NO138178B - BIPOLAR ELECTRODE, ESPECIALLY FOR ELECTROLYSIS OF SOLUTIONS OF ALKALIMETAL HALOGENIDES - Google Patents

BIPOLAR ELECTRODE, ESPECIALLY FOR ELECTROLYSIS OF SOLUTIONS OF ALKALIMETAL HALOGENIDES Download PDF

Info

Publication number
NO138178B
NO138178B NO4677/72A NO467772A NO138178B NO 138178 B NO138178 B NO 138178B NO 4677/72 A NO4677/72 A NO 4677/72A NO 467772 A NO467772 A NO 467772A NO 138178 B NO138178 B NO 138178B
Authority
NO
Norway
Prior art keywords
spacers
electrode
metal
titanium
alloy
Prior art date
Application number
NO4677/72A
Other languages
Norwegian (no)
Other versions
NO138178C (en
Inventor
Pierre Bouy
Daniel Collard
Original Assignee
Rhone Progil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Progil filed Critical Rhone Progil
Publication of NO138178B publication Critical patent/NO138178B/en
Publication of NO138178C publication Critical patent/NO138178C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

Foreliggende oppfinnelse angår en bipolar elektrode, særlig The present invention relates to a bipolar electrode, in particular

for elektrolyse av losninger av alkalimetallhalogenider, og som omfatter en katodeplate samt en anodeplate av titan eller et annet metall eller en legering med lignende anodiske egenskaper, og belagt med et ledende belegg som ikke angripes av en foreliggende elektrolytt, idet nevnte plater er anordnet i innbyrdes avstand og med en mellomliggende tett skillevegg anbragt "hovedsaklig parallelt med platene, som dessuten er perforert og elektrisk sammenkoblet gjennom flere avstahds-stykker som er anordnet mellom platene. for the electrolysis of solutions of alkali metal halides, and comprising a cathode plate and an anode plate of titanium or another metal or an alloy with similar anodic properties, and coated with a conductive coating that is not attacked by an electrolyte present, said plates being arranged in one another distance and with an intervening dense partition placed "substantially parallel to the plates, which is furthermore perforated and electrically interconnected through several spacers arranged between the plates.

Det er kjent at bipolare elektroder har den store fordel at de muliggjor en meget kompakt konstruksjon av elektrolytiske celler, samt letter den elektriske stromtilforsel til sådanne celler på. grunn av den elektriske seriekobling av en rekke sådanne elektrolytiske elementarceller. It is known that bipolar electrodes have the great advantage that they enable a very compact construction of electrolytic cells, as well as facilitating the electrical current supply to such cells. due to the electrical series connection of a number of such electrolytic elementary cells.

Det er foreslått mange utforelseformer av sådanne elektroder. Disse er likevel langt fra tilfredsstillende i praksis, særlig Many embodiments of such electrodes have been proposed. These are still far from satisfactory in practice, in particular

på grunn av vanskeligheter ved materialvalget. Ved elektrolyse av alkalimetallklorider, hvor de oppnådde produkter er særskilt korroderende, har det lenge vært kjent at det som anoder bare kan anvendes edelmetaller av platinagruppern, grafitt eller visse oksyder som magnetitt. De forstnevnte kan på grunn av sin pris bare anvendes i form av meget tynne folier, mens. grafitten på grunn av sin raske nedslitning og mindre gode mekaniske egenskaper vanskelig kan anvendes for sådanne kompliserte anodeformer som det. vil være nodvendig å anvende for å oppnå due to difficulties in the choice of material. In the case of electrolysis of alkali metal chlorides, where the products obtained are particularly corrosive, it has long been known that only noble metals of the platinum group, graphite or certain oxides such as magnetite can be used as anodes. Due to their price, the former can only be used in the form of very thin foils, while graphite, due to its rapid wear and less good mechanical properties, can hardly be used for such complicated anode shapes as that. will be necessary to apply to achieve

god elektrolytisk virkningsgrad og tilstrekkelig sirkulasjon av de forskjellige fluider i cellen, særlig ved elektrolyseceller av filterpresse-typen. Magnetitt er på sin side i ennå mindre grad i besittelse av de egenskaper, som gjor et material egnet for foreliggende anvendelse. good electrolytic efficiency and sufficient circulation of the various fluids in the cell, particularly with electrolysis cells of the filter press type. Magnetite, on the other hand, possesses to an even lesser extent the properties that make a material suitable for the present application.

