperature of the reaction mixture at the end of the reaction does not exceed 120°C and the temperature of the vapors is close to the boiling point temperature of the alcohol or azeotrope formed to allow reflux of this alcohol or its azeotrope.

Mengden reaksjonskomponenter som anvendes tilsvarer følgende molforhold: allylalkohol/diester fra 2/1 til 20/1, foretrukket fra 2,2 The amount of reaction components used corresponds to the following molar ratio: allyl alcohol/diester from 2/1 to 20/1, preferably from 2.2

til 2,5, to 2.5,

-4 -3 katalysator/diester fra 10 til 5 x 10 , foretrukket fra -4 -3 catalyst/diester from 10 to 5 x 10 , preferably from

2 x 10~<4> til 2 x IO"<3>, 2 x 10~<4> to 2 x IO"<3>,

kompleksdannende forbindelse/katalysator fra 0,001 til 0,1, foretrukket fra 0,003 til 0,1 og særlig foretrukket fra 0,004 til 0,03. complexing compound/catalyst from 0.001 to 0.1, preferably from 0.003 to 0.1 and particularly preferred from 0.004 to 0.03.

I henhold til fremgangsmåten for den foreliggende oppfinnelse oppnås dietylenglykolbis(allylkarbonat) ved omestring av diallylkarbonat med dietylenglykol i nærvær av ovennevnte omestringskatalysator og ovennevnte kompleksdannende forbindelse . According to the method of the present invention, diethylene glycol bis(allyl carbonate) is obtained by transesterification of diallyl carbonate with diethylene glycol in the presence of the above-mentioned transesterification catalyst and the above-mentioned complex-forming compound.

Reaksjonen gjennomføres under en inert atmosfære, eventuelt i nærvær av en azeotropdannende forbindlese som toluen eller xylen, ved en temperatur slik at temperaturen i reaksjonsblandingen ved endt reaksjon ikke overskrider 120°C og temperaturen i dampene er nær kokepunktstemperaturen for allylalko-holen eller eventuelt den dannede azeotrop for å tillate til-bakeløp av den dannede alkohol eller dens azeotrop. The reaction is carried out under an inert atmosphere, possibly in the presence of an azeotrope-forming compound such as toluene or xylene, at a temperature such that the temperature of the reaction mixture at the end of the reaction does not exceed 120°C and the temperature of the vapors is close to the boiling point temperature of the allyl alcohol or, possibly, the formed azeotrope to allow reflux of the formed alcohol or its azeotrope.

Mengden reaksjonskomponenter som foretrukket anvendes tilsvarer følgende molforhold: dietylenglykol/diallylkarbonat fra 1/40 til 1/2, foretruk ket fra 1/10 til 1/4 (eller antall alkoholfunksjoner/mol diallylkarbonat fra 1/20 til 1, foretrukket fra 0,2 til 0,5) , The amount of reaction components preferably used corresponds to the following molar ratio: diethylene glycol/diallyl carbonate from 1/40 to 1/2, preferred ket from 1/10 to 1/4 (or number of alcohol functions/mol of diallyl carbonate from 1/20 to 1, preferably from 0.2 to 0.5),

-4 -2 katalysator/dietylenglykol fra 2 x 10 til 10 ' foretrukket fra 4 x 10 til 4 x 10 (eller mol katalysator/--4 -2 -4 -2 catalyst/diethylene glycol from 2 x 10 to 10' preferably from 4 x 10 to 4 x 10 (or mol catalyst/--4 -2

antall alkoholfunksjoner fra 10 til 0,5 x 10 , foretrukket fra 2 x 10~<4> til 2 x IO<-3>), number of alcohol functions from 10 to 0.5 x 10 , preferably from 2 x 10~<4> to 2 x IO<-3>),

kompleksdannende forbindelse/katalysator i størrelsesorden fra 0,001 til 0,1, foretrukket fra 0,003 til 0,1 og særlig foretrukket fra 0,004 til 0,03. complexing compound/catalyst in the order of magnitude from 0.001 to 0.1, preferably from 0.003 to 0.1 and particularly preferred from 0.004 to 0.03.

De oragniske karbonater som fremstilles ifølge fremgangsmåten for den foreliggende oppfinnelse kan anvendes som sådan og er særlig kjent som løsningsmidler for celluloseforbindelser, som myknere osv., idet de umettede karbonater kan anvendes som monomerer for fremstilling av polymerer med optiske egen-skaper . The inorganic carbonates produced according to the method of the present invention can be used as such and are particularly known as solvents for cellulose compounds, as plasticizers, etc., the unsaturated carbonates can be used as monomers for the production of polymers with optical properties.

Følgende eksempler illustrerer den foreliggende oppfinnelse: The following examples illustrate the present invention:

Eksempel 1 Example 1

I en inert reaktor på 300 liter ved atmosfæretrykk og som er utstyrt med en destillasjonskolonne, kondensator og en azeotropisk dekanteringsinnretning, innføres under EN nitrogenatmosfære: In an inert reactor of 300 liters at atmospheric pressure and which is equipped with a distillation column, condenser and an azeotropic decanter, introduce under ONE nitrogen atmosphere:

68 kg (755 mol) dimetylkarbonat (DMC), 68 kg (755 mol) dimethyl carbonate (DMC),

103,5 kg (1783 mol) allylalkohol, som tilsvarer et 103.5 kg (1783 mol) allyl alcohol, which corresponds to et

forhold av alkoholfunksjon/mol DMC på 2,36, ratio of alcohol function/mol DMC of 2.36,

30 kg teknisk heksan, 30 kg technical hexane,

21,2 g (0,53 mol) NaOH, som tilsvarer et molforhold NaOH/DMC på 0,07 x 10~<2>, 21.2 g (0.53 mol) NaOH, which corresponds to a molar ratio NaOH/DMC of 0.07 x 10~<2>,

_3 1 g (4,55 x 10 mol 1, 4, 7, 10, 13-pentaoksacyklopen-tadekan (15 - krone - 5 eter), som tilsvarer et molforhold kompleksdannende forbindelse/katalysator på 8,6 x IO<-3>. _3 1 g (4.55 x 10 mol 1, 4, 7, 10, 13-pentaoxacyclopene-tadecane (15 - crown - 5 ether), which corresponds to a molar ratio complexing compound/catalyst of 8.6 x IO<-3>.

Reaksjonsblandingen omrøres hvoretter den bringes til en temperatur som tillater tilbakeløp av heteroazeotropheksan-metanol ved atmosfæretrykk. The reaction mixture is stirred, after which it is brought to a temperature which allows reflux of the heteroazeotrope hexane-methanol at atmospheric pressure.

