NO122755B - - Google Patents

Download PDF

Info

Publication number
NO122755B
NO122755B NO65160945A NO16094565A NO122755B NO 122755 B NO122755 B NO 122755B NO 65160945 A NO65160945 A NO 65160945A NO 16094565 A NO16094565 A NO 16094565A NO 122755 B NO122755 B NO 122755B
Authority
NO
Norway
Prior art keywords
catalyst
zinc
copper
manganese
pellets
Prior art date
Application number
NO65160945A
Other languages
Norwegian (no)
Inventor
P Davies
A Hall
Original Assignee
Ici Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ici Ltd filed Critical Ici Ltd
Publication of NO122755B publication Critical patent/NO122755B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

Fremgangsmåte for omsetning av'karbonmonoksyd med vanndamp. Process for reacting carbon monoxide with water vapour.

Denne oppfinnelse angår omsetning av karbonmonoksydThis invention relates to the conversion of carbon monoxide

med damp over katalysatorer med høy aktivitet ved lav temperatur. Katalysatorene i foretrukne former har den fordel at de forblir aktive i lengre tid ved bruk, eller de er mindre tette uten alvorlig tap av mekanisk styrke, enn mange tidligere kjente beslektede katalysatorer. with steam over catalysts with high activity at low temperature. The catalysts in preferred forms have the advantage that they remain active for a longer time in use, or they are less dense without serious loss of mechanical strength, than many previously known related catalysts.

I henhold til oppfinnelsen tilveiebringes en fremgangs-According to the invention, a process is provided

måte for omsetning av karbonmonoksyd med vanndamp, særlig for fremstilling av ammoniakk-syntesegass eller hydrogen eller for å gjøre brennstoffgass ugiftig, ved temperaturer under 300°C over en katalysator inneholdende kobber og sink. Fremgangsmåten karakteriseres ved at det anvendes en katalysator method for reacting carbon monoxide with water vapour, in particular for the production of ammonia synthesis gas or hydrogen or for making fuel gas non-toxic, at temperatures below 300°C over a catalyst containing copper and zinc. The method is characterized by the use of a catalyst

omfattende produktet fra delvis reduksjon av de sam-felte oksyder av kobber og sink og minst ett ytterligere metall valgt fra gruppen bestående av aluminium, magnesium og mangan, hvis oksyder er anvendelige som katalysatorbærere, og eventuelt et ikke-samfelt katalysator-bæremateriale. comprising the product from the partial reduction of the combined oxides of copper and zinc and at least one additional metal selected from the group consisting of aluminium, magnesium and manganese, whose oxides are usable as catalyst supports, and optionally a non-combined catalyst support material.

Mengdeforholdet av oksydet av aluminium, magnesium eller mangan er fortrinnsvis i området 4 til 20, særlig 8 til 20 atomprosent av den totale mengde av de nevnte oksyder. The quantity ratio of the oxide of aluminium, magnesium or manganese is preferably in the range 4 to 20, in particular 8 to 20 atomic percent of the total quantity of the said oxides.

Hvis manganoksyd er tilstede, er dets valens fortrinnsvis ikke høyere enn 4 i katalysatoren slik som denne normalt håndteres, If manganese oxide is present, its valency is preferably not higher than 4 in the catalyst as it is normally handled,

dvs. før reduksjon forut for bruk eller i bruk. ie before reduction prior to use or in use.

Kobberinnholdet i katalysatoren eller komposisjonenThe copper content of the catalyst or composition

er fortrinnsvis minst 10%, for eksempel i området 10 til 70%, særlig 10 til 50%. Sinkinnholdet er fortrinnsvis minst 20%, for eksempel mellom 20 og 80%. Egnede katalysatorer inneholder således kobber, sink og det ytterligere metall eller metaller i forholdene 30:60:10, 40:40:20 og 60:30:10 og forhold mellom disse forhold. