NO132580B - - Google Patents

Download PDF

Info

Publication number
NO132580B
NO132580B NO110270A NO110270A NO132580B NO 132580 B NO132580 B NO 132580B NO 110270 A NO110270 A NO 110270A NO 110270 A NO110270 A NO 110270A NO 132580 B NO132580 B NO 132580B
Authority
NO
Norway
Prior art keywords
film
plastic
produced
objects
shaped
Prior art date
Application number
NO110270A
Other languages
Norwegian (no)
Other versions
NO132580C (en
Inventor
H Haruta
S Mukai
T Ishibashi
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Publication of NO132580B publication Critical patent/NO132580B/no
Publication of NO132580C publication Critical patent/NO132580C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/02Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

Foreliggende oppfinnelse angår en fremgangsmåte for å grovgjøre overflater på formede gjenstander av krystallinsk termoplast ved hjelp av et oppløsningsmiddel med affinitet til den plast som utgjør overflaten, hvor nevnte behandling ut-føres etter en smelteforming og før man frembringer en størkning av nevnte plast. The present invention relates to a method for roughening the surfaces of shaped objects of crystalline thermoplastic by means of a solvent with an affinity for the plastic that forms the surface, where said treatment is carried out after a melt forming and before a solidification of said plastic is produced.

Krystallinske termoplastiske polymere, såsom polyolefiner, polyamider og polyestere har funnet en rekke an-vendelsesområder for fremstilling av formede gjenstander, slik som filmer, plater, rør, flasker og liknende. Overflatene på disse formede gjenstander er vanligvis glatte, skinnende og langt bedre enn det man finner ii.mange andre typer polymere, men nevnte overflater er ikke særlig god egnet for påskriving med blyant, og de er dårlig egnet for påtrykning. Crystalline thermoplastic polymers, such as polyolefins, polyamides and polyesters, have found a number of areas of application for the production of shaped articles, such as films, plates, tubes, bottles and the like. The surfaces of these shaped objects are usually smooth, shiny and far better than what is found in many other types of polymer, but said surfaces are not particularly suitable for writing with a pencil, and they are poorly suited for printing.

Det har vært foreslått en rekke fremgangsmåter for å grovgjøre overflatene på formede gjenstander av termoplast. Det er f,eks. kjent fremgangsmåter for preging, sandblåsing, kjemisk etsing, skuradannelse, pigmentinnblanding etc. A number of methods have been proposed for roughening the surfaces of shaped articles made of thermoplastics. It is, e.g. known methods for embossing, sandblasting, chemical etching, scour formation, pigment mixing etc.

I forbindelse med formede artikler slik som plater eller filmer har mån bl.a. anvendt kjølevalser med grove overflater, og i forbindelse med sprøyteforming eller vakuumforming har man anvendt metallformer med grove overflater. De fremgangsmåter hvor man anvender preging eller grove metallformer, kan bare utføres med spesielle apparater, slik som en pregevalse, en mønstervalse eller en grov metallform. Det er videre kjent en fremgangsmåte hvor man kan grovgjøre overflaten på de formede gjenstander ved å blande et skumdanningsmiddel i den masse som utgjør den formede gjenstand, hvoretter man frembringer en dekomponering av skumdanningsmidlet under formingen, men dette er ikke særlig fordelaktig, fordi man foruten en forandring av selve overflaten også får en forandring med hensyn til gjenstandens meka-niske egenskaper. Slike behandlingsmetoder som sandblåsing og kjemisk etsing har vært ganske meget anvendt, men alle disse behandlingsmetoder må utføres i et ytterligere trinn etter at den formede artikkel er blitt fremstilt. Fra tysk patentskrift nr. 916.H6 er det kjent en fremgangsmåte til mattering av plastgjenstander, ved hvilken gjenstandene dyppes i en blanding av et svellemiddel og et oppløsningsmiddel, tas opp og tørkes ved temperaturer over plastens mykningspunkt. Fra britisk patent nr. 1.000.261 er det kjent å opprue myk plast ved kombinert preging og oppløsningsmiddelbehandling. Fra britisk patent nr. 833»092 er det kjent at man kan fremstille mønstret polyetylen-film ved å foreta ekstruderingen ved en temperatur noe under den vanlige (ved hvilken man får en klar film). Disse fremgangsmåter har de ulemper at de er lite effektive rent driftsmessig, foruten at de ikke kan brukes ved en kontinuerlig fremstilling av formede gjenstander såsom plater eller filmer. In connection with shaped articles such as plates or films, moon has, among other things, cooling rollers with rough surfaces are used, and in connection with injection molding or vacuum forming, metal molds with rough surfaces have been used. The methods where embossing or rough metal forms are used can only be carried out with special devices, such as an embossing roller, a pattern roller or a rough metal form. A method is also known in which the surface of the shaped objects can be roughened by mixing a foaming agent into the mass that makes up the shaped object, after which a decomposition of the foaming agent is produced during the shaping, but this is not particularly advantageous, because in addition to a changing the surface itself also causes a change with respect to the object's mechanical properties. Such processing methods as sandblasting and chemical etching have been quite widely used, but all these processing methods must be carried out in a further step after the shaped article has been produced. From German patent document no. 916.H6, a method for matting plastic objects is known, in which the objects are dipped in a mixture of a swelling agent and a solvent, taken up and dried at temperatures above the plastic's softening point. From British patent no. 1,000,261 it is known to roughen soft plastics by combined embossing and solvent treatment. From British patent no. 833"092 it is known that it is possible to produce patterned polyethylene film by carrying out the extrusion at a temperature somewhat below the normal one (at which a clear film is obtained). These methods have the disadvantage that they are not very effective operationally, and that they cannot be used in the continuous production of shaped objects such as plates or films.