De metaller som har særlig utpregede anodeegenskaper, nemlig titan, zirkonium, nioti, . wolfram og tantal samt deres legeringer, muliggjor imidlertid på grunn av sine gode mekaniske.egenskaper fremstilling av kompliserte, stive anodekonstruksjoner, som vil beholde stabile dimensjoner under sin driftstid, under den forut-setning at de anodisk aktive flater på sådanne anordninger dekkes av et ledende, upåvirkelig skikt, som f.eks. kan utgjores av edelmetaller fra platinagruppen eller oksyder av disse metaller, eventuelt i blanding med andre oksyder. The metals which have particularly pronounced anode properties, namely titanium, zirconium, nioti, . tungsten and tantalum as well as their alloys, however, due to their good mechanical properties, enable the production of complicated, rigid anode constructions, which will retain stable dimensions during their operating time, provided that the anodic active surfaces of such devices are covered by a conductive , unaffected layer, such as e.g. can be made of precious metals from the platinum group or oxides of these metals, possibly in a mixture with other oxides.

Titan, likesom de metaller og legeringer som har tilsvarende anodiske egenskaper, er imidlertid ganske dårlige elektriske ledere, samt er relativt dyre og vanskelig å sveise til andre metaller som er bedre egnet som ledere, eller som utgjor katodisk aktive partier av de bipolare elektroder. Av dette folger at de fleste vanligvis anvendte elektrodekonstruksjoner som gjor bruk av disse metaller eller legeringer med samme egenskaper som titan, utgjores av separate anodekonstruksjoner, hvori for-ovrig disse metaller ofte anvendes i sådanne mengder at de med-forer betraktelige omkostninger. Titanium, like the metals and alloys that have similar anodic properties, are however rather poor electrical conductors, and are relatively expensive and difficult to weld to other metals that are better suited as conductors, or that form cathodically active parts of the bipolar electrodes. It follows from this that most commonly used electrode constructions that make use of these metals or alloys with the same properties as titanium are made up of separate anode constructions, in which these metals are often used in such quantities that they entail considerable costs.

For industrielt bruk er det nå foreslått sammensatte metall-legemer som består av et metall som er anvendbart for de katodiske partier, slik som blott stål eller nikkel, belagt med titan eller et metall eller en legering med analoge anodiske egenskaper, idet påforingen vanligvis skjer ved eksplosjonssveising, likesom andre sammensatte metallstykker uttrukket til forskjellige profiler, For industrial use, composite metal bodies are now proposed which consist of a metal suitable for the cathodic parts, such as bare steel or nickel, coated with titanium or a metal or alloy with analogous anodic properties, the application usually taking place by explosion welding, as well as other composite metal pieces extruded to different profiles,

og hvis ytterskikt utgjores av et lag av titan eller metaller eller legeringer med analoge anodiske egenskaper, og hvis indre utgjores av et annet metall, f.eks.' kobber eller aluminium. I disse forskjellige sammensatte stykker er forbindelsen mellom de sammensatte metaller av forskjellig art, slik at de opprettete and whose outer layer is made of a layer of titanium or metals or alloys with analogous anodic properties, and whose interior is made of another metal, e.g. copper or aluminium. In these different composite pieces, the connection between the composite metals is of different nature, so that they created

elektriske kontakter har en meget liten motstand og sammen-stillingens mekaniske fasthet sikres. Sammenstillingenes eventuelle anvendelse i elektrodekonstruksjoner bor imidlertid sees på bakgrunn av deres hoye pris. electrical contacts have very little resistance and the assembly's mechanical stability is ensured. However, the potential use of the assemblies in electrode constructions should be seen against the background of their high price.