Etter ekvilibrering av kolonnen trekkes den dannede metanol ut idet temperaturen ikke overskrider 5 0°C. Denne uttrekning gjennomføres inntil reaksjonsblandingen fra reaktoren, etterfulgt av gassfase-kromatografering, er som følger: metanol: spor After equilibration of the column, the methanol formed is extracted, the temperature not exceeding 50°C. This extraction is carried out until the reaction mixture from the reactor, followed by gas phase chromatography, is as follows: methanol: trace

DMC : spor DMC : tracks

molart vektforhold av diallylkarbonat/metylallylkarbonat større eller lik 15,5. molar weight ratio of diallyl carbonate/methylallyl carbonate greater than or equal to 15.5.

Uttrekningen av metanol varer i ni timer. The extraction of methanol lasts for nine hours.

Produktene fra reaksjonsblandingen inneholdt i reaktoren separeres deretter ved fraksjoneringsdestillasjon, først ved atmosfæretrykk og deretter ved redusert trykk. Det molare utbytte av diallylkarbonat basert på DMC er minst 9 5% og dette kan ytterligere forbedres ved å resirkulere metylallylkar-bonatet. The products from the reaction mixture contained in the reactor are then separated by fractional distillation, first at atmospheric pressure and then at reduced pressure. The molar yield of diallyl carbonate based on DMC is at least 95% and this can be further improved by recycling the methylallyl carbonate.

Eksempel 2 Example 2

Omestringsreaksjonen som er beskrevet i eks. 1 gjennomføres i fravær av den kompleksdannende forbindelse og med økt mengde NaOH. Det konstateres at det er nødvendig med 0,250 kg NaOH (6,25 mol) dvs. 11,8 ganger mere enn i eks. 1, for likeledes å oppnå, etter ni timer, en lignende reaksjonsblanding mot slutten av metanoluttrekningen. The transesterification reaction described in ex. 1 is carried out in the absence of the complexing compound and with an increased amount of NaOH. It is established that 0.250 kg of NaOH (6.25 mol) is needed, i.e. 11.8 times more than in ex. 1, to likewise obtain, after nine hours, a similar reaction mixture towards the end of the methanol extraction.

Eksempel 3 Example 3

Omestringen som er beskrevet i eks. 1 gjennomføres ved The rearrangement described in ex. 1 is carried out by

anvendelse av: application of:

som katalysator: 63,5 g (0,96 mol) KoH, som tilsvarer et molforhold KoH/DMC på 0,13 x 10~<2>, as catalyst: 63.5 g (0.96 mol) KoH, which corresponds to et molar ratio KoH/DMC of 0.13 x 10~<2>,

_3 _3

som kompleksdannende forbindelse: 7,6 g (28.7 x 10 mol) as complexing compound: 7.6 g (28.7 x 10 mol)

1, 4, 7, 10, 13, 16-heksaoksacyklooktadekan (18 - krone - 6 eter), som tilsvarer et molforhold kompleksdannende forbindelse/katalysator på 0,03. 1, 4, 7, 10, 13, 16-hexaoxacyclooctadecane (18 - crown - 6 ether), which corresponds to a complexing compound/catalyst molar ratio of 0.03.

Det behøves metanoluttrekning i ni timer for å oppnå en lignende reaksjonsblanding som den i eks. 1. Methanol extraction for nine hours is required to obtain a similar reaction mixture as that in ex. 1.

Eksempel 4 Example 4

Omestringen gjennomføres som angitt i eks. 3 i fravær av kompleksdannende forbindelse og med anvendelse av 350 g (5,3 mol) KoH (som tilsvarer et molforhold katalysator/DMC på 0,7 x 10~<2>) i stedet for 63,5 g KoH. The changeover is carried out as indicated in ex. 3 in the absence of complexing compound and using 350 g (5.3 mol) of CoH (corresponding to a catalyst/DMC molar ratio of 0.7 x 10~<2>) instead of 63.5 g of CoH.

Det oppnås en reaksjonsblanding lignende den i eks. 1 etter tolv timers metanoluttrekning. A reaction mixture similar to that in ex. 1 after twelve hours of methanol extraction.

Det konstateres at sammenlignet med eks. 3, gir tilstede-værelse av en kompleksdannende forbindelse nedsettelse av anvendt mengde katalysator med 5,5 ganger og reaksjonstiden reduseres med 25%. It is found that compared to e.g. 3, the presence of a complexing compound reduces the amount of catalyst used by 5.5 times and the reaction time is reduced by 25%.

Eksempel 5 Example 5

I en inert reaktor på 2 liter som er utstyrt med en destillasjonskolonne og under en nitrogenatmosfære innføres: 1421, 5 g (10 mol) diallylkarbonat, Into an inert reactor of 2 liters which is equipped with a distillation column and under a nitrogen atmosphere is introduced: 1421.5 g (10 mol) diallyl carbonate,

106,1 g (1 mol eller 2 OH-funksjoner) dietylenglykol (DEG) som tilsvarer et forhold alkoholfunksjon/mol diallylkarbonat på 0,2, 106.1 g (1 mol or 2 OH functions) diethylene glycol (DEG) corresponding to a ratio alcohol function/mol diallyl carbonate of 0.2,

_3 _3

0,138 g (10 mol) kaliumkarbonat som tilsvarer et molforhold katalysator/DEG på IO<-3> eller et molfor-_3 0.138 g (10 mol) of potassium carbonate corresponding to a catalyst/DEG molar ratio of 10<-3> or a molar ratio of -_3

hold katalysator/OH funksjon på 0,5 x 10 , keep catalyst/OH function at 0.5 x 10 ,

-3 -5 -3 -5

2,64 x 10 g (10 mol) 18 - krone - 6 eter, som tilsvarer et molforhold kompleksdannende forbindelse/- katalysator på 0,01. 2.64 x 10 g (10 mol) 18 - crown - 6 ether, which corresponds to a complexing compound/catalyst molar ratio of 0.01.

Reaksjonsblandingen plasseres under redusert trykk (mellom 13332 Pa og 26664 Pa) og bringes til en temperatur i stør-relsesorden fra 100 til 120°C for å tillate destillasjon av den dannede allylalkohol. The reaction mixture is placed under reduced pressure (between 13332 Pa and 26664 Pa) and brought to a temperature in the order of 100 to 120°C to allow distillation of the allyl alcohol formed.

Reaksjonen avbrytes tre timer etter begynnende allylalkohol-destillasjon. The reaction is interrupted three hours after starting allyl alcohol distillation.

Kaliumkarbonatet nøytraliseres, hvoretter overskudd av diallylkarbonat elimineres ved destillasjon (slutt-trykk mindre enn 1333 Pa og maksimumstemperatur 150°C). The potassium carbonate is neutralized, after which excess diallyl carbonate is eliminated by distillation (final pressure less than 1333 Pa and maximum temperature 150°C).