Foreliggende oppfinnelse tilveiebringer en ny fremgangsmåte for overflatebehandling av formede gjenstander av termoplast som lett og effektivt gjør det mulig å unngå ovennevnte ulemper uten at man trenger å anvende ytterligere bear-beidelses trinn. The present invention provides a new method for surface treatment of shaped objects made of thermoplastic which easily and effectively makes it possible to avoid the above-mentioned disadvantages without the need to use further processing steps.

Ifølge foreliggende oppfinnelse er det således tilveiebragt en fuemgangsmåte til fremstilling av formede gjenstander med matt overflate av krystallinsk termoplast, og denne fremgangsmåte er kjennetegnet ved at gjenstanden under formingen, d.v.s. under overgangen fra flytende til fast tilstand, holdes i kontakt med en organisk væske med affinitet til plasten. According to the present invention, a method is thus provided for the production of shaped objects with a matte surface of crystalline thermoplastic, and this method is characterized by the fact that the object during the shaping, i.e. during the transition from liquid to solid state, is kept in contact with an organic liquid with an affinity for the plastic.

Foreliggende fremgangsmåte er ikke effektiv hvis den ikke utføres under plastens overgangstilstand fra smeltet The present method is not effective if it is not carried out during the transition state of the plastic from the molten state

til størknet tilstand. Hvis behandlingen nemlig utføres i plas-tisk tilstand, så vil de dannede konvekse og konkave partier være utflatet når plasten størkner, mens en behandling i størknet tilstand i meget liten grad vil frembringe konvekse og konkave partier. to a solidified state. If the treatment is carried out in a plastic state, then the formed convex and concave parts will be flattened when the plastic solidifies, while a treatment in a solidified state will produce convex and concave parts to a very small extent.

Det er således underforstått at fremgangsmåten It is thus understood that the method

er påvirket av temperaturen, det smeltede materiales viskositet og overflatespenning, og type av behandlingsmiddel. Det vil vanligvis være slik at jo høyere temperatur plasten eller behandlingsmidlet har, jo grovere overflate vil man få, hvorved over- is affected by the temperature, the viscosity and surface tension of the molten material, and the type of treatment agent. It will usually be the case that the higher the temperature of the plastic or the treatment agent, the rougher the surface will be, whereby over-

flatens grovhet eller styrke kan reguleres, alt avhengig av temperaturen. the roughness or strength of the surface can be regulated, all depending on the temperature.