Foreliggende oppfinnelse har som formål å fremskaffe bipolare metallelektroder med hoy strbmtetthet, idet det i sådanne elektrodekonstruksjoner anvendes nevnte sammensatte legemer sammen med metaller som titan eller anodisk analoge metaller eller legeringer samt katodisk anvendbare metaller som blott stål eller nikkel, på sådan måte at best mulig elektrolytisk virkningsgrad oppnås som folge av lave spenningstap og lett sirkulasjon av fluider. The purpose of the present invention is to provide bipolar metal electrodes with a high current density, as in such electrode constructions the said composite bodies are used together with metals such as titanium or anodically analogous metals or alloys as well as cathodically applicable metals such as bare steel or nickel, in such a way that the best possible electrolytic efficiency is achieved as a result of low voltage losses and easy circulation of fluids.

I henhold til oppfinnelsen er dette oppnådd ved at avstandsstykkene omfatter en kjerne av et katodisk anvendbart metall som er påfort et belegg av titan eller et annet metall eller én legering med lignende anodiske egenskaper, idet nevnte avstandsstykker utgjor deler fast forbundet med den tette skillevegg. According to the invention, this has been achieved by the spacers comprising a core of a cathodically usable metal which has been coated with a coating of titanium or another metal or an alloy with similar anodic properties, said spacers forming parts firmly connected to the sealed partition.

Ovrige særtrekk ved oppfinnelsen vil fremgå av de oppstilte underkrav. Other distinctive features of the invention will be apparent from the listed sub-claims.

Oppfinnelsen vil i det folgende bli nærmere beskrevet under henvisning til den vedfoyete tegning, hvorpå: Fig. 1 viser et forste utforelseseksempel for oppfinnelsens The invention will be described in more detail in the following with reference to the attached drawing, on which: Fig. 1 shows a first embodiment of the invention

elektrode, og electrode, and

Fig. 2 viser et annet utforelseseksempel for oppfinnelsens Fig. 2 shows another embodiment of the invention

elektrode. electrode.

Fig. 1 viser et horisontalt snitt gjennom en del av en bipolar elektrode, hvis katodeparti og anodeparti er plant utformet samt gjennomhullet og innbyrdes adskilt av en skillevegg som omfatter en rekke avstandsstykker 1, hvorav bare et eneste er vist. Dette avstandsstykke utgjores av en stolpe som strekker Fig. 1 shows a horizontal section through part of a bipolar electrode, whose cathode part and anode part are planarly designed and perforated and separated from each other by a dividing wall comprising a number of spacers 1, only one of which is shown. This distance piece is made up of a post that extends

seg vertikalt over hele hoyden av den bipolare elektrode. Hvert avstandsstykke utgjores av en 2 mm titanstrimmel som ved eksplo-sjon er påfort et underlag av blott stål, således at den totale . vertically over the entire height of the bipolar electrode. Each spacer is made of a 2 mm titanium strip which, in the event of an explosion, is attached to a base of bare steel, so that the total .

tykkelse av dette stykke blir 12 mm. Skilleveggens kontinuitet sikres ved at det mellom disse avstandsstykker innfores vegg-stykker i form av to sammenfoyete metallfolier, hvorav det ene er av titan 2 og det annet av blott stål 3, idet disse folier er sveiset henhv. til titanpartiet 4 og stålpartiet 5 av avstandsstykkene. Til overflaten av titanpartiene 4 på avstandsstykkene er det sveiset titanplater 6 som tjener som forbindelsesstykker og selv er sveiset til en og samme titanplate 7, som utgjor det anodisk aktive parti. På tilsvarende, måte .er det .til .overflaten av blott stål 5 på avstandsstykkene sveiset forbindelsesstykker av blott stål 8, som selv er sveiset til et nett av blott stål 9, som utgjor det katodisk aktive parti. På platen 7 av titan er det påfort en legering av platina og iridium ved elektrolytiske midler. Det oppnås således en bipolar elektrode med en anodisk sone 10 og en katodisk sone 11. thickness of this piece will be 12 mm. The continuity of the partition wall is ensured by inserting wall pieces in the form of two joined metal foils, one of which is made of titanium 2 and the other of bare steel 3, between these spacers, as these foils are welded respectively. to the titanium part 4 and the steel part 5 of the spacers. Titanium plates 6 are welded to the surface of the titanium parts 4 on the spacers, which serve as connecting pieces and are themselves welded to one and the same titanium plate 7, which forms the anodic active part. In a similar manner, connecting pieces of bare steel 8 are welded to the surface of bare steel 5 on the spacers, which are themselves welded to a net of bare steel 9, which forms the cathodically active part. An alloy of platinum and iridium has been deposited on the plate 7 of titanium by electrolytic means. A bipolar electrode with an anodic zone 10 and a cathodic zone 11 is thus obtained.

