NO156117B - PROCEDURE FOR THE MANUFACTURE OF METAL POWDER. - Google Patents

PROCEDURE FOR THE MANUFACTURE OF METAL POWDER. Download PDF

Info

Publication number
NO156117B
NO156117B NO802410A NO802410A NO156117B NO 156117 B NO156117 B NO 156117B NO 802410 A NO802410 A NO 802410A NO 802410 A NO802410 A NO 802410A NO 156117 B NO156117 B NO 156117B
Authority
NO
Norway
Prior art keywords
foil
alloy
foils
metal powder
procedure
Prior art date
Application number
NO802410A
Other languages
Norwegian (no)
Other versions
NO156117C (en
NO802410L (en
Inventor
Wolfgang Gruhl
Edgard Lossack
Original Assignee
Vaw Ver Aluminium Werke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaw Ver Aluminium Werke Ag filed Critical Vaw Ver Aluminium Werke Ag
Publication of NO802410L publication Critical patent/NO802410L/en
Publication of NO156117B publication Critical patent/NO156117B/en
Publication of NO156117C publication Critical patent/NO156117C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/008Rapid solidification processing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys

Description

Oppfinnelsen vedrører en fremgangsmåte til fremstilling av metallpulver av folier og folieformede granulater på aluminium-basis hvis legeringsbestanddeler ved hjelp av høy størknings-hastighet i størrelsesorden fra 10 5 til 10 6°C pr. sekund over-føres i overmettede oppløsninger. The invention relates to a method for the production of metal powder from foils and foil-shaped granules on an aluminum basis whose alloy constituents by means of a high solidification rate in the order of magnitude from 10 5 to 10 6 °C per second is transferred into supersaturated solutions.

Ifølge DE-OS 27 43 090 er det kjent i en innretning for opp-deling og hurtig stivning av metalliske smelter med en sentral-roterende tallerken å fremstille folieformede granulater på basis av aluminium. Granulatene skal ved den høye stivningshastighet på mer enn 10^°C pr. sekund få en optimal struktur-oppbygning og være spesielt egnet for videreforarbeiding ved forpressing og strengpressing, eventuelt trådtrekking. Med den kjente innretningen skal det oppnås at ved aluminiums-legeringer med noen vekt-% jern vokser mengden av fint hurtigstivnede granulatpartikler, og mengden av grovere leger-ingspartikler som er stivnet med ikke tilstrekkelig hastighet, nedsettes. De med de kjente granulater fremstilte halvfabrikata skal ha gode mekaniske egenskaper og korrosjonsfastighet samt kunne anvendes inntil en temperatur på 300°C. According to DE-OS 27 43 090, it is known in a device for dividing and rapidly solidifying metallic melts with a central rotating plate to produce foil-shaped granules based on aluminium. At the high solidification rate of more than 10^°C per second get an optimal structural build-up and be particularly suitable for further processing by pre-pressing and strand pressing, possibly wire drawing. With the known device, it is to be achieved that in the case of aluminum alloys with some weight % iron, the amount of fine, rapidly solidified granule particles increases, and the amount of coarser alloy particles that are solidified at an insufficient speed is reduced. The semi-finished products made with the known granules must have good mechanical properties and corrosion resistance and can be used up to a temperature of 300°C.

For å virkeliggjøre en høy avkjølingshastighet fra IO<5>til 10^°C pr. sekund må metallsmeltens varme umiddelbart over-føres til et metallisk fast legeme. Derved bør smelte-sjiktets tykkelse bare være liten for at det kan oppnås den nødvendige ekstremt høye avkjølingshastighet i det samlede tverrsnitt. Dette er blitt forsøkt på forskjellige måter. Således ble flytende metalldråper av en legering av aluminium med 8% Fe sammenpresset mellom to kjølte kopper-plater. Man har også forsøkt å helle metallet mellom to koppervalser med meget snever spalte. I alle tilfeller får man imidlertid bare metallfolie hvis tykkelse ligger omtrent mellom 10 og 100 um. Ved større tykkelser lar det seg på grunn av for langsom avkjølingshastighet ikke gjøre å oppnå den ønskede struktur. To realize a high cooling rate from 10<5> to 10^°C per second, the heat of the metal melt must be immediately transferred to a metallic solid body. Thereby, the thickness of the molten layer should only be small so that the necessary extremely high cooling rate can be achieved in the overall cross-section. This has been attempted in various ways. Thus, liquid metal drops of an alloy of aluminum with 8% Fe were compressed between two cooled copper plates. Attempts have also been made to pour the metal between two copper rollers with very narrow slits. In all cases, however, you only get metal foil whose thickness is approximately between 10 and 100 µm. With larger thicknesses, it is not possible to achieve the desired structure due to too slow a cooling rate.