Foreliggende fremgangsmåte er videre avhengig The present method is further dependent

av plastens krystallinitet, og man har funnet at den med best resultat kan anvendes på krystallinske, termoplastiske polymere, slik som polyetylen, polypropylen, nylon-6, nylon-6-6, polyetylentereftalat og liknende, istedenfor på amorfe polymere, såsom polyvinylklorid og polystyren. of the plastic's crystallinity, and it has been found that it can be used with the best results on crystalline, thermoplastic polymers, such as polyethylene, polypropylene, nylon-6, nylon-6-6, polyethylene terephthalate and the like, instead of on amorphous polymers, such as polyvinyl chloride and polystyrene .

For at en organisk væske (et oppløsningsmiddel) skal kunne anvendes i foreliggende oppfinnelse, må det ha føl-gende egenskaper: For det første må midlet ha affinitet til har-piksen, fordi dette er nødvendig for å frembringe en svelling eller oppløsning på overflaten. For det annet bør midlets kokepunkt være lavere enn formingstemperaturen, skjønt man i visse tilfelle også kan anvende oppløsningsmidler med koke-punkter høyere enn nevnte temperatur. I sistnevnte tilfelle må gjenværende væske etter behandlingen fjernes ved hjelp av andre oppløsningsmidler eller ved fordampning ved høyere temperatur. Med nevnte formingstemperatur forstås den temperatur som plasten har under påføringen av oppløsningsmidlet. Den anvendte formingstemperatur er avhengig av plasttypen. Som eksempler på anvend-bare temperaturer kan man nevné følgende: In order for an organic liquid (a solvent) to be used in the present invention, it must have the following properties: Firstly, the agent must have an affinity for the resin, because this is necessary to produce a swelling or dissolution on the surface. Secondly, the agent's boiling point should be lower than the forming temperature, although in certain cases solvents with boiling points higher than the said temperature can also be used. In the latter case, the remaining liquid after the treatment must be removed with the help of other solvents or by evaporation at a higher temperature. By said forming temperature is meant the temperature that the plastic has during the application of the solvent. The used forming temperature depends on the type of plastic. Examples of applicable temperatures include the following:

Midlet bør ha lav spesifikk varme, og lav varme-ledningsevne. Disse spesifikke betingelser gir en rask størk-ning (krystallisasjon) av plasten på grunn av virkningen av midlet, og gjør at man meget lett får dannet konvekse og konkave partier. Som egnede behandlingsmidler for polyolefiner kan man fortrinnsvis anvende alifatiske hydrokarboner inne-holdende fra 5 til 20 karbonatomer eller blandinger av disse, f.eks. pentan, heksan, heptan, oktan, nonan, dekan, bensin, petroleter, ligroin, parafin, lette oljer, flytende parafin etc, aromatiske hydrokarboner slik som benzen, toluen, xylen, etc, halogenerte hydrokarboner slik som trikloretan, triklor-etylen, tetrakloretylen etc, alisykliské hydrokarboner, slik som sykloheksan, dekalin, tetralin, etc, heterosykliske forbindelser, slik som tetrahydrofuran, etc, estere av alifatiske . alkoholer og eddiksyre eller alifatiske eller aromatiske di-basiske syrer, slik som propylacetat, butylacetat, amylacetat, dioktyladipat, dioktylsebasat, dioktylftalat, etc For polyamider slik som nylon, kan man anvende lavere alifatiske alkoholer, slik som metanol, etanol, propanol, butanol, etc For polyestere slik som polyetylentereftalat, kan man anvende tetrahydrofuran, dimetylformamid og liknende. Det er underforstått at ovennevnte midler enten kan brukes alene eller i blanding. The agent should have a low specific heat and low thermal conductivity. These specific conditions result in rapid solidification (crystallization) of the plastic due to the action of the agent, and make it very easy to form convex and concave parts. Aliphatic hydrocarbons containing from 5 to 20 carbon atoms or mixtures thereof can preferably be used as suitable treatment agents for polyolefins, e.g. pentane, hexane, heptane, octane, nonane, decane, petrol, petroleum ether, kerosene, kerosene, light oils, liquid paraffin etc, aromatic hydrocarbons such as benzene, toluene, xylene, etc, halogenated hydrocarbons such as trichloroethane, trichloroethylene, tetrachloroethylene etc, alicyclic hydrocarbons, such as cyclohexane, decalin, tetralin, etc, heterocyclic compounds, such as tetrahydrofuran, etc, esters of aliphatic . alcohols and acetic acid or aliphatic or aromatic di-basic acids, such as propyl acetate, butyl acetate, amyl acetate, dioctyl adipate, dioctyl sebasate, dioctyl phthalate, etc. For polyamides such as nylon, one can use lower aliphatic alcohols, such as methanol, ethanol, propanol, butanol, etc. For polyesters such as polyethylene terephthalate, tetrahydrofuran, dimethylformamide and the like can be used. It is understood that the above agents can either be used alone or in combination.