Denne bipolare elektrode egner seg godt for anvendelse ved fremstilling av klor og soda, og dens fremstillingsomkostninger er ikke særlig hoye takket være den begrensete vekt av avstandsstykkene som er belagt med titan. This bipolar electrode is well suited for use in the production of chlorine and soda ash, and its manufacturing costs are not particularly high thanks to the limited weight of the titanium-coated spacers.

I fig. 2 er det vist en bipolar elektrode, hvis katodeparti og anodeparti er bolgeformet, og hvis skillevegg omfatter avstandsstykker og er av tilsvarende utforelse som angitt i fig. 1. In fig. 2 shows a bipolar electrode, whose cathode part and anode part are wave-shaped, and whose dividing wall includes spacers and is of a similar design as indicated in fig. 1.

Fig. 2 viser skjematisk et horisontalt snitt gjennom et avsnitt av denne elektrode. Avstandsstykkene 12 utgjores av stolper som er montert vertikalt og består av blott stål belagt méd titan. Disse stykker er ved sveisning forbundet med to sammenfoyde metallremser, hvis sammenstilling er angitt ved 13. Den bolge-formete anode 14 av titan er fastsveiset til de vertikale stolper 12 over et forbindelsesstykke 15 av sammenfbyet kobber og titan. Fig. 2 schematically shows a horizontal section through a section of this electrode. The spacers 12 are made of posts which are mounted vertically and consist of bare steel coated with titanium. These pieces are connected by welding with two joined metal strips, the assembly of which is indicated at 13. The bulb-shaped anode 14 of titanium is welded to the vertical posts 12 over a connecting piece 15 of joined copper and titanium.

Den bblgeformete katode 16, som dannes av et gitter av mykt stål, er sveiset direkte mot stålflaten på stykkene 12 langs linjene 17. Ved utforelse av de btJlgeformete elektrodeflater på denne måte som er angitt i figuren, vil det innsees at de fremskutte partier på den bblgeformete katode 16 for en bipolar elektrode tilsvarer tilbaketrukkete partier på den bblgeformete anoden på en annen nærliggende bipolar elektrode. Dette arrangement oker den elektrolytiske overflate i forhold til elektrodens projékterte overflate, ogfolgelig også i forhold til antall avstandsstykker som anvendes. The bell-shaped cathode 16, which is formed by a grid of mild steel, is welded directly to the steel surface of the pieces 12 along the lines 17. By designing the bell-shaped electrode surfaces in the manner indicated in the figure, it will be realized that the protruding portions on the bulb-shaped cathode 16 of a bipolar electrode corresponds to retracted portions of the bulb-shaped anode of another nearby bipolar electrode. This arrangement increases the electrolytic surface in relation to the projected surface of the electrode, and consequently also in relation to the number of spacers used.

