NO143700B - HEAT-FAST, DEEDBRENT MAGNESIA-BASED GRAIN MATERIAL AND PROCEDURES FOR PRODUCING THEREOF - Google Patents

HEAT-FAST, DEEDBRENT MAGNESIA-BASED GRAIN MATERIAL AND PROCEDURES FOR PRODUCING THEREOF Download PDF

Info

Publication number
NO143700B
NO143700B NO752949A NO752949A NO143700B NO 143700 B NO143700 B NO 143700B NO 752949 A NO752949 A NO 752949A NO 752949 A NO752949 A NO 752949A NO 143700 B NO143700 B NO 143700B
Authority
NO
Norway
Prior art keywords
weight
heat
dead
dicalcium silicate
magnesia
Prior art date
Application number
NO752949A
Other languages
Norwegian (no)
Other versions
NO143700C (en
NO752949L (en
Inventor
Kermit Mark Bonar
Original Assignee
Dresser Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dresser Ind filed Critical Dresser Ind
Publication of NO752949L publication Critical patent/NO752949L/no
Publication of NO143700B publication Critical patent/NO143700B/en
Publication of NO143700C publication Critical patent/NO143700C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • C04B35/0435Refractories from grain sized mixtures containing refractory metal compounds other than chromium oxide or chrome ore

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Processing Of Solid Wastes (AREA)
  • Glass Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Ceramic Products (AREA)

Description

Denne oppfinnelse angår et varmefast, dødbrent magnesia-basert kornmateriale med en relativ densitet This invention relates to a heat-resistant, dead-burnt magnesia-based granular material with a relative density

på over 3,3, karakterisert vedof over 3.3, characterized by

at det består av 85-95 vekt% periklas, 2,5-7,7 vekt% kalsiumzirkonat og 2,4-7,4 vekt% dikalsiumsilikat, og at det har periklaskrystallitter som er omgitt av en film av dikalsiumsilikat, og finkrystallinsk kalsiumzirkonat innen filmen. that it consists of 85-95 wt% periclase, 2.5-7.7 wt% calcium zirconate and 2.4-7.4 wt% dicalcium silicate, and that it has periclase crystallites which are surrounded by a film of dicalcium silicate, and finely crystalline calcium zirconate within the film.

En foretrukken utførelsesform går ut på at kornmaterialet A preferred embodiment is that the grain material

inneholder opptil 10 vekt% kalsiumzirkonat pluss dikalsiumsilikat. contains up to 10% by weight of calcium zirconate plus dicalcium silicate.

Oppfinnelsen angår også en fremgangsmåte til fremstilling The invention also relates to a method for production

av et varmefast, dødbrent magnesia-basert kornmateriale med en relativ densitet of a heat-resistant, dead-burnt magnesia-based granular material with a relative density

på over 3,3. of over 3.3.

Ved fremstilling av stål har utviklingen gått i retning av stadig større konvertere for oksygenbehandlingen. Dette har medført store krav til de varmefaste materialer som anvendes i konverterforingen. Mange store konvertere (det vil si de som har en kapasitet på 150 tonn og derover) fores delvis med brent tjæ-reimpregnert magnesittsten, hvilket i og for seg er en relativt ny utvikling. I disse konvertere anvendes også sten som er bundet sammen med tjærematerialer. In the production of steel, development has gone in the direction of increasingly large converters for the oxygen treatment. This has resulted in high demands on the heat-resistant materials used in the converter lining. Many large converters (that is, those with a capacity of 150 tonnes and above) are partially lined with burnt tar-reimpregnated magnesite stone, which in itself is a relatively new development. In these converters, stone is also used which is bound together with tar materials.