Fremgangsmåten ifølge foreliggende oppfinnelse kan anvendes på formede gjenstander for det formål å frembringe en grov overflate, gjøre gjenstandene ugjennomskinnelige eller for å fjerne en glans. Videre kan fremgangsmåten anvendes på nevnte formede gjenstander for å frembringe en forbedret evne med hensyn til påskrivning, trykning eller fargning. The method according to the present invention can be applied to shaped objects for the purpose of producing a rough surface, making the objects opaque or to remove a gloss. Furthermore, the method can be applied to said shaped objects to produce an improved ability with respect to writing, printing or dyeing.

Foreliggende fremgangsmåte kan anvendes på formede gjenstander slik som sprøyteformede gjenstander, vanlige støpte gjenstander, ikke-strukne filmer, sprøytestøpte gjenstander og kalenderte gjenstander. Videre kan fremgangsmåten anvendes på gjenstander som krever en monoaksial eller biaksial strekning, og da før nevnte strekning. The present method can be applied to shaped objects such as injection molded objects, ordinary molded objects, non-stretched films, injection molded objects and calendered objects. Furthermore, the method can be applied to objects that require a monoaxial or biaxial stretch, and then the previously mentioned stretch.

Etter at gjenstandene er blitt behandlet i over-ensstemmelse med foreliggende oppfinnelse, kan overflaten be-legges med et belegg som forbedrer festeevnen eller trykkbar-heten. Videre kan man anvende en pressevalse eller en oppvarmet valse for å regulere overflatelagets grovhet eller for å øke gjenstandens styrke. After the objects have been treated in accordance with the present invention, the surface can be coated with a coating that improves the adhesion or printability. Furthermore, a press roller or a heated roller can be used to regulate the roughness of the surface layer or to increase the strength of the object.

I praksis kan foreliggende oppfinnelse utføres ved at man tilfører et behandlingsmiddel til den form hvori man ønsker å frembringe en gjenstand (ved sprøytestøpning eller formblåsing). Videre kan den utføres ved at et behandlingsmiddel påføres en kjølevalse eller en press-valse, f.eks. når man fremstiller ekstruderte ark, kalendrerte plater eller liknende. In practice, the present invention can be carried out by adding a treatment agent to the form in which you want to produce an object (by injection molding or blow molding). Furthermore, it can be carried out by applying a treatment agent to a cooling roller or a pressure roller, e.g. when producing extruded sheets, calendered sheets or the like.

I forbindelse med en vannavkjøling etter formingen kan fremgangsmåten utføres ved at man lar et oppløsningsmiddel flyte på vannoverflaten. In connection with water cooling after forming, the method can be carried out by allowing a solvent to float on the water surface.

Videre kan den formede smelte føres ned i behandlingsmidlet alene, f.eks. når man anvender en alifatisk alko-hol for nylon. Hvis f.eks. den formede smelte føres inn i en spalte, så kan midlet, eventuelt blandet med vann, også føres inn i nevnte spalte. Furthermore, the formed melt can be fed into the treatment agent alone, e.g. when using an aliphatic alcohol for nylon. If e.g. the formed melt is fed into a slot, then the agent, possibly mixed with water, can also be fed into said slot.

De krystallinske termoplaster som kan anvendes The crystalline thermoplastics that can be used

i forbindelse med foreliggende oppfinnelse, kan være tilsatt additiver slik som stabiliserende forbindelser, glidemidler, antistatiske midler, foruten midler for å bedre festeevnen, tryk-kbarheten eller fargbarheten, pigmenter eller liknende, foruten fyllstoffer, in connection with the present invention, additives such as stabilizing compounds, lubricants, antistatic agents, in addition to agents to improve adhesion, printability or dyeability, pigments or the like, in addition to fillers, may be added.