260 g av sluttproduktet utvinnes (tilsvarende et vektutbytte på 94,5% i forhold til støkiometrien av reaksjonen for dannelse av ren monomer) hvis farge settes til mellom 5 og 10 HAZEN (Norme AFNOR NF-T-20-605) 260 g of the final product is recovered (corresponding to a weight yield of 94.5% in relation to the stoichiometry of the reaction for the formation of pure monomer) whose color is set to between 5 and 10 HAZEN (Norm AFNOR NF-T-20-605)

Sammensetningen av nevnte produkt bestemt ved gelpermeasjons-kromatografering er som følger: The composition of said product determined by gel permeation chromatography is as follows:

monomer : 84,5% monomer : 84.5%

dimer : 14,0 % dimer : 14.0%

trimer : 1,5% trimer : 1.5%

Viskositeten er 13,8 x IO<-6> m<2>/s ved 25°C. The viscosity is 13.8 x IO<-6> m<2>/s at 25°C.

Eksempel 6 Example 6

Prosedyren som er beskrevet i eks. 5 gjentas ved anvendelse av følgende katalysator/kompleksdannende forbindelse: _3 The procedure described in ex. 5 is repeated using the following catalyst/complexing compound: _3

som katalysator: 10 mol litiumhydroksyd i stedet for 10~<3> mol kaliumkarbonat, as catalyst: 10 mol lithium hydroxide instead of 10~<3> mol potassium carbonate,

_5 _5

som kompleksdannende forbindelse: 10 mol 12 - krone - 4 as a complexing compound: 10 mol 12 - crown - 4

eter. ether.

Etter tre timers reaksjon er det eksperimentelle produktut-bytte som tidligere 94 %. After three hours of reaction, the experimental product yield is, as before, 94%.

Fargen av sluttproduktet er mellom 5 og 10 HAZEN. The color of the final product is between 5 and 10 HAZEN.

Produktet har følgende sammensetning: The product has the following composition:

monomer : 82,7 % monomer : 82.7%

dimer : 15,4 % dimer : 15.4%

trimer : 1,3 % trimer : 1.3%

Viskositeten er 14 x IO<-6> m<2>/s ved 25°C. The viscosity is 14 x IO<-6> m<2>/s at 25°C.

Eksempel 7 Example 7

Prosedyren som er beskrevet i eks. 5 gjentas idet det som katalysator/kompleksdannende forbindelse anvendes følgende: som katalysator : 10 <3> mol kaliumkarbonat, The procedure described in ex. 5 is repeated, using the following as catalyst/complex-forming compound: as catalyst: 10 <3> mol potassium carbonate,

_5 _5

som kompleksdannende forbindelse: 10 mol tris(3,6-dioksaheptyl)amin i stedet for IO<-5> mol 18 - krone - 6 eter. as complexing compound: 10 mol tris(3,6-dioxaheptyl)amine instead of 10<-5> mol 18 - crown - 6 ether.

Etter tre timers reaksjon er det eksperimentelle produktutbyttet som tidligere 94 %. After three hours of reaction, the experimental product yield is, as before, 94%.

Produktet har følgende sammensetning: The product has the following composition:

monomer : 83,8 % monomer : 83.8%

dimer : 14,5 % dimer : 14.5%

trimer : 1,7% trimer : 1.7%

Viskositeten er 13,9 x 10~<6> m<2>/s ved 25°C. The viscosity is 13.9 x 10~<6> m<2>/s at 25°C.

Eksempel 8 Example 8

Prosedyren i henhold til eks. 5 ble gjentatt ved anvendelse av følgende katalysator/kompleksdannende forbindelse: _3 The procedure according to e.g. 5 was repeated using the following catalyst/complexing compound: _3

som katalysator : 10 mol kaliumkarbonat, as catalyst: 10 mol potassium carbonate,

_5 _5

som kompleksdannende forbindelse: 10 mol heksaoksa-4,7,13,16,21,24 diaza-1,10 bicyklo-8,8,8-heksacosan- as complexing compound: 10 mol hexaoxa-4,7,13,16,21,24 diaza-1,10 bicyclo-8,8,8-hexacosane-

_5 _5

(kryptat-2,2,2) i stedet for 10 mol 18 - krone - 6 eter. (cryptate-2,2,2) instead of 10 mol 18 - crown - 6 ether.

Etter tre timers reaksjon er produktutbyttet som tidligere 94,5 %. After three hours of reaction, the product yield is, as before, 94.5%.

Produktet har følgende sammensetning: The product has the following composition:

monomer : 84,7 % monomer : 84.7%

dimer : 14 % dimer : 14%

trimer : 1,3% trimer : 1.3%

Viskositeten er 13,7 x 10 <6> m<a>/s ved 25°C. The viscosity is 13.7 x 10 <6> m<a>/s at 25°C.

Eksempel 9 Example 9

Prosedyren beskrevet i eks. 5 ble gjentatt ved anvendelse av følgende katalysator/kompleksdannende forbindelse: -3 -3 The procedure described in ex. 5 was repeated using the following catalyst/complexing compound: -3 -3

som katalysator: 2,3 x 10 mol KoH (istedet for 10 mol kaliumkarbonat), som representerer et molforhold av katalysator/DEG på 2,3 x 10 eller et molforhold av as catalyst: 2.3 x 10 mol KoH (instead of 10 mol potassium carbonate), which represents a molar ratio of catalyst/DEG of 2.3 x 10 or a molar ratio of

katalysator/OH-funksjon på 1,15 x 10 _3, catalyst/OH function of 1.15 x 10 _3,

som kompleksdannende forbindelse: 11,4 x 10<->^ mol (istedet as a complexing compound: 11.4 x 10<->^ mol (instead

-5 -5

for 10 mol) 18 - krone - 6 eter, som tilsvarer et molforhold av kompleksdannende forbindelse/katalysator nær 5 x IO<-3>. for 10 mol) 18 - crown - 6 ether, which corresponds to a molar ratio of complexing compound/catalyst close to 5 x IO<-3>.

Etter tre timers reaksjon, er det oppnådde produktutbyttet som tidligere 94,5 %. After three hours of reaction, the product yield obtained is, as before, 94.5%.

Produktet har følgende sammensetning: The product has the following composition:

monomer : 84,2 % monomer : 84.2%

dimer : 14,2 % dimer : 14.2%

trimer : 1,4% trimer : 1.4%

Viskositeten er 13,8 x 10~<6> m<2>/s ved 25°C. The viscosity is 13.8 x 10~<6> m<2>/s at 25°C.

Eksempel 10- 21 Example 10-21

Prosedyren beskrevet i eks. 5 ble gjentatt idet mengdene kaliumkarbonat og 18 - krone - 6 eter varieres. The procedure described in ex. 5 was repeated, varying the amounts of potassium carbonate and 18-crown-6 ether.

De oppnådde resultater er vist i tabell I. The results obtained are shown in Table I.