Claims (9)

1. Bipolar elektrode, særlig for elektrolyse av losninger av alkalimetallhalogenider, og som omfatter en katodeplate (9,16) samt en anodeplate (7,14) av titan eller et annet metall eller en legering med lignende anodiske egenskaper, og belagt med.et ledende belegg som ikke angripes av en foreliggende elektrolytt, idet nevnte plater er anordnet i innbyrdes avstand og med en mellomliggende tett skillevegg (1,2,3,4,12,13) anbragt hovedsaklig parallelt med platene, som dessuten er perforert og elektrisk sammenkoblet gjennom flere avstandsstykker (1,12) som er anordnet mellom platene, karakterisert ved at avstandsstykkene (1,12) omfatter en kjerne (5) av et katodisk anvendbart metall som er påfort et belegg (4) av titan eller et annet metall eller en legering med lignende anodiske egenskaper, idet nevnte avstandsstykker utgjor deler fast forbundet med den tette skillevegg (1,2,3,4,12,13).1. Bipolar electrode, in particular for the electrolysis of solutions of alkali metal halides, and comprising a cathode plate (9,16) and an anode plate (7,14) of titanium or another metal or an alloy with similar anodic properties, and coated with conductive coating that is not attacked by an electrolyte present, said plates being arranged at a distance from each other and with an intermediate dense partition wall (1,2,3,4,12,13) placed mainly parallel to the plates, which are also perforated and electrically interconnected through several spacers (1,12) which are arranged between the plates, characterized in that the spacers (1,12) comprise a core (5) of a metal that can be used cathodically, which is coated with a coating (4) of titanium or another metal or an alloy with similar anodic properties, said spacers forming parts permanently connected to the dense partition (1,2,3,4,12,13). 2. Elektrode som angitt i krav 1, karakterisert ved at avstandsstykkene (1,12) har langstrakt form og er anordnet parallelt med hverandre.2. Electrode as stated in claim 1, characterized in that the spacers (1,12) have an elongated shape and are arranged parallel to each other. 3. Elektrode som angitt i krav 2, karakterisert ved at platene (7,9,14,16) har rektangulær form, mens avstandsstykkene(1 t12) er anordnet parallelt med rektangelformens lengste side og har omtrent samme lengde som denne side.3. Electrode as specified in claim 2, characterized in that the plates (7,9,14,16) have a rectangular shape, while the spacers (1 t12) are arranged parallel to the longest side of the rectangle and has approximately the same length as this side. 4. Elektrode som angitt i krav 1 - 3, karakterisert ved at den tette skillevegg utgjores av avstandsstykkene (1,12) samt av to metallfolier (2,3,13), hvorav den ene er av titan eller et annet metall eller en legering med lignende anodiske egenskaper, mens den annen er av et katodisk anvendbart metall, idet nevnte metallfolier sammenfdyer avstandsstykkene for dannelse av en ..ubrutt fluidsperre mellom nevnte stykker.4. Electrode as stated in claims 1 - 3, characterized in that the tight partition is made up of the spacers (1,12) and of two metal foils (2,3,13), one of which is made of titanium or another metal or an alloy with similar anodic properties, while the other is of a cathodically usable metal, said metal foils joining the spacers to form an unbroken fluid barrier between said pieces. 5. Elektrode som angitt i krav 1-3, karakterisert ved at den.tette skillevegg (1,2,3,4,12,13) består av avstandsstykkene (1,12) og en folie av isolerende material, som er beskyttet mot eller er bestandig overfor korrosjon, idet nevnte folie strekker seg og danner en ugjennomstrengelig fluidsperre mellom avstandsstykkene.5. Electrode as stated in claims 1-3, characterized in that the tight partition (1,2,3,4,12,13) consists of the spacers (1,12) and a foil of insulating material, which is protected against or is resistant to corrosion, as said foil stretches and forms an impenetrable fluid barrier between the spacers. 6. Elektrode som angitt i krav 1-5, karakterisert ved, at anodeplaten og katodeplaten (7,9j 14,16) er forbundet med avstandsstykkene (1,12) ved sveising.6. Electrode as specified in claims 1-5, characterized in that the anode plate and the cathode plate (7,9j 14,16) are connected with the spacers (1,12) by welding. 7. Elektrode som angitt i krav 6, karakterisert ved at forbindelsesstykker (8) er plassert mellom katodeplaten (9) og avstandsstykkene (1,12) og utgjores av et katodisk anvendbart metall.7. Electrode as specified in claim 6, characterized in that connecting pieces (8) are placed between the cathode plate (9) and the spacers (1,12) and are made of a cathodically usable metal. 8. Elektrode som angitt i krav 6, karakterisert ved at forbindelsesstykker (6) er plassert mellom anodeplaten (7) og avstandsstykkene (1,12) samé utgjores av titan eller et annet metall eller en legering med lignende anodiske egenskaper.8. Electrode as stated in claim 6, characterized in that connecting pieces (6) are placed between the anode plate (7) and the spacers (1,12) and are also made of titanium or another metal or an alloy with similar anodic properties. 9. Elektrode som angitt i krav 6, karakterisert ved at forbindelsesstykker (6) er plassert mellom anodeplaten og avstandsstykkene (1,12)/ idet; kjernen (5) består av kobber eller aluminium og er belagt, med titan eller med et annet metall eller en legering med lic,nenr) anodiske egenskaper.9. Electrode as set forth in claim 6, characterized in that connecting pieces (6) are placed between the anode plate and the spacers (1,12)/ idet; the core (5) consists of copper or aluminum and is coated, with titanium or with another metal or alloy with lic,nenr) anodic properties.
NO4677/72A 1971-12-21 1972-12-19 BIPOLAR ELECTRODE, ESPECIALLY FOR ELECTROLYSIS OF SOLUTIONS OF ALKALIMETAL HALOGENIDES NO138178C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7145861A FR2164454B1 (en) 1971-12-21 1971-12-21