Videre kan ovennevnte additiver også tilsettes behandlingsmidlet istedenfor den krystallinske termoplast. Videre kan man istedenfor det rene behandlingsmiddel anvende et middel tilsatt en plast forskjellig fra den krystallinske termoplast som man ønsker å overflatebehandle, f.eks. en plast som er i stand til å gjøre overflaten på den krystallinske termoplast klebrig, eller man kan anvende en suspensjon i et opp-løsningsmiddel av en plast eller en uorganisk forbindelse i fin-delt tilstand, som f.eks. er i stand til å gi overflaten bedre og jevnere grovhet. Furthermore, the above-mentioned additives can also be added to the treatment agent instead of the crystalline thermoplastic. Furthermore, instead of the pure treatment agent, you can use an agent added to a plastic different from the crystalline thermoplastic that you want to surface treat, e.g. a plastic capable of making the surface of the crystalline thermoplastic sticky, or one can use a suspension in a solvent of a plastic or an inorganic compound in a finely divided state, such as e.g. is able to give the surface a better and more uniform roughness.

Følgende eksempler illustrerer oppfinnelsen. Eksempel 1. The following examples illustrate the invention. Example 1.

Isotaktisk polypropylen med en grenseviskositet på l, kO (i tetralin ved 135°c) ble ekstrudert fra en sirkulær dyse ved 220°C, idet man anvendte en vanlig ekstruder, og der-fra ned ieen sylinder hvis indre overflate var fuktet av rennende vann, hvorved man fikk en slangeformet film A. På liknende måte fikk man fremstilt en slangeformet film B, bortsett fra at heksan ble tilveiebrakt på det strømmende vannet i et tynt lag, noe som ble utført kontinuerlig, slik at heksanen alltid var tilstede på Isotactic polypropylene with an intrinsic viscosity of 1.kO (in tetralin at 135°C) was extruded from a circular die at 220°C, using a conventional extruder, and from there into a cylinder whose inner surface was wetted by running water , whereby a snake-shaped film A was obtained. A snake-shaped film B was produced in a similar way, except that the hexane was provided on the flowing water in a thin layer, which was carried out continuously, so that the hexane was always present on

. vannsjiktet. . the water layer.

På liknende måte fikk man fremstilt en slangeformet film C, men i dette tilfelle så ble filmslangen avkjølt ved hjelp av vann både på den indre og ytre overflate. Det ble videre fremstilt en slangeformet film D, og hvor filmslangen ble ført ned i et vannlag med et flytende tynt lag av toluen, som ble tilført kontinuerlig, slik at det alltid var tilstede på vannsjiktet. I dette tilfellet ble slangen fuktet av toluen både på den indre og ytre overflate. In a similar way, a snake-shaped film C was produced, but in this case the film snake was cooled using water on both the inner and outer surface. A snake-shaped film D was also produced, and where the film snake was led down into a water layer with a liquid thin layer of toluene, which was added continuously, so that it was always present on the water layer. In this case, the tubing was wetted by toluene on both the inner and outer surfaces.

Glans (ifølge ASTM D-523, vinkel 85°C) og transmittans ^transmittans: forhold mellom direkte transmittert stråle og innfallende stråle (ca. k$ 0 j<y>ptø,Gloss (according to ASTM D-523, angle 85°C) and transmittance ^transmittance: ratio between directly transmitted beam and incident beam (approx. k$ 0 j<y>ptø,

Eksempel 2. Example 2.

En polyetylen med lav densitet og en smelteindeks på h ved 190°C ble ekstrudert fra en T-dyse ved 170°C og over på en kjølevalse ved 20°C, idet man anvendte en vanlig ekstruder, hvorved man fikk fremstilt en flat film E. På liknende måte ble det fremstilt en flat film F, bortsett fra at 1,1,1-trikloretan ble påført den avkjølte valse i et jevnt, tynt lag. Glans og transmittans for filmene E og F ble målt, slik det er angitt i eksempel 1. De oppnådde resultater er angitt i tabell 2. Man fant at film F var langt bedre enn film E med hensyn til matthet (eller lav glans) og ugjennomskinnelighet (eller lav transmittans). A low-density polyethylene with a melt index of h at 190°C was extruded from a T-die at 170°C onto a cooling roll at 20°C, using a conventional extruder, whereby a flat film E was produced .In a similar manner, a flat film F was prepared, except that 1,1,1-trichloroethane was applied to the cooled roll in an even, thin layer. Gloss and transmittance of films E and F were measured as set forth in Example 1. The results obtained are set forth in Table 2. It was found that film F was far superior to film E in dullness (or low gloss) and opacity. (or low transmittance).