Eksempel 22 Example 22

Prosedyren beskrevet i eks. 5 ble gjentatt ved anvendelse av følgende reaksjonskomponenter: The procedure described in ex. 5 was repeated using the following reaction components:

12 mol diallylkarbonat, 12 mol diallyl carbonate,

1 mol DEG, som tilsvarer et forhold alkoholfunksjon/mol dialyllkarbonat på 0,17, 1 mol DEG, which corresponds to a ratio alcohol function/mol diallyl carbonate of 0.17,

_3 _3

1,1 x 10 mol kaliumkarbonat, som tilsvarer et molforhold 1.1 x 10 mol of potassium carbonate, which corresponds to a molar ratio

katalysator/OH-funksjon på 0,55 x IO<-3>, catalyst/OH function of 0.55 x IO<-3>,

30 x IO-3 mol 18 - krone - 6 eter, som tilsvarer et molforhold kompleksdannende forbindelse/katalysator på 0,027. 30 x IO-3 mol 18 - crown - 6 ether, which corresponds to a complexing compound/catalyst molar ratio of 0.027.

Etter tre timers reaksjon ble det oppnådd et produkt med følgende sammensetning: After three hours of reaction, a product with the following composition was obtained:

. monomer : 87 , 0 % . monomer: 87.0%

. dimer : 12,0 % . dimer : 12.0%

. trimer : 1,0 % . trimer : 1.0%

Eksempel 23 - Fremstilling av dicvkloheksvlkarbonat. Example 23 - Preparation of dicyclohexylcarbonate.

I en reaktor på 1 liter innføres under en nitrogenatmosfære: In a 1 liter reactor, introduce under a nitrogen atmosphere:

- 1 mol allylkarbonat, - 1 mol allyl carbonate,

- IO"<3> mol KOH, - 10"<3> mol KOH,

_5 _5

- 10 mol 18 - krone - 6 eter. - 10 mol 18 - crown - 6 ether.

Ved 110°C innføres 2 mol cykloheksanol ved hjelp av en tilførselstrakt i løpet av to timer. Ved endt tilførsel av denne alkohol holdes reaksjonsblandingen ved 140°C og reaksjonen får fortsette i fire timer og 30 minutter. I løpet av denne tid fjernes den dannede allylalkohol ved destillasjon. Etter nøytralisering av KOH filtreres resten. At 110°C, 2 mol of cyclohexanol are introduced using a feed funnel over the course of two hours. At the end of the addition of this alcohol, the reaction mixture is kept at 140°C and the reaction is allowed to continue for four hours and 30 minutes. During this time, the allyl alcohol formed is removed by distillation. After neutralization by KOH, the residue is filtered.

Ved gassfasekromatografering finner man: In gas phase chromatography, one finds:

allylcykloheksylkarbonat: 0,03 mol allyl cyclohexyl carbonate: 0.03 mol

dicykloheksylkarbonat : 0,725 mol dicyclohexyl carbonate: 0.725 mol

Det totale utbyttet i forhold til utgangsmaterialet som har reagert effektivt er nær 95 %. The total yield in relation to the starting material which has reacted effectively is close to 95%.

Eksempel 24 - Fremstilling av dipropvlenalvkol- bisallvl-karbonater Example 24 - Preparation of dipropvlenalvcolbisalvl carbonates

Prosedyren som er beskrevet i eks. 5 ble gjentatt idet DEG The procedure described in ex. 5 was repeated as DEG

(1 mol) ble erstattet med dipropylenglykol (1 mol). (1 mol) was replaced with dipropylene glycol (1 mol).

Sammensetningen av det oppnådde produkt bestemt ved gelkromatografering er som følger: The composition of the obtained product determined by gel chromatography is as follows:

CH2 = CH -CH2 C03 C3H6 0 C^ CC>3 CH^CH = CH2 86,3 % CH2 = CH -CH2 C03 C3H6 0 C^ CC>3 CH^CH = CH2 86.3%

CH2 = CH -CH2( C03 C3H6 O C^) 2 C03 CH^CH = CH2 12,5 % CH2 = CH -CH2( C03 C3H6 O C^) 2 C03 CH^CH = CH2 12.5%

CH2 = CH -CH2( C03 C3H6 O C^ C03 CH^CH = CH2 1,2 % CH2 = CH -CH2( C03 C3H6 O C^ C03 CH^CH = CH2 1.2%

Utbyttet regnet i henhold til dipropylengykol er 100 %. The yield calculated according to dipropylene glycol is 100%.

Eksempel 25 - Fremstillin<g> av tetraetvlenalvkol- bismetvl-karbonater Example 25 - Preparation<g> of tetraethylenal carbon bismetyl carbonates

I en reaktor på 1 liter innføres under en nitrogenatomsfære: dimetylkarbonat : 10 mol In a reactor of 1 liter, introduce under a nitrogen atom sphere: dimethyl carbonate: 10 mol

- KOH : 10~<2> mol - KOH : 10~<2> mol

18 - krone - 6 eter: 1,1 x 10 mol 18 - crown - 6 ether: 1.1 x 10 mol

Blandingen oppvarmes deretter til omtrent 80°C. Ved hjelp av en tilførselstrakt tilsettes 1 mol tetraetylenglykol i løpet av 40 minutter. Temperaturen i reaksjonsblandingen økes deretter trinnvis til 98°C, idet temperaturen i toppen av kolonnen ikke overskrider 60°C (koking av azeotropen metanol-metylkarbonat). Etter tre timer stoppes destillasjonen. KOH nøytraliseres og overskudd av dimetylkarbonat destilleres. Reaksjonsresten filtreres ved værelsestemperatur. Sammensetningen bestemt ved gelkromatografering er som følger: The mixture is then heated to approximately 80°C. Using a feed funnel, 1 mol of tetraethylene glycol is added over the course of 40 minutes. The temperature in the reaction mixture is then gradually increased to 98°C, the temperature at the top of the column not exceeding 60°C (boiling of the azeotrope methanol-methylcarbonate). After three hours, the distillation is stopped. KOH is neutralized and excess dimethyl carbonate is distilled. The reaction residue is filtered at room temperature. The composition determined by gel chromatography is as follows:

- CH3 C03 (CH2)2 0 (CH2)2 O (CH2)2 O (CH^ <C>03 CH3 = 74 % - CH3 C03 (CH2)2 0 (CH2)2 O (CH2)2 O (CH^ <C>03 CH3 = 74%

- CH3 [C03 (CH2)2 O (CH2)2 O (CH2)2 0 (CH,,)^ C03 CH3 = 22 % - CH3 [C03 (CH2)2 O (CH2)2 O (CH2)2 0 (CH,,)^ C03 CH3 = 22%

- CH3 [C03 (CH2)2 0 (CH2)2 0 (CH2)2 O (CH,,)^ C03 CH3 = 4 % - CH3 [C03 (CH2)2 0 (CH2)2 0 (CH2)2 O (CH,,)^ C03 CH3 = 4%

Utbyttet regnet i henhold til tetraetylenglykol er 100 %. The yield calculated according to tetraethylene glycol is 100%.