Publications (2)

Publication Number Publication Date
NO138178B true NO138178B (en) 1978-04-10
NO138178C NO138178C (en) 1978-07-19

Family

ID=9087768

Family Applications (1)

Application Number Title Priority Date Filing Date
NO4677/72A NO138178C (en) 1971-12-21 1972-12-19 BIPOLAR ELECTRODE, ESPECIALLY FOR ELECTROLYSIS OF SOLUTIONS OF ALKALIMETAL HALOGENIDES

Country Status (14)

Country Link
US (1) US3859197A (en)
JP (1) JPS535630B2 (en)
AT (1) AT320680B (en)
BE (1) BE793045A (en)
BR (1) BR7208946D0 (en)
CA (1) CA990681A (en)
CH (1) CH567578A5 (en)
ES (1) ES409772A1 (en)
FR (1) FR2164454B1 (en)
GB (1) GB1388008A (en)
IT (1) IT974145B (en)
NL (1) NL7217259A (en)
NO (1) NO138178C (en)
SE (1) SE388216B (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981790A (en) * 1973-06-11 1976-09-21 Diamond Shamrock Corporation Dimensionally stable anode and method and apparatus for forming the same
FR2237984B1 (en) * 1973-07-06 1978-09-29 Rhone Progil
NO752886L (en) * 1974-08-26 1976-02-27 Hodogaya Chemical Co Ltd
US4111779A (en) * 1974-10-09 1978-09-05 Asahi Kasei Kogyo Kabushiki Kaisha Bipolar system electrolytic cell
JPS5232866B2 (en) * 1974-10-09 1977-08-24
US4069130A (en) * 1975-01-29 1978-01-17 Kerr-Mcgee Chemical Corporation Bipolar electrode and method for constructing same
US4085027A (en) * 1975-01-29 1978-04-18 Kerr-Mcgee Chemical Corporation Hybrid bipolar electrode
JPS5627240Y2 (en) * 1975-09-10 1981-06-29
JPS5645884Y2 (en) * 1975-10-27 1981-10-27
US4059216A (en) * 1975-12-15 1977-11-22 Diamond Shamrock Corporation Metal laminate strip construction of bipolar electrode backplates
US4137144A (en) * 1976-03-19 1979-01-30 Hooker Chemicals & Plastics Corp. Hollow bipolar electrolytic cell anode-cathode connecting device
US4045320A (en) * 1976-05-28 1977-08-30 A. S. Skarpenord Galvanic anode
JPS5248596A (en) * 1976-08-10 1977-04-18 Tokuyama Soda Co Ltd Bi-polar electrode for electrolysis of alkali halide solution with dia phragm method
US4116807A (en) * 1977-01-21 1978-09-26 Diamond Shamrock Corporation Explosion bonding of bipolar electrode backplates
JPS5413473A (en) * 1977-02-17 1979-01-31 Kurorin Engineers Kk Double polar electrode
FR2416274A2 (en) * 1977-04-22 1979-08-31 Electricite De France Diaphragm-type electrolyser - incorporates electrodes each comprising an inner plate on which are fixed two outer plates made of expanded metal, to reduce cost
IT1118243B (en) * 1978-07-27 1986-02-24 Elche Ltd MONOPOLAR ELECTROLYSIS CELL
IT1163737B (en) * 1979-11-29 1987-04-08 Oronzio De Nora Impianti BIPOLAR ELECTROLIZER INCLUDING MEANS TO GENERATE THE INTERNAL RECIRCULATION OF THE ELECTROLYTE AND ELECTROLYSIS PROCEDURE
US4339323A (en) * 1980-09-18 1982-07-13 Ppg Industries, Inc. Bipolar electrolyzer element
US4354916A (en) * 1981-05-04 1982-10-19 Diamond Shamrock Corporation High current density electrical contact device
US4402809A (en) * 1981-09-03 1983-09-06 Ppg Industries, Inc. Bipolar electrolyzer
US4461692A (en) * 1982-05-26 1984-07-24 Ppg Industries, Inc. Electrolytic cell
US4460441A (en) * 1982-08-31 1984-07-17 The Dow Chemical Company Expanded metal as more efficient form of silver cathode for electrolytic reduction of polychloropicolinate anions
JPS59133384A (en) * 1983-01-19 1984-07-31 Toyo Soda Mfg Co Ltd Electrolytic cell
US4488946A (en) * 1983-03-07 1984-12-18 The Dow Chemical Company Unitary central cell element for filter press electrolysis cell structure and use thereof in the electrolysis of sodium chloride
US4568434A (en) * 1983-03-07 1986-02-04 The Dow Chemical Company Unitary central cell element for filter press electrolysis cell structure employing a zero gap configuration and process utilizing said cell
US4560452A (en) * 1983-03-07 1985-12-24 The Dow Chemical Company Unitary central cell element for depolarized, filter press electrolysis cells and process using said element
US4673479A (en) * 1983-03-07 1987-06-16 The Dow Chemical Company Fabricated electrochemical cell
US4581114A (en) * 1983-03-07 1986-04-08 The Dow Chemical Company Method of making a unitary central cell structural element for both monopolar and bipolar filter press type electrolysis cell structural units
US4604171A (en) * 1984-12-17 1986-08-05 The Dow Chemical Company Unitary central cell element for filter press, solid polymer electrolyte electrolysis cell structure and process using said structure
EP0185269A1 (en) * 1984-12-17 1986-06-25 The Dow Chemical Company A wholly fabricated electrochemical cell
CA1258250A (en) * 1985-01-25 1989-08-08 Colin W. Oloman Perforated bipole electrochemical reactor
US4923583A (en) * 1985-11-04 1990-05-08 Olin Corporation Electrode elements for filter press membrane electrolytic cells
GB8530893D0 (en) * 1985-12-16 1986-01-29 Ici Plc Electrode
US5013414A (en) * 1989-04-19 1991-05-07 The Dow Chemical Company Electrode structure for an electrolytic cell and electrolytic process used therein
US5225061A (en) * 1991-05-24 1993-07-06 Westerlund Goethe O Bipolar electrode module
US6027620A (en) * 1995-11-03 2000-02-22 Huron Tech Corp Filter press electrolyzer
EP0999294A1 (en) * 1998-10-10 2000-05-10 Cumberland Electrochemical Limited Bipolar metal electrode and electrolyser therewith