Magnesittsten er varmefast sten som fremstilles hovedsakelig eller fullstendig av dødbrent magnesitt. Dødbrent magnesitt er det granulære produkt som fås ved brenning av mineralet magnesitt (MgCO^) eller andre materialer som kan omdannes til magnesia (MgO) ved oppheting til temperaturer på ca. 1900°C eller høyere i tilstrekkelig lang tid til at det dannes hydratasjonsresistente granuler med høy tetthet. Dødbrent magnesitt betegnes av fagfolk ofte bare "magnesitt". Magnesitter fås av naturlige og syntetiske materialer med stort sett ekvivalente egenskaper. Magnesitter fra naturlige materialer er produkter som fremstilles ved behandling av naturlig forekommende mineraler, så som magnesitt, breunneritt og brucitt. Magnesitter fremstilt av syntetiske materialer erholdes ved utfelling av magnesiumforbindelser fra sjøvann og'magnesium-holdige saltløsninger. Ved den foreliggende oppfinnelse fremstilles magnesia-baserte kornmaterialer ut fra syntetiske materialer, hvilket er økonomisk fordelaktig. Magnesite stone is a heat-resistant stone that is produced mainly or completely from dead-burnt magnesite. Dead-burnt magnesite is the granular product obtained by burning the mineral magnesite (MgCO^) or other materials that can be converted to magnesia (MgO) by heating to temperatures of approx. 1900°C or higher for a sufficient time to form hydration-resistant granules of high density. Dead-burnt magnesite is often referred to by professionals as simply "magnesite". Magnesites are obtained from natural and synthetic materials with largely equivalent properties. Magnesites from natural materials are products that are produced by processing naturally occurring minerals, such as magnesite, breunnerite and brucite. Magnesites made from synthetic materials are obtained by precipitation of magnesium compounds from seawater and magnesium-containing salt solutions. In the present invention, magnesia-based grain materials are produced from synthetic materials, which is economically advantageous.

Sten fremstilt av meget rene syntetiske magnesittmaterialer med kalk/silika-molforhold litt over eller under 2 : 1, er meget varmefaste, men er uheldigvis noe vanskelige å frem-stille. Mange av disse stentyper viser en uheldig tilbøyelighet til avskalling under cykliske temperaturvariasjoner. Forskjellige flukser, dødbrenningsmidler etc. er blitt foreslått som additiver til det granulære materiale eller til stenen som fremstilles derav, med sikte på å øke tettheten og å motvirke tendensen til avskalling; men slike flukser, som riktignok øker tettheten og i noen tilfeller reduserer avskallingstendensen, viste seg å nedsette den brente stenens varmefasthet, redusere dens motstandsdyktighet mot korrosive gasser og har stort sett ikke vist seg helt tilfredsstil-lende . Stones made from very pure synthetic magnesite materials with a lime/silica molar ratio slightly above or below 2:1 are very heat-resistant, but are unfortunately somewhat difficult to produce. Many of these rock types show an unfortunate tendency to flaking under cyclical temperature variations. Various fluxes, dead-burning agents, etc., have been suggested as additives to the granular material or to the stone produced therefrom, with a view to increasing the density and counteracting the tendency to scale; but such fluxes, which admittedly increase the density and in some cases reduce the tendency to flaking, proved to reduce the heat resistance of the burnt stone, reduce its resistance to corrosive gases and have mostly not proved completely satisfactory.

Det er kjent å blande zirkon med magnesitt og således oppnå en varmefast blanding. Det tidligste arbeide på dette område er, såvidt vites, Rees and Chesters, Trans. Ceramic SOC, London, Vol. 29, side 309, mai 1930, som foreslår en blanding av magnesitt og zirkon med gråleire, øyensynlig som et dødbrenningsmiddel, for fremstilling av en ny varmefast forbindelse. It is known to mix zircon with magnesite and thus obtain a heat-resistant mixture. The earliest work in this area, as far as is known, is Rees and Chesters, Trans. Ceramic SOC, London, Vol. 29, page 309, May 1930, which suggests a mixture of magnesite and zircon with gray clay, apparently as a dead-burning agent, for the preparation of a new refractory compound.

I U.S. patent 1 952 120 erkjenner Comstock det bidrag som Rees og chesters har gitt, men påpeker visse vanskeligheter som han møtte da han fulgte deres anvisninger. Comstock foreslår fremstilling av et magnesitt-zirkon-maleprodukt. Dette fremstilles ved maling av magnesitt og zirkon til et pulver, idet man smelter en blanding av ca. 80% pulverisert zirkon og 20% pulverisert magnesitt, kjøler smeiten og pulveriserer den; dette pulveriserte smeltemateriale skulle så brukes som bindemiddel for ytterligere mengder grov magnesitt. Den således erholdte magnesitt formes etter ønske og brennes ved ca. 1540°C. Comstock hevder at han opp-når formstykker med meget stabilt volum og resistens mot avskalling. Det er selvsagt åpenbart at denne dobbelte maling eller pul-verisering og dobbelte brenning, som foreslås av Comstock, kan bli ganske kostbar med hensyn til arbeidskraft og materialbehandling. In the U.S. patent 1,952,120, Comstock acknowledges the contribution made by Rees and Chesters, but points out certain difficulties that he encountered in following their directions. Comstock proposes the manufacture of a magnesite-zircon grinding product. This is produced by grinding magnesite and zircon into a powder, melting a mixture of approx. 80% powdered zircon and 20% powdered magnesite, cools the smelt and pulverizes it; this pulverized melt material was then to be used as a binder for further quantities of coarse magnesite. The magnesite thus obtained is shaped as desired and fired at approx. 1540°C. Comstock claims that he achieves molded pieces with very stable volume and resistance to peeling. Of course, it is obvious that this double painting or pulverizing and double firing, as suggested by Comstock, can become quite expensive in terms of labor and material handling.

I U.S. patent nr. 3 192 059 beskriver Good et al fremstilling av magnesitt-zirkon-sten laget av et materiale inneholdende minst 10% zirkon. In the U.S. patent no. 3 192 059 Good et al describes the production of magnesite zircon stone made from a material containing at least 10% zircon.

Fremgangsmåten ifølge oppfinnelsen til fremstilling The method according to the invention for production

av et varmefast, dødbrent magnesia-basert kornmateriale er karakterisert ved at man blander magnesiumhydroksyd-oppslemning, kalkavgivende materiale og zirkon i mengdeforhold tilstrekkelig til å gi et MgO-innhold mellom 85 og 95 vekt% og kalsinerer blandingen med påfølgende dødbrenning til et kornmateriale som vesentlig består av 2,5-7,7 vekt% kalsiumzirkonat, of a heat-resistant, dead-burnt magnesia-based grain material is characterized by mixing magnesium hydroxide slurry, lime-releasing material and zircon in quantities sufficient to give an MgO content of between 85 and 95% by weight and calcining the mixture with subsequent dead-burning to a grain material that essentially consists of 2.5-7.7% by weight calcium zirconate,

2,4-7,4 vekt% dikalsiumsilikat og resten periklas. 2.4-7.4% by weight dicalcium silicate and the rest periclase.

Materialet kan mineralogisk karakteriseres som inneholdende periklaskrystallitter omgitt av en film av dikalsiumsilikat og fin-delt krystallinsk kalsiumzirkonat innen filmen. Kornene har en relativ densitet på ca. 3,3 eller høyere. The material can be mineralogically characterized as containing periclase crystallites surrounded by a film of dicalcium silicate and finely divided crystalline calcium zirconate within the film. The grains have a relative density of approx. 3.3 or higher.

Oppslemningen kalsineres ved tilstrekkelig høy temperatur til at alt fritt vann drives ut. Materialet blir så brikettert på i og for seg kjent måte og brennes ved temperaturer over 1650°C i opp til ca. fem timer. The slurry is calcined at a sufficiently high temperature to expel all free water. The material is then briquetted in a manner known per se and burned at temperatures above 1650°C for up to approx. five hours.

I det følgende eksempel er alle prosentangivelser på vekt-basis; kjemiske analysedata erholdtes ved spektrografiske analyser kontrollert ved hjelp av kjemiske våtveisanalyser og er angitt som oksyder, idet dette er vanlig praksis i angjeldende industri. Alle størrelser er målt ved hjelp av "Tyler Standard Screen Scale Sie-ves" . In the following example, all percentages are on a weight basis; chemical analysis data were obtained by spectrographic analysis controlled by means of chemical wet road analyzes and are indicated as oxides, as this is common practice in the relevant industry. All sizes are measured using "Tyler Standard Screen Scale Sieves".