Eksempel 26 - Fremstilling av dietvlenglvkolmonoeter-karbonater. - Example 26 - Preparation of diethylene glycol monoether carbonates. -

I en reaktor på 1 liter innføres under en nitrogenatmosfære: dietylenglykolmonoetyleter : 2 mol In a 1 liter reactor, introduce under a nitrogen atmosphere: diethylene glycol monoethyl ether: 2 mol

- K2C03 : 2,9 x IO-3 mol - K2C03 : 2.9 x 10-3 mol

_5 _5

18 - krone - 6 eter : 1,3 x 10 mol dimetylkarbonat : 1,33 mol - heksan : 5,25 mol (1/3 plasseres i en tilførselstrakt for å kompensere den som destilleres sammen med dannet metanol). 18 - crown - 6 ether : 1.3 x 10 mol dimethyl carbonate : 1.33 mol - hexane : 5.25 mol (1/3 is placed in a feed funnel to compensate for that which is distilled together with formed methanol).

Reaksjonsblandingen holdes ved 60°C og må ikke overskride 80°C. The reaction mixture is kept at 60°C and must not exceed 80°C.

Destillatet uttrekkes bare når temperaturen i toppen av kolonnen er mindre eller lik 47°C (temperaturen for koking av heteroazeotropen heksan-metanol). Når destillatet bare gir en fase stanses reaksjonen. Kaliumkarbonat nøytraliseres og overskudd av karbonylkarbonat fjernes ved destillasjon. The distillate is only extracted when the temperature at the top of the column is less than or equal to 47°C (the temperature for boiling the heteroazeotrope hexane-methanol). When the distillate only gives one phase, the reaction is stopped. Potassium carbonate is neutralized and excess carbonyl carbonate is removed by distillation.

Sluttproduktet filtreres og analyseres ved gassfasekromatografering. The end product is filtered and analyzed by gas phase chromatography.

Areal-prosentandelene gir: The area percentages give:

dietylenglykolmonoetyleter : 0,28 mol diethylene glycol monoethyl ether: 0.28 mol

" C2H5 ° C2H4 ° C2H4 C°3 °H3' °'31 "^ " C2H5 ° C2H4 ° C2H4 C°3 °H3' °'31 "^

" C2H5 ° C2H4 ° C2H4 C°3 C2H4 ° C2H4 ° C2H5 : °'7° mCl " C2H5 ° C2H4 ° C2H4 C°3 C2H4 ° C2H4 ° C2H5 : °'7° mCl

Totalt utbytte regnet i henhold til dietylenglykolmonoetyleter er 99 %. Total yield calculated according to diethylene glycol monoethyl ether is 99%.

Eksempel 27 - Fremstilling av 2- etvl- l- heksanolkarbonater. Example 27 - Preparation of 2-ethyl-1-hexanol carbonates.

I en reaktor på 1 liter innføres under en nitrogenatmosfære: 2-etyl-l-heksanol : 2 mol Into a 1 liter reactor under a nitrogen atmosphere: 2-ethyl-1-hexanol : 2 mol

- KOH : 3 x 10~<3> mol - KOH : 3 x 10~<3> mol

-5 -5

18 - krone - 6 eter : 7,5 x 10 mol 18 - crown - 6 ether : 7.5 x 10 mol

- dimetylkarbonat : 1,33 mol - dimethyl carbonate: 1.33 mol

- heksan : 3,9 mol (1/3 plasseres i en tilførselstrakt). - hexane: 3.9 mol (1/3 is placed in a feed funnel).

Forsøket gjennomføres som i eks. 26. The experiment is carried out as in ex. 26.

Gassfasekromatografering gir: Gas phase chromatography gives:

2-etyl-heksanol : 0,31 mol 2-ethylhexanol: 0.31 mol

CH -CH.-CH -CH0 - CH-CH -CO CH : 0,43 mol CH -CH.-CH -CH0 - CH-CH -CO CH : 0.43 mol

3 2 2 2* j *j ^ 3 2 2 2* j *j ^

<C>2<H>5<C>2<H>5

CH_-CH -CH-CH- - CH-CHo-C0_ CH CH - CH-CH -CH-CH : 0,63 mol 3222 K| \ C] 2H5 CH_-CH -CH-CH- - CH-CHo-C0_ CH CH - CH-CH -CH-CH : 0.63 mol 3222 K| \C] 2H5

Det eksperimentelle utbyttet i henhold til 2-etyl-l-heksanol som har reagert er 99 %. The experimental yield according to 2-ethyl-1-hexanol which has reacted is 99%.

Eksempel 28 - Fremstilling av cvklisk 1. 2- butandiolkarbonat . I en reaktor på 1 liter innføres under en nitrogenatmosfære: 1,2-butandiol : 1 mol Example 28 - Production of cyclic 1. 2-butanediol carbonate. In a 1-liter reactor, introduce under a nitrogen atmosphere: 1,2-butanediol: 1 mol

dimetylkarbonat : 2 mol dimethyl carbonate : 2 mol

K2C03 : 3,6 x 10~3 mol K2C03 : 3.6 x 10~3 mol

_5 _5

18 - krone - 6 eter : 1,3 x 10 mol 18 - crown - 6 ether : 1.3 x 10 mol

heksan : 3,84 mol (1/3 i en tilførselstrakt). Fremgangsmåten er den samme som i eks. 26. Det oppnås hexane : 3.84 mol (1/3 in a feed funnel). The procedure is the same as in ex. 26. It is achieved

0,95 mol 1,3-dioksolan-2-on-4-etyl: 0.95 mol 1,3-dioxolan-2-one-4-ethyl:

dvs. et utbytte på 95 % i henhold til det anvendte diol. i.e. a yield of 95% according to the diol used.