For å nytte de gunstige egenskaper av tynne metallfolier, To take advantage of the favorable properties of thin metal foils,

har man forsøkt herav ved valsing, strengpressing eller smiing å fremstille kompakte halvfabrikata. Disse er imidlertid i deres samlede tverrsnitt ikke tilstrekkelig tette og kompakte . attempts have been made to produce compact semi-finished products from this by rolling, strand pressing or forging. However, these are not sufficiently dense and compact in their overall cross-section.

Oppfinnelsen vedrører en fremgangsmåte til fremstilling av metallpulvere av folier og folieformede granulater av en aluminiumlegering, hvis legeringbestanddeler ved høy stivningshastighet i størrelsesorden fra 10 til 10 °C/sek. overføres i en fast overmettet oppløsning, idet fremgangsmåten erkarakterisert vedat folier resp. folieformede granulater av en AlCuMg- eller AlZnMgCu-legering med 5 til 8% Fe, Co eller Ni knuses til en partikkelstørrelse mellom 10 og 50 |am, idet forholdet mellom lengde og bredde og tykkelse av enkeltpartiklene ikke overskrider faktoren 10. The invention relates to a method for producing metal powders from foils and foil-shaped granules of an aluminum alloy, whose alloy constituents at a high solidification rate in the order of 10 to 10 °C/sec. is transferred in a solid supersaturated solution, as the method is characterized by foils or foil-shaped granules of an AlCuMg or AlZnMgCu alloy with 5 to 8% Fe, Co or Ni are crushed to a particle size between 10 and 50 |am, the ratio between length and width and thickness of the individual particles not exceeding a factor of 10.

Ifølge oppfinnelsen er dette mulig når disse folier eller foliestykker før kompaktering og forming males i en egnet slag- eller skjæremølle til fint pulver hvis partikkel-størrelse ikke utgjør mer enn 10 ganger tykkelsen av folie-materialet. Et på denne måte frembragt metallpulver lar seg under oppvarming eventuelt i vakuum eller beskyttelses-gass forarbeide til kompakte partikler som enten umiddelbart finner anvendelse som formdeler eller deretter videre-formes ved valsing, smiing eller strengpressing og således kan bringes i alle ønskede halvfabrikataformer. På denne måten lar det seg fremstille anvendelsesklare halvfabrikata av enhver ønsket sammensetning. Derved er det mulig å kombinere egenskapene ifølge splat-cooling-metoden frembragte aluminiumlegeringer med Fe, Ni, Co, Ti, Zr, Cr, W, Mo, V According to the invention, this is possible when these foils or foil pieces, before compacting and shaping, are ground in a suitable impact or cutting mill to a fine powder whose particle size does not amount to more than 10 times the thickness of the foil material. A metal powder produced in this way can, under heating, optionally in a vacuum or protective gas, be processed into compact particles which either immediately find use as mold parts or are then further shaped by rolling, forging or strand pressing and can thus be brought into any desired semi-finished form. In this way, it is possible to produce ready-to-use semi-finished products of any desired composition. Thereby, it is possible to combine the properties of aluminum alloys produced according to the splat-cooling method with Fe, Ni, Co, Ti, Zr, Cr, W, Mo, V

og lignende med de konvensjonelle legeringers. Således har eksempelvis en AlCuMg- eller AlZnMgCu-legering som for-uten de vanlige innhold av Cu, Mg, Zn dessuten også til-settes 6-8 vekt-% Fe, Co eller Ni, en fasthet som ligger langt over de kjente verdier. Samtidig forbedres tallrike andre egenskaper, spesielt også varmfasthet, permanent and the like with the conventional alloys. Thus, for example, an AlCuMg or AlZnMgCu alloy to which, in addition to the usual contents of Cu, Mg, Zn, 6-8% by weight Fe, Co or Ni is also added, has a strength that is far above the known values. At the same time, numerous other properties, especially heat resistance, are permanently improved

svingforhold og korrosjonsbestandighet. turning conditions and corrosion resistance.

På den nevnte måte er det mulig å fremstille helt nye leger-inger med hittil enda ikke oppnåelige egenskaper. In the aforementioned manner, it is possible to produce completely new alloys with hitherto unattainable properties.