Eksempel 3. Example 3.

Kommersiell nylon-6 av filmkvalitet ble ekstrudert fra en T-dyse ved 250°C og over på en avkjølt valse ved 20°C, idet man anvendte en vanlig ekstruder. Man fikk fremstilt en flat film G. På liknende måte fikk man fremstilt en flat film H, bortsett fra at etanol ble påført den avkjølte valse i et jevnt og tynt lag. Film H hadde på valsesiden en noe grov struk-tur, og man fant at den hadde en matthet av den type som er angitt i tabell 3»Commercial film grade nylon-6 was extruded from a T die at 250°C onto a cooled roll at 20°C using a conventional extruder. A flat film G was produced. A flat film H was produced in a similar way, except that ethanol was applied to the cooled roller in an even and thin layer. Film H had a somewhat coarse structure on the roll side, and it was found to have a dullness of the type indicated in table 3."

Eksempel k . Example k.

Polyetylen med høy densitet og en smelteindeks Polyethylene with a high density and a melt index

på 0,5 ved 1Q0°C ble ekstrudert ved 170°C, idet maxi anvendte en vanlig ekstruder, og blåst inn i en form for fremstilling av en flaske I. På liknende måte ble det fremstilt en flaske J, bortsett fra at formens indre overflate var belagt med et tynt lag av 1,1,1-trikloretan. Den fremstilte flaske J hadde en hvitaktig overflate. Glansen på de ytre overflater av flaskene I og J var 21$ og k<$ >, henholdsvis. of 0.5 at 1Q0°C was extruded at 170°C, maxi using a conventional extruder, and blown into a mold to produce a bottle I. A bottle J was produced in a similar manner, except that the interior of the mold surface was coated with a thin layer of 1,1,1-trichloroethane. The produced bottle J had a whitish surface. The gloss on the outer surfaces of bottles I and J was 21$ and k<$ >, respectively.

Eksempel 5. Example 5.

Isotaktisk polypropylen med en grenseviskositet Isotactic polypropylene with a limiting viscosity

på 1,80 (i tetralin ved 135°C) ble sprøytestøpt ved en temperatur på 230°C og ved en formtemperatur på 20°C til en plate K. of 1.80 (in tetralin at 135°C) was injection molded at a temperature of 230°C and at a mold temperature of 20°C into a plate K.

På liknende måte ble det fremstilt en plate L, bortsett fra at formens indre overflater var belagt med tetralin. Glansen i overflatene på platene K og L var henholdsvis 83$ og 11$. A plate L was produced in a similar manner, except that the inner surfaces of the mold were coated with tetralin. The gloss in the surfaces of plates K and L was 83$ and 11$ respectively.

Eksempel 6. Example 6.

Isotaktisk polypropylen med en grenseviskositet på 1,40 (i tetralin ved 135°C) ble ekstrudert fra en sirkulær dyse ved 200°C, idet man anvendte en vanlig ekstruder, og deretter ført ned i en sylinder, hvis indre overflate var fuktet av rennende vann, pålagt flytende parafin i et tynt lag. Man fikk på denne måten fremstilt en slangeformet film. Den flytende parafin ble kontinuerlig tilført, slik at det alltid eksisterte et Isotactic polypropylene with an intrinsic viscosity of 1.40 (in tetralin at 135°C) was extruded from a circular die at 200°C, using a conventional extruder, and then passed down into a cylinder, the inner surface of which was wetted by flowing water, applied liquid paraffin in a thin layer. In this way, a snake-shaped film was produced. The liquid kerosene was continuously supplied, so that there was always a