Eksempel Example

Kornmaterialet i dette eksempel ble fremstilt ved oppslemning av en blanding av kaustisk magnesia inneholdende ca. 98% MgO, med hydratisert dolomitt og zirkon av størrelse minus 400 mesh i en mengde på henholdsvis 86,2 3%, 9,84% og 3,93%. Oppslemningen ble tørket og brikettert med i og for seg kjent apparatur (Komarek-Graaves Rolls) på lignende måte som ifølge U.S. patent nr. 3 060 000 (som hermed vises til). Brikettene ble brent ved 1727°c i 5 timer. Kornmaterialets romvekt var 3,39 kg/dm 3. Røntgenanalyse indikerte fullstendig reaksjon av dolomitten og zirkonet under dan-nelse av ca. 10% dikalsiumsilikat og kalsiumzirkonat, resten periklas. Analyse av kornmaterialet viste ca. 1,8% Si02/ 0,4% Al^ O^, 0,3% Fe203, 5,4% CaO, 3% Zr02, resten var MgO. The grain material in this example was produced by slurrying a mixture of caustic magnesia containing approx. 98% MgO, with hydrated dolomite and zircon of size minus 400 mesh in an amount of 86.2 3%, 9.84% and 3.93% respectively. The slurry was dried and briquetted with per se known apparatus (Komarek-Graaves Rolls) in a similar manner as according to U.S. patent no. 3 060 000 (to which reference is hereby made). The briquettes were burned at 1727°c for 5 hours. The bulk density of the grain material was 3.39 kg/dm 3. X-ray analysis indicated complete reaction of the dolomite and the zircon with the formation of approx. 10% dicalcium silicate and calcium zirconate, the rest periclase. Analysis of the grain material showed approx. 1.8% SiO 2 / 0.4% Al^ O^ , 0.3% Fe 2 O 3 , 5.4% CaO, 3% ZrO 2 , the rest was MgO.

Kornmaterialet ble så størrelsesgradert til minus 3 mesh og nedover til kulemøllestøv og blandet med 4% bek med et myknings-punkt på ca. 82,2-87,8°C, samt 2,3% kjønrøk. Blandingen ble for-met til sten på vanlig måte og brent ved 260°c i 5 timer. Stenen viste en bruddfasthet på gjennomsnittlig 117,5 kp/cm , og i dryppe-slaggprøven (BOF) ble ca. 20 cm <3>erodert. The grain material was then size graded to minus 3 mesh and down to ball mill dust and mixed with 4% pitch with a softening point of approx. 82.2-87.8°C, as well as 2.3% carbon black. The mixture was formed into stone in the usual way and fired at 260°C for 5 hours. The stone showed a breaking strength of 117.5 kp/cm on average, and in the drip slag test (BOF) approx. 20 cm <3>eroded.

Claims (3)

1. Varmefast, dødbrent magnesia-basert kornmateriale med en relativ densitet på over 3,3, karakterisert ved at det består av 85-95 vekt% periklas, 2,5-7,7 vekt% kalsiumzirkonat og 2,4-7,4 vekt% dikalsiumsilikat, og at det har periklaskrystallitter som er omgitt av en film av dikalsiumsilikat, og finkrystallinsk kalsiumzirkonat innen filmen.1. Heat-resistant, dead-burnt magnesia-based granular material with a relative density of over 3.3, characterized in that it consists of 85-95% by weight periclase, 2.5-7.7% by weight calcium zirconate and 2.4-7.4 wt% dicalcium silicate, and that it has periclase crystallites which are surrounded by a film of dicalcium silicate, and fine crystalline calcium zirconate within the film. 2. Kornmateriale ifølge krav 1, karakterisert ved at det inneholder opp til 10 vekt% kalsiumzirkonat pluss dikalsiumsilikat.2. Grain material according to claim 1, characterized in that it contains up to 10% by weight of calcium zirconate plus dicalcium silicate. 3. Fremgangsmåte til fremstilling av et varmefast, dødbrent magnesia-basert kornmateriale med en relativ densitet på over 3,3, karakterisert ved at man blander magnesiumhydroksyd-oppslemning, kalkavgivende materiale og zirkon i mengdeforhold tilstrekkelig til å gi et MgO-innhold mellom 85 og 95 vekt% og kalsinerer blandingen med påfølgende dødbrenning til et kornmateriale som vesentlig består av 2,5-7,7 vekt% kalsiumzirkonat, 2,4-7,4 vekt% dikalsiumsilikat og resten periklas.3. Method for producing a heat-resistant, dead-burnt magnesia-based granular material with a relative density of over 3.3, characterized by mixing magnesium hydroxide slurry, lime-releasing material and zircon in proportions sufficient to give an MgO content of between 85 and 95% by weight and calcining the mixture with subsequent dead-burning to a granular material which essentially consists of 2.5-7.7% by weight calcium zirconate, 2.4-7.4% by weight dicalcium silicate and the rest periclase.
NO752949A 1974-08-28 1975-08-27 HEAT-FIXED, DEEDBRENT MAGNESIA-BASED GRAIN MATERIALS AND PROCEDURES FOR PRODUCING THEREOF NO143700C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US49968274A 1974-08-28 1974-08-28