Claims (11)

1. Fremgangsmåte for fremstilling av organiske karbonater ved omestring av en karbonsyrediester med generell formel: hvori R og R' er like eller forskjellige og er rettkjedede eller forgrenede alkylradikaler med 1 til 10 karbonatomer, eller rettkjedet eller forgrenet alkenyl med 3 til 10 karbonatomer, med minst en alkohol som er tyngre enn den eller dem som dannes ved ovennevnte omestring, i nærvær av en omestringskatalysator valgt fra et hydrid, hydroksyd, alkoholat, acetat, karbonat og bikarbonat eller acetylacetonat av alkalimetaller på basis av et basisk ionesalt, karakterisert ved at ovennevnte omestring dessuten gjennomføres i nærvær av en kompleksdannende forbindelse valgt fra et sekvestrerende middel med generell formel N-(CHR2-CHR2-0-(CHR3-CHR4-O)n-R5)3 (I) hvori n er et helt tall som er større eller lik 0 og mindre eller lik 10 (O^n^lO) , Rj_, R2( R3 og R4 er like eller forskjellige og er et hydrogenatom eller et alkylradikal med 1 til 4 karbonatomer og R5 er et alkylradikal eller cykloalkyl med 1 til 12 karbonatomer, et fenylradikal eller et radikal-<CmH>2m-0 eller cmH2ni+i_0_' nvori m er et tall mellom 1 og 12 (l£m^l2), eller en makrocyklisk polyeter, "kroneter", med 12 til 40 atomer i ringen og bestående av 4 til 10 -O-X- enheter hvori X er enten -CHR5-CHR7- eller -CHR5-CHR8-CR9R7-, idet R6, R7, Rq og Rg er like eller forskjellige og er et hydrogenatom eller et alkylradikal med 1 til 4 karbonatomer og en av X'ene kan være -CHR5-CHR8-CR9R7- når -O-X- enhetene omfatter gruppen -O-CHR6-CHR7-, eller en makrocyklisk eller bicyklisk "kryptat"-forbindelse med formelen Ila og Ilb hvori: - Y er N, - A er en alkylengruppe med 1 til 3 karbonatomer, D er 0 eller N-R^ hvori R^ er et alkylradikal med 1 til 6 karbonatomer, R^q er et alkylradikal med 1 til 6 karbonatomer, og p, q og r som er like eller forskjellige er hele tall mellom 1 og 5, som er i stand til å oppløse i det minste delvis ovennevnte salt i reaksjonsblandingen ved kompleksdannelse av dets kation, og dissosiere, i det minste delvis, ovnnevnte salt, idet ovennevnte omestring gjennomføres i overensstemmelse med følgende forhold mellom de forskjellige reaksjonskomponenter: antall alkoholfunksjoner/antall mol karbonsyrediester i størrelsesorden fra 1/20 til 20/1, molforhold katalysator/reaksjonskomponent i størrelses-orden fra 10~4 til 5 x 10~<3>, - molforhold kompleksdannende forbindelse/katalysator i størrelsesorden fra 0,001 til 0,1.1. Procedure for the production of organic carbonates by transesterification of a carbonic acid diester with general formula: in which R and R' are the same or different and are straight-chain or branched alkyl radicals of 1 to 10 carbon atoms, or straight-chain or branched alkenyl of 3 to 10 carbon atoms, with at least one alcohol heavier than the one or more formed by the above transesterification, in presence of a transesterification catalyst selected from a hydride, hydroxide, alcoholate, acetate, carbonate and bicarbonate or acetylacetonate of alkali metals on the basis of a basic ion salt, characterized in that the above-mentioned transesterification is also carried out in the presence of a complexing compound selected from a sequestering agent of general formula N-(CHR2-CHR2-0-(CHR3-CHR4-O)n-R5)3 (I) wherein n is an integer greater than or equal to 0 and less than or equal to 10 (O^n^lO) , Rj_ , R2( R3 and R4 are the same or different and are a hydrogen atom or an alkyl radical of 1 to 4 carbon atoms and R5 is an alkyl radical or cycloalkyl of 1 to 12 carbon atoms, a phenyl radical or a radical-<CmH>2m-0 or cmH2ni+ i_0_' nvori m is a number between 1 and 12 (l£m^l2), or a macrocyclic polyether, "crown ether", having 12 to 40 atoms in the ring and consisting of 4 to 10 -O-X- units where X is either - CHR5-CHR7- or -CHR5-CHR8-CR9R7-, wherein R6, R7, Rq and Rg are the same or different and are a hydrogen atom or an alkyl radical with 1 to 4 carbon atoms and one of the X's can be -CHR5-CHR8- CR9R7- when the -O-X- units comprise the group -O-CHR6-CHR7-, or a macrocyclic or bicyclic "cryptate" compound of formula IIa and IIb in which: - Y is N, - A is an alkylene group with 1 to 3 carbon atoms, D is 0 or N-R^ wherein R^ is an alkyl radical of 1 to 6 carbon atoms, R^q is an alkyl radical of 1 to 6 carbon atoms, and p, q and r which are the same or different are integers between 1 and 5, which is able to dissolve at least partially the above-mentioned salt in the reaction mixture by complexing its cation, and dissociate, at least partially, the above-mentioned salt, the above-mentioned transesterification being carried out in accordance with the following ratio between the various reaction components: number of alcohol functions/number of moles of carboxylic acid diesters in the order of magnitude from 1/20 to 20/1, molar ratio catalyst/reaction component in the order of magnitude from 10~4 to 5 x 10~<3>, - molar ratio complexing compound/catalyst in the order of magnitude from 0.001 to 0.1. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at det som R og R' anvendes like eller forskjellige rettkjedede eller forgrenede alkylradikaler med 1 til 3 karbonatomer eller rettkjedet eller forgrenet alkenyl med 3 til 4 karbonatomer.2. Process as stated in claim 1, characterized in that the same or different straight-chain or branched alkyl radicals with 1 to 3 carbon atoms or straight-chain or branched alkenyl with 3 to 4 carbon atoms are used as R and R'. 