Metallpulveret består fortrinnsvis av enkeltpartikler hvor forholdet mellom lengde respektivt bredde:tykkelse av enkeltpartiklene ikke overskrider faktoren 10. Dette betyr at hver partikkel med en bestemt utgangstykkelse males så sterkt at den største utvidelse (målt i den opprinnelige folieplan) ikke overstiger 10 ganger folietykkelsen. Det oppnås altså plateformede partikler. The metal powder preferably consists of individual particles where the ratio between length and width:thickness of the individual particles does not exceed a factor of 10. This means that each particle with a specific initial thickness is ground so strongly that the largest expansion (measured in the original foil plane) does not exceed 10 times the foil thickness. Plate-shaped particles are thus obtained.

Ved andre partikkeldimensjoner respektivt former oppnås ingen kompakte halvfabrikata som er tilstrekkelig tette. Dette er å føre tilbake på at det ikke finner sted noen sammensveising på alle sider av partiklene. With other particle dimensions or shapes, no compact semi-finished products are obtained that are sufficiently dense. This is due to the fact that no coalescence takes place on all sides of the particles.

Claims (1)

Fremgangsmåte til fremstilling av metallpulvere av folierProcess for the production of metal powders from foils og folieformede granulater av en aluminiumlegering, hvis legeringsbestanddeler ved høy stivningshastighet i størrelses-5 6 o orden fra 10 til 10 C/sek. overføres i en fast overmettet oppløsning,karakterisert vedat folier resp. folieformede granulater av en AlCuMg- eller AlZnMgCu-legering med 5 til 8% Fe,Co eller Ni knuses til en partikkel-størrelse mellom 10 og 50 um, idet forholdet mellom lengde og bredde og tykkelse av enkeltpartiklene ikke overskrider faktoren 10.and foil-shaped granules of an aluminum alloy, whose alloy constituents at a high solidification rate in the order of 10 to 10 C/sec. transferred in a solid supersaturated solution, characterized by foils or foil-shaped granules of an AlCuMg or AlZnMgCu alloy with 5 to 8% Fe,Co or Ni are crushed to a particle size between 10 and 50 µm, the ratio between length and width and thickness of the individual particles not exceeding a factor of 10.
NO802410A 1979-11-15 1980-08-12 PROCEDURE FOR THE MANUFACTURE OF METAL POWDER. NO156117C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2946135A DE2946135C2 (en) 1979-11-15 1979-11-15 Process for further comminution of metal powder

Publications (3)

Publication Number Publication Date
NO802410L NO802410L (en) 1981-05-18
NO156117B true NO156117B (en) 1987-04-21
NO156117C NO156117C (en) 1987-07-29

Family

ID=6086066

Family Applications (1)

Application Number Title Priority Date Filing Date
NO802410A NO156117C (en) 1979-11-15 1980-08-12 PROCEDURE FOR THE MANUFACTURE OF METAL POWDER.

Country Status (4)

Country Link
EP (1) EP0029087A1 (en)
JP (1) JPS5690903A (en)
DE (1) DE2946135C2 (en)
NO (1) NO156117C (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3113886C2 (en) * 1981-04-07 1983-01-20 Eckart-Werke Standard-Bronzepulver-Werke Carl Eckart, 8510 Fürth Process for the production of a metal or metal alloy powder
US4389258A (en) * 1981-12-28 1983-06-21 Allied Corporation Method for homogenizing the structure of rapidly solidified microcrystalline metal powders
FR2537656B1 (en) * 1982-12-08 1987-12-24 Pechiney Aluminium PISTON INSERTS OF DIESEL ENGINES OF ALUMINUM-SILICON ALLOYS HAVING IMPROVED HOT RESISTANCE AND WORKABILITY
JPS6075503A (en) * 1983-09-29 1985-04-27 Kobe Steel Ltd Manufacture of metallic powder solidified by rapid cooling
JPS6148551A (en) * 1984-08-13 1986-03-10 Sumitomo Light Metal Ind Ltd Formed material having superior strength at high temperature made of aluminium alloy material solidified by rapid cooling
JPS62256901A (en) * 1986-04-30 1987-11-09 Nippon Steel Corp Intermetallic compound al3ti powder and its production
JPS62256902A (en) * 1986-04-30 1987-11-09 Nippon Steel Corp Intermetallic al3ti powder and its production
JPH07101035B2 (en) * 1988-12-19 1995-11-01 住友電気工業株式会社 Al alloy rotary gear pump and manufacturing method thereof
US5039476A (en) * 1989-07-28 1991-08-13 Ube Industries, Ltd. Method for production of powder metallurgy alloy
US5141145A (en) * 1989-11-09 1992-08-25 Allied-Signal Inc. Arc sprayed continuously reinforced aluminum base composites