Publications (3)

Publication Number Publication Date
NO752949L NO752949L (en) 1976-03-02
NO143700B true NO143700B (en) 1980-12-22
NO143700C NO143700C (en) 1981-04-01

Family

ID=23986259

Family Applications (1)

Application Number Title Priority Date Filing Date
NO752949A NO143700C (en) 1974-08-28 1975-08-27 HEAT-FIXED, DEEDBRENT MAGNESIA-BASED GRAIN MATERIALS AND PROCEDURES FOR PRODUCING THEREOF

Country Status (10)

Country Link
JP (1) JPS5134911A (en)
BR (1) BR7505452A (en)
CA (1) CA1055967A (en)
GB (1) GB1485728A (en)
IN (1) IN144867B (en)
IT (1) IT1040701B (en)
NL (1) NL7508418A (en)
NO (1) NO143700C (en)
YU (1) YU37295B (en)
ZA (1) ZA754175B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118018A (en) * 1982-12-23 1984-07-07 亘 重信 Mushroom culture medium
WO1998012150A1 (en) * 1996-09-23 1998-03-26 Premier Periclase Limited A slag resistant sintermagnesia and a method of its production
CN107188584A (en) * 2017-07-18 2017-09-22 海城市中兴镁质合成材料有限公司 A kind of fused magnesite and its preparation technology using dicalcium silicate as combination phase
CN115959890B (en) * 2023-01-09 2023-08-25 营口鼎盛实业有限公司 Preparation method of modified magnesia refractory material

Also Published As

Publication number Publication date
NO143700C (en) 1981-04-01
CA1055967A (en) 1979-06-05
IN144867B (en) 1978-07-22
JPS5134911A (en) 1976-03-25
AU8288675A (en) 1977-01-13
ZA754175B (en) 1976-06-30
YU37295B (en) 1984-08-31
IT1040701B (en) 1979-12-20
NO752949L (en) 1976-03-02
NL7508418A (en) 1976-03-02
GB1485728A (en) 1977-09-14
BR7505452A (en) 1976-08-03
YU196875A (en) 1983-04-27

Similar Documents

Publication Publication Date Title
US7015167B2 (en) Raw material with a high content of aluminum oxide, and method of manufacturing the raw material
CN109982971A (en) Thermally treated agglomerate and its manufacturing method containing &#34; Quick-type &#34; calcium-magnesium compound and calcium ferrite
CN102971274A (en) Magnesia-based refractory material
US3473939A (en) Direct-bonded periclase refractories and process of preparing same
US3381064A (en) Method of making pseudowollastonite clinker with the rotary kiln
US4015977A (en) Petroleum coke composition
Landy Magnesia refractories
US3275461A (en) Refractory
NO143700B (en) HEAT-FAST, DEEDBRENT MAGNESIA-BASED GRAIN MATERIAL AND PROCEDURES FOR PRODUCING THEREOF
WO2002079090A1 (en) Process for producing synthetic spinel
RU2763197C2 (en) Method for synthesis for producing calcium zirconate-containing materials, as well as charge and coarse-ceramic fire-retardant product containing a pre-synthesised granular calcium zirconate-containing material
JP4155932B2 (en) Alumina cement and amorphous refractory
US4212679A (en) Method of making magnesite grain
NO127185B (en)
US3304188A (en) Process for dead-burning dolomite
US3582373A (en) Refractory magnesia
US3074806A (en) Dolomitic refractory
KR100523195B1 (en) Magnesia-titania-alumina-calcia-containing clinker and fire-resistant products comprising thereof
US2744021A (en) Process of making refractory brick and brick
US3429723A (en) Process for the manufacture of refractory magnesia-chrome and chromemagnesia products
KR890000623B1 (en) Refractory
US3770467A (en) Refractory substance
US4366257A (en) Process for producing a calcia clinker
US3736161A (en) Production methods for dolomite magnesite refractory material
JP4481904B2 (en) Spherical calcia clinker and refractory obtained using the same