3. Fremgangsmåte som angitt i krav 1 og 2, karakterisert ved at det som ovennevnte alkohol anvendes en mettet eller umettet, rettkjedet eller forgrenet alifatisk monoalkohol med 2 til 22 karbonatomer, en cykloalifatisk monoalkohol med 6 karbonatomer, en mettet eller umettet, rettkjedet eller forgrenet alifatisk polyol med 2 til 10 karbonatomer inneholdende fra 2 til 4 alkoholfunksjoner, en monoalkyleter med 1 til 3 karbonatomer av en mettet eller umettet, rettkjedet eller forgrenet alifatisk diol med 2 til 10 karbonatomer; et polyoksyalkylenglykol eller en polyoksyalkylenglykolmonoeter med formel HO -{— r-0 —3—nZ hvori Z er hydrogen eller et alkylradikal med 1 til 3 karbonatomer, r er et rettkjedet eller forgrenet alkylenradikal med 2 til 3 karbonatomer og n er fra 2 til 4; benzylalkohol, fenol, 4,4'-bifenyldiol og/eller bis(hydroksyfenyl)-alkaner med en alifatisk kjede med 1 til 3 karbonatomer.3. Process as stated in claims 1 and 2, characterized in that the above-mentioned alcohol is used as a saturated or unsaturated, straight-chain or branched aliphatic monoalcohol with 2 to 22 carbon atoms, a cycloaliphatic monoalcohol with 6 carbon atoms, a saturated or unsaturated, straight-chain or branched aliphatic polyol of 2 to 10 carbon atoms containing from 2 to 4 alcohol functions, a monoalkyl ether of 1 to 3 carbon atoms of a saturated or unsaturated, straight-chain or branched aliphatic diol of 2 to 10 carbon atoms; a polyoxyalkylene glycol or a polyoxyalkylene glycol monoether of the formula HO -{— r-0 —3—nZ in which Z is hydrogen or an alkyl radical with 1 to 3 carbon atoms, r is a straight-chain or branched alkylene radical with 2 to 3 carbon atoms and n is from 2 to 4 ; benzyl alcohol, phenol, 4,4'-biphenyldiol and/or bis(hydroxyphenyl)alkanes with an aliphatic chain of 1 to 3 carbon atoms. 4. Fremgangsmåte som angitt i krav 1 - 3, karakterisert ved at det som katalysator anvendes natriumhydroksyd, kaliumhydroksyd, litiumhydroksyd, natriumkarbonat eller kaliumkarbonat.4. Method as stated in claims 1 - 3, characterized in that sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate or potassium carbonate is used as catalyst. 5. Fremgangsmåte som angitt i krav 1 - 4, karakterisert ved de forhold som anvendes mellom de forskjellige reaksjonskomponenter er som følger: antall alkoholfunksjoner/antall mol karbonsyrediester i størrelsesorden fra 0,2 til 2,5, molforhold katalysator/reaksjonskomponent i størrelses-orden fra 2 x 10"<4> til 2 x IO<-3>' - molforhold kompleksdannende forbindelse/katalysator i størrelsesorden fra 0,004 til 0,03.5. Method as stated in claims 1 - 4, characterized by the ratios used between the various reaction components are as follows: number of alcohol functions/number of moles of carbonic acid diesters in the order of magnitude from 0.2 to 2.5, mole ratio of catalyst/reaction component in the order of magnitude from 2 x 10"<4> to 2 x 10<-3>' - molar ratio complexing compound/catalyst in the order of 0.004 to 0.03. 6. Fremgangsmåte som angitt i krav 1 - 5, karakterisert ved at ovennevnte omestring gjennomføres i nærvær av en forbindelse som danner azeotroper med den eller de dannede alkoholer.6. Method as stated in claims 1 - 5, characterized in that the above-mentioned transesterification is carried out in the presence of a compound which forms azeotropes with the alcohol(s) formed. 7. Fremgangsmåte som angitt i krav 1 - 6, karakterisert ved den temperatur som anvendes i reaksjonsblandingen er minst 40°C og mindre enn 120°C.7. Method as stated in claims 1 - 6, characterized by the temperature used in the reaction mixture being at least 40°C and less than 120°C. 8. Fremgangsmåte som angitt i krav 1 - 7, karakterisert ved at et dialkylkarbonat med rettkjedede eller forgrenede alkylradikaler med 1 til 3 karbonatomer omestres under en inert atmosfære til diallylkarbonat ved hjelp av allylalkohol, idet mengden reaksjonskomponenter som anvendes har følgende molare forhold: - allylalkohol/dialkylkarbonat fra 2/1 til 20/1, -4 -3 - katalysator/dialkylkarbonat fra 10 til 5 x 10 kompleksdannende forbindelse/katalysator fra 0,001 til 0,1.8. Process as stated in claims 1 - 7, characterized in that a dialkyl carbonate with straight-chain or branched alkyl radicals with 1 to 3 carbon atoms is transesterified under an inert atmosphere to diallyl carbonate with the aid of allyl alcohol, the amount of reaction components used having the following molar ratio: - allyl alcohol /dialkylcarbonate from 2/1 to 20/1, -4 -3 - catalyst/dialkylcarbonate from 10 to 5 x 10 complexing compound/catalyst from 0.001 to 0.1. 9. Fremgangsmåte som angitt i krav 8, karakterisert ved at mengden reaksjonskomponenter som anvendes har følgende molare forhold: - allylalkohol/dialkylkarbonat fra 2,2 til 2,5, -4 -3 - katalysator/dialkylkarbonat fra 2 x 10 til 2 x 10 , - kompleksdannende forbindelse/katalysator fra 0,004 til 0,03.9. Method as stated in claim 8, characterized in that the amount of reaction components used has the following molar ratio: - allyl alcohol/dialkyl carbonate from 2.2 to 2.5, -4 -3 - catalyst/dialkyl carbonate from 2 x 10 to 2 x 10 , - complexing compound/catalyst from 0.004 to 0.03. 10. Fremgangsmåte som angitt i krav 1 til 9, karakterisert ved at diallylkarbonatet omestres under en inert atmosfære til dietylenglykol-bisallylkarbonat ved hjelp av dietylenglykol, idet mengden reaksjonskomponenter som anvendes har følgende molare forhold: - dietylenglykol/diallylkarbonat fra 1/40 til 1/2, - katalysator/dietylenglykol fra 2 x 10<-4> til 10<-2>' - kompleksdannende forbindelse/katalysator fra 0,001 til 0,1.10. Method as stated in claims 1 to 9, characterized in that the diallyl carbonate is transesterified under an inert atmosphere to diethylene glycol-bisallyl carbonate with the aid of diethylene glycol, the amount of reaction components used having the following molar ratio: - diethylene glycol/diallyl carbonate from 1/40 to 1/ 2, - catalyst/diethylene glycol from 2 x 10<-4> to 10<-2>' - complexing compound/catalyst from 0.001 to 0.1. 11. Fremgangsmåte som angitt i krav 10, karakterisert ved at mengden av reaksjonskomponenter som anvendes har følgende molare forhold: dietylenglykol/diallylkarbonat fra 1/10 til 1/4, -4 -3 katalysator/dietylenglykol fra 4 x 10 til 4 x 10 , kompleksdannende forbindelse/katalysator fra 0,004 til 0,03.11. Method as stated in claim 10, characterized in that the amount of reaction components used has the following molar ratio: diethylene glycol/diallyl carbonate from 1/10 to 1/4, -4 -3 catalyst/diethylene glycol from 4 x 10 to 4 x 10 , complexing compound/catalyst from 0.004 to 0.03.
NO875347A 1986-12-23 1987-12-21 PROCEDURE FOR THE PREPARATION OF ORGANIC CARBONATES BY TRANSFERING A CARBON ACID DIETER. NO166035C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8618057A FR2608812B1 (en) 1986-12-23 1986-12-23 PROCESS FOR THE PREPARATION OF ORGANIC CARBONATES BY TRANSESTERIFICATION