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1513728A (en) * 1924-11-04 Ments
US1153168A (en) * 1913-05-09 1915-09-07 Internat Oxygen Company Electrolytic apparatus.
US1269566A (en) * 1917-07-05 1918-06-11 Toronto Power Company Ltd Electrolytic apparatus.
US1502708A (en) * 1920-02-03 1924-07-29 Toronto Power Company Ltd Electrode
US3441495A (en) * 1966-05-20 1969-04-29 Electric Reduction Co Bipolar electrolytic cell
US3451914A (en) * 1966-08-31 1969-06-24 Electric Reduction Co Bipolar electrolytic cell
DE1671430B2 (en) * 1967-06-27 1977-01-20 Bayer Ag, 5090 Leverkusen DEVICE FOR THE ELECTROLYSIS OF Aqueous ALKALINE HALOGENIDE SOLUTIONS
US3563878A (en) * 1968-07-05 1971-02-16 Hooker Chemical Corp Electrolytic cellstructure
ZA703723B (en) * 1969-06-24 1972-01-26 Ppg Industries Inc Diaphragm cell
US3770611A (en) * 1971-11-24 1973-11-06 Olin Corp Multiple tier horizontal diaphragm cells

Also Published As

Publication number Publication date
ES409772A1 (en) 1976-01-01
AT320680B (en) 1975-02-25
US3859197A (en) 1975-01-07
SE388216B (en) 1976-09-27
BR7208946D0 (en) 1973-09-13
CA990681A (en) 1976-06-08
NO138178C (en) 1978-07-19
DE2262141A1 (en) 1973-07-12
GB1388008A (en) 1975-03-19
JPS4876785A (en) 1973-10-16
JPS535630B2 (en) 1978-03-01
DE2262141B2 (en) 1975-09-11
FR2164454A1 (en) 1973-08-03
CH567578A5 (en) 1975-10-15
BE793045A (en) 1973-06-20
IT974145B (en) 1974-06-20
NL7217259A (en) 1973-06-25
FR2164454B1 (en) 1974-09-27

Similar Documents

Publication Publication Date Title
NO138178B (en) BIPOLAR ELECTRODE, ESPECIALLY FOR ELECTROLYSIS OF SOLUTIONS OF ALKALIMETAL HALOGENIDES
US3676325A (en) Anode assembly for electrolytic cells
US3761384A (en) Anode assembly for electrolytic cells
US3591483A (en) Diaphragm-type electrolytic cells
CA1109417A (en) Metal laminate strip construction of bipolar electrode backplates
EP0137836B1 (en) Unitary central cell element for filter press electrolysis cell structure
NO138255B (en) BIPOLARE REMOVABLE ELECTRODES, ESPECIALLY FOR ELECTROLYSIS OF ALKALIMETAL HALOGENIDE SOLUTIONS
US4244802A (en) Monopolar membrane cell having metal laminate cell body
US3980545A (en) Bipolar electrodes with incorporated frames
US3839179A (en) Electrolysis cell
US4460450A (en) Coated valve metal anode for the electrolytic extraction of metals or metal oxides
US4017376A (en) Electrolytic cell
US3994798A (en) Module electrode assembly for electrolytic cells
US3905828A (en) Electrolytic processes and electrodes therefor
US3700582A (en) Electrolytic cell
NO149590B (en) BIPOLAR ELECTRODE AND PROCEDURE FOR MANUFACTURING SUCH ELECTRODE
US3318792A (en) Mercury cathode cell with noble metaltitanium anode as cover means
FI61525B (en) ELEKTROLYSCELL
US3563878A (en) Electrolytic cellstructure
FI82488C (en) ELEKTRODKONSTRUKTION FOER GASBILDANDE MONOPOLAERA ELEKTROLYSOERER.
US4497112A (en) Method for making double L-shaped electrode
US3271289A (en) Mercury cathode electrolytic cell having an anode with high corrosionresistance and high electrical and heat conductivity
US3884781A (en) Processes for the electrolysis of alkali halides employing dismantleable bipolar electrodes
NO153501B (en) ELECTRODE FOR ELECTRICAL CELLS.
FI56557C (en) DIAFRAGMACELL MED ETT FLERTAL AVDELNINGAR FOER FRAMSTAELLNING AV KLOR OCH ALKALIMETALLHYDROXID