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1028791B (en) * 1951-05-10 1958-04-24 Aluminium Ind Ag Aluminum flake powder and method of making the same
DE939537C (en) * 1951-05-10 1956-02-23 Aluminium Ind Ag Process for the production of aluminum sintered bodies
DE1207631B (en) * 1956-12-14 1965-12-23 Kaiser Aluminium Chem Corp Process for the powder metallurgical production of heat-resistant aluminum alloys and alloys produced afterwards
US2963780A (en) * 1957-05-08 1960-12-13 Aluminum Co Of America Aluminum alloy powder product
DE1248302B (en) * 1963-06-29 1967-08-24 Bundesrep Deutschland Process for the production of heat-resistant, dispersion-hardened aluminum alloys
DE1224049B (en) * 1965-05-11 1966-09-01 Bundesrep Deutschland Method and device for the production of ductile and at the same time strong, in particular heat-resistant aluminum alloys
GB1192030A (en) * 1967-12-30 1970-05-13 Ti Group Services Ltd Aluminium Alloys
GB1349452A (en) * 1970-09-10 1974-04-03 Ti Group Services Ltd Production of an aluminium product
SE7414811L (en) * 1974-11-26 1976-05-28 Skf Nova Ab METAL POWDER LEMPAT FOR POWER METALLURGIC ANDAMAL AND PROCEDURE FOR THE PREPARATION OF THE METAL POWDER
SE7414810L (en) * 1974-11-26 1976-05-28 Skf Nova Ab METAL FLAKE PRODUCT LEMPAD FOR THE MANUFACTURE OF METAL POWDER FOR POWDER METALLURGIC FOR SALE AND METHODS OF MANUFACTURE PRODUCTS
FR2311391A1 (en) * 1975-05-14 1976-12-10 Pechiney Aluminium ELECTRICAL CONDUCTORS IN AL FE ALLOYS OBTAINED BY SHELL SPINNING
DE2532875C3 (en) * 1975-07-23 1978-03-23 Battelle-Institut E.V., 6000 Frankfurt Method and device for crucible-free granulation of metals and metal alloys
DE2743090C3 (en) * 1977-09-24 1980-04-30 Battelle-Institut E.V., 6000 Frankfurt Device for the production of film-shaped granulates from metallic melts

Also Published As

Publication number Publication date
DE2946135C2 (en) 1982-09-16
NO156117C (en) 1987-07-29
DE2946135B1 (en) 1980-12-11
EP0029087A1 (en) 1981-05-27
NO802410L (en) 1981-05-18
JPS5690903A (en) 1981-07-23

Similar Documents

Publication Publication Date Title
KR920004680B1 (en) High strength heat-resistant alluminum-based alloy
EP0219628B1 (en) Rapidly solidified high strength, corrosion resistant magnesium base metal alloys
JP5239022B2 (en) High strength and high toughness magnesium alloy and method for producing the same
US4997622A (en) High mechanical strength magnesium alloys and process for obtaining these alloys by rapid solidification
NO178795B (en) Magnesium-based alloys with high strength
JPH0328500B2 (en)
EP1545814B1 (en) Method and apparatus for producing amorphous alloy sheet, and amorphous alloy sheet produced using the same
NO156117B (en) PROCEDURE FOR THE MANUFACTURE OF METAL POWDER.
CN104942271A (en) Beryllium-aluminum alloy sheet and manufacturing method thereof
US5028277A (en) Continuous thin sheet of TiAl intermetallic compound and process for producing same
EP0460234B1 (en) Sheet of titanium-aluminum intermetallic compound and process for producing the same
Matsuki et al. Superplasticity of Rapidly Solidified 7475 Al-Alloys with 0.7 wt.% Zr
US3010824A (en) Method of manufacture of an aluminum alloy, and the alloy obtained by this process
US5196074A (en) Copper alloys capable of spinodal decomposition and a method of obtaining such alloys
US20030185701A1 (en) Process for the production of Al-Fe-V-Si alloys
US4163665A (en) Aluminum alloy containing manganese and copper and products made therefrom
US3445920A (en) Aluminum base alloy production
Webster et al. Mechanical properties and microstructure of argon atomized aluminum-lithium powder metallurgy alloys
US5193605A (en) Techniques for preparation of ingot metallurgical discontinuous composites
Duszczyk et al. Properties of particles produced by different rapid solidification techniques
US4389258A (en) Method for homogenizing the structure of rapidly solidified microcrystalline metal powders
US3254993A (en) Zinc alloy and method of making same
US3510277A (en) Metallic article
JPH0518891B2 (en)
Bagliuk et al. Sintered Al–Si–Ni Alloy: Structure and Properties. I. Powder Obtaining