Publications (4)

Publication Number Publication Date
NO875347D0 NO875347D0 (en) 1987-12-21
NO875347L NO875347L (en) 1988-06-24
NO166035B true NO166035B (en) 1991-02-11
NO166035C NO166035C (en) 1991-05-22

Family

ID=9342219

Family Applications (1)

Application Number Title Priority Date Filing Date
NO875347A NO166035C (en) 1986-12-23 1987-12-21 PROCEDURE FOR THE PREPARATION OF ORGANIC CARBONATES BY TRANSFERING A CARBON ACID DIETER.

Country Status (11)

Country Link
EP (1) EP0274953B1 (en)
JP (1) JPS63233954A (en)
AT (1) ATE56426T1 (en)
BR (1) BR8706960A (en)
DE (1) DE3764947D1 (en)
DK (1) DK677587A (en)
ES (1) ES2017516B3 (en)
FR (1) FR2608812B1 (en)
GR (1) GR3001182T3 (en)
MX (1) MX163511B (en)
NO (1) NO166035C (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI378087B (en) 2006-02-22 2012-12-01 Shell Int Research Process for the preparation of an alkanediol and a dialkyl carbonate
TW200740731A (en) 2006-02-22 2007-11-01 Shell Int Research Process for the preparation of alkanediol
TWI382979B (en) 2006-02-22 2013-01-21 Shell Int Research Process for the production of alkylene carbonate and use of alkylene carbonate thus produced in the manufacture of an alkane diol and a dialkyl carbonate
TWI383976B (en) 2006-02-22 2013-02-01 Shell Int Research Process for the production of dialkyl carbonate and alkanediol
TWI414515B (en) 2007-01-23 2013-11-11 Shell Int Research Process for the preparation of an alkanediol and a dialkyl carbonate
CN101605751B (en) 2007-01-23 2013-01-02 国际壳牌研究有限公司 Process for the preparation of alkanediol and dialkyl carbonate
EP2337774B1 (en) 2008-10-20 2013-12-04 Shell Internationale Research Maatschappij B.V. Process for removing an alkanol impurity from an organic carbonate stream
CN102186806B (en) * 2008-12-01 2015-01-28 国际壳牌研究有限公司 Process for removing an alkanol impurity from an organic carbonate stream
JP5167110B2 (en) * 2008-12-26 2013-03-21 独立行政法人日本原子力研究開発機構 Catalyst for producing biodiesel, method for producing the same, and method for producing biodiesel
WO2011018448A1 (en) 2009-08-12 2011-02-17 Shell Internationale Research Maatschappij B.V. Process for removing an alkanol impurity from a dialkyl carbonate stream
JP5726880B2 (en) 2009-09-29 2015-06-03 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Method for producing alkanediol and dialkyl carbonate
TWI473786B (en) 2009-11-16 2015-02-21 Shell Int Research Process for preparing alkanediol and dialkyl carbonate
WO2019016126A1 (en) 2017-07-18 2019-01-24 Shell Internationale Research Maatschappij B.V. Process for preparing alkanediol and dialkyl carbonate
CN113166031B (en) 2018-12-18 2024-01-19 国际壳牌研究有限公司 Process for preparing dialkyl carbonates and alkanediols
US20220340513A1 (en) 2019-10-03 2022-10-27 Shell Oil Company Process for preparing dialkyl carbonate and alkanediol
WO2021110627A1 (en) 2019-12-06 2021-06-10 Shell Internationale Research Maatschappij B.V. Process for removing an ether alkanol impurity from an organic carbonate stream
EP3831805A1 (en) 2019-12-06 2021-06-09 Shell Internationale Research Maatschappij B.V. Process for the preparation of a dialkyl carbonate and an alkanediol

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176932A (en) * 1981-04-24 1982-10-30 Asahi Chem Ind Co Ltd Preparation of carbonic acid ester
AU568516B2 (en) * 1982-11-26 1988-01-07 Bp Chemicals Limited Transesterification of esters employing novel catalyst
GB8401919D0 (en) * 1984-01-25 1984-02-29 Bp Chem Int Ltd Transesterification process

Also Published As

Publication number Publication date
DE3764947D1 (en) 1990-10-18
ATE56426T1 (en) 1990-09-15
FR2608812B1 (en) 1989-04-07
GR3001182T3 (en) 1992-06-30
NO166035C (en) 1991-05-22
NO875347L (en) 1988-06-24
DK677587A (en) 1988-09-08
JPH0532386B2 (en) 1993-05-14
NO875347D0 (en) 1987-12-21
BR8706960A (en) 1988-07-26
DK677587D0 (en) 1987-12-22
FR2608812A1 (en) 1988-06-24
EP0274953A1 (en) 1988-07-20
MX163511B (en) 1992-05-25
JPS63233954A (en) 1988-09-29
ES2017516B3 (en) 1991-02-16
EP0274953B1 (en) 1990-09-12

Similar Documents

Publication Publication Date Title
NO166035B (en) PROCEDURE FOR THE PREPARATION OF ORGANIC CARBONATES BY TRANSFERING A CARBON ACID DIETER.
US4181676A (en) Process for the preparation of dialkyl carbonates
Shaikh et al. Dialkyl and diaryl carbonates by carbonate interchange reaction with dimethyl carbonate
EP0255252B1 (en) Process for cosynthesis of ethylene glycol and dimethyl carbonate
EP0095077B1 (en) Novel fluorodioxoles and fluorodioxole polymers
EP0026547A1 (en) Process for the preparation of basic salts of alkaline earth metals
KR910003334B1 (en) Process for the preparation of unsaturated carboxylic acid amides
EP0062120B1 (en) Alkyl perfluoro(2-methyl-5-oxo-3-oxahexanoates) and derivatives thereof
CA1175800A (en) Vinylation reaction
CA1247649A (en) Barium hydroxide/lower alcohol catalysts for oxyalkylation reactions
WO2007096346A1 (en) Process for the preparation of an alkanediol and a dialkyl carbonate
US5214182A (en) Process for cogeneration of ethylene glycol and dimethyl carbonate
WO2010063694A1 (en) Process for removing an alkanol impurity from an organic carbonate stream
US5110991A (en) Heterogeneous catalyst for alkoxylation of alcohols
KR102091047B1 (en) Low-viscosity concentrated solutions of alkaline earth metal alkoxides in aprotic solvents and processes for preparation thereof
CN101148502A (en) Method for preparing acyclic oligomeric polyhydric alcohol carbonate
IE58072B1 (en) Process for the synthesis of 2,2,2-trifluoroethanol and 1,1,1,3,3,3-hexafluoroisopropyl alcohol
JPH11130728A (en) Production of mono-tertiary-alkyl ester of malonic acid
US3127450A (en) Process for the preparation of ketals
US20020038041A1 (en) Glycidyl carbonates
JP3731925B2 (en) Monovinyl ether production method
WO2009135851A1 (en) Process for preparing alkanediol and dialkyl carbonate
ES2883278T3 (en) Production of propylene glycol monoalkyl ether
JPH0717577B2 (en) Process for producing methacrylic acid ester of ether group-containing alcohol
EP0163533B1 (en) Process for preparing adducts of alcohols, ethers and esters with 1,2-dichlorodifluoroethylene