■ tynt lag av parafinen på vannoverflaten. Den således ftemstilte slangeformede film ble ført over i et bad av n-heksan, hvor den flytende parafinen på filmoverflaten ble erstattet av n-heksan, som så ble eliminert ved fordampning. Den fremstilte film ble betegnet med M. På liknende måte ble det fremstilt en film N uten anvendelse av flytende parafin. Glans og transmittans for de to filmer M og N som begge hadde en tykkelse på 30 ym, ble bestemt og er angitt i den følgende tabell. Det fremgår av denne tabell at man oppnår en bemerkelsesverdig matthet (eller lav ■ thin layer of paraffin on the surface of the water. The tube-shaped film thus stabilized was passed into a bath of n-hexane, where the liquid paraffin on the film surface was replaced by n-hexane, which was then eliminated by evaporation. The produced film was denoted by M. In a similar way, a film N was produced without the use of liquid paraffin. Gloss and transmittance for the two films M and N, both of which had a thickness of 30 µm, were determined and are given in the following table. It appears from this table that a remarkable dullness (or low

glans) og ugjennomskinnelighet (eller lav transmittans) ved nevnte flytende parafinbehandling. gloss) and opacity (or low transmittance) in said liquid paraffin treatment.

Eksempel 7»Example 7»

Polyetylen med lav densitet og en smelteindeks Polyethylene with a low density and a melt index

på k, 0 (ved 190°C^ ble ekstrudert fra en T-dyse ved 170°C, idet man anvendte en vanlig ekstruder, og deretter avkjølt og størk-net på en kjølevalse ved 20°C for fremstilling av en flat film 0. of k, 0 (at 190°C) was extruded from a T die at 170°C, using a conventional extruder, and then cooled and solidified on a cooling roll at 20°C to produce a flat film 0 .

På liknende måte ble det fremstilt eri flat film A flat film was produced in a similar way

P, bortsett fra at tetralin kontinuerlig ble ført over på den avkjølte valsen, hvoretter filmen ble vasket med metanol. Den følgende tabell viser glans og transmittans for de to filmer 0 og P som begge hadde en tykkelse på 70 ^om. Det fremgår av tabellen at man oppnår en bemerkelsesverdig matthet (eller lav glans) og ugjennomskinnelighet (eller lav transmittans). P, except that tetralin was continuously passed onto the cooled roll, after which the film was washed with methanol. The following table shows the gloss and transmittance for the two films 0 and P which both had a thickness of 70 µm. It appears from the table that a remarkable dullness (or low gloss) and opacity (or low transmittance) is achieved.

Eksempel 8. Example 8.

En propylen/etylen-kopolymer med en grenseviskositet på 1,92 (i tetralin ved 135°C) og et etyleninnhold på 3»5A propylene/ethylene copolymer with an intrinsic viscosity of 1.92 (in tetralin at 135°C) and an ethylene content of 3»5

vekt-$, ble ekstrudert ved 250°C ved hjelp av en vanlig ekstruder og støpeblåst til en flaske Q. På liknende måte ble det fremstilt en flaske R, bortsett fra at dioktyladipat ble pålagt formens indre overflate i form av en tynn film. Glans for de to flasker Q og R som hver hadde en tykkelse på 1,0 mm, er angitt i den følgende tabell. weight-$, was extruded at 250°C by means of a conventional extruder and blow-molded into a bottle Q. A bottle R was prepared in a similar manner, except that dioctyl adipate was applied to the inner surface of the mold in the form of a thin film. Gloss for the two bottles Q and R, each of which had a thickness of 1.0 mm, is given in the following table.

Eksempel 9. Example 9.

Kommersielt polyetylentereftalat av filmkvalitet ble ekstrudert fra en T-dyse med ^ 00°C, idet man anvendte en vanlig ekstruder, og deretter ført ned i et vannbad ved 20°C, hvorved man fikk fremstilt en flat film S. Commercial film-grade polyethylene terephthalate was extruded from a T-die at ^ 00°C, using a conventional extruder, and then passed into a water bath at 20°C, whereby a flat film S was produced.

En film T ble fremstilt på samme måte, bortsett fra at badet vår fylt med dimetylformamid ved 20°C, og ved at de gjenværende mengder dimetylformamid på filmen etter opptak av badet ble fjernet med vann. A film T was prepared in the same way, except that our bath was filled with dimethylformamide at 20°C, and that the remaining amounts of dimethylformamide on the film after taking the bath were removed with water.

Glansen for disse filmer S og T var 75 og 16$ henholdsvis, noe som viser at film T var langt mattere. The gloss for these films S and T were 75 and 16$ respectively, showing that film T was far duller.

Claims (1)

Fremgangsmåte til fremstilling av formede gjenstander med matt overflate av krystallinsk termoplast, karakterisert ved at gjenstanden under formingen, dvs. under overgangen fra flytende til fast gjenstand, holdes i kontakt med en organisk væske med affinitet til plasten.Process for the production of shaped objects with a matte surface of crystalline thermoplastic, characterized in that the object is kept in contact with an organic liquid with an affinity for the plastic during the shaping, i.e. during the transition from liquid to solid object.
NO110270A 1969-04-02 1970-03-24 NO132580C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP44025311A JPS4822193B1 (en) 1969-04-02 1969-04-02

Publications (2)

Publication Number Publication Date
NO132580B true NO132580B (en) 1975-08-25
NO132580C NO132580C (en) 1975-12-03

Family

ID=12162442

Family Applications (1)

Application Number Title Priority Date Filing Date
NO110270A NO132580C (en) 1969-04-02 1970-03-24

Country Status (8)

Country Link
JP (1) JPS4822193B1 (en)
BR (1) BR7017977D0 (en)
CA (1) CA937724A (en)
DE (1) DE2014431C3 (en)
FR (1) FR2042839A5 (en)
GB (1) GB1302099A (en)
NO (1) NO132580C (en)
SE (1) SE363118B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU538516B2 (en) * 1979-01-26 1984-08-16 Yoshino Kogyosho Co., Ltd. Crystallised surface of blow moulding
DE19618674A1 (en) * 1996-05-09 1997-11-13 Solvay Interox Gmbh Kit for treatment of silicones and other plastics impaired by mould growth
JP6024037B2 (en) * 2012-08-08 2016-11-09 株式会社カネカ Manufacturing method of organic member

Also Published As

Publication number Publication date
DE2014431C3 (en) 1973-10-11
DE2014431A1 (en) 1970-10-08
FR2042839A5 (en) 1971-02-12
NO132580C (en) 1975-12-03
CA937724A (en) 1973-12-04
DE2014431B2 (en) 1973-03-15
BR7017977D0 (en) 1973-01-09
GB1302099A (en) 1973-01-04
JPS4822193B1 (en) 1973-07-04
SE363118B (en) 1974-01-07

Similar Documents

Publication Publication Date Title
US4892779A (en) Multilayer article of microporous and substantially nonporous materials
RU2396172C2 (en) Label film for deep drawing
US3822333A (en) Process for producing shaped articles of crystalline polyolefins having a roughened surface
CA2012729C (en) Dulled stretched molding and process for producing the same
US3773608A (en) Paper-like polymeric films and production thereof
CN101142082B (en) Label film for a blow moulding method
AU752568B2 (en) Bioriented polyethylene film with a high water vapor transmission rate
KR100637004B1 (en) Biaxially Oriented Heat Shrinkable Polyolefin Film
SU605531A3 (en) Dull polymer film
US20130202828A1 (en) Laser Thermal Printing on Microporous Plastic Substrates
US3619454A (en) Method of preparing polypropylene sheet
NO132580B (en)
US6764751B2 (en) Coated multilayer polyethylene film
JPS6230896B2 (en)
US3823210A (en) Method of manufacturing oriented product of synthetic crystalline polymer
US3184526A (en) Manufacture of polyolefin film
DE2744357A1 (en) POLYAETHYLENE TEREPHTHALATE SHEET, METHOD OF MANUFACTURING THEREOF AND ITS USE
JPH01171834A (en) Manufacture of polypropylene resin sheet
US3027602A (en) Process for preparing glossy, transparent nylon films by melt extrusion of superpolyamide resins
JPS6156087B2 (en)
US11795322B2 (en) Heat shrinkable film, and container with film
US3534130A (en) Method of surface treating shaped articles of thermoplastic synthetic resins
KR960010448B1 (en) Decorative film
JPS581646B2 (en) Hanto May Film Seizou Yousei Keibutsuno
JPS637928A (en) Thermoformed polypropylene vessel and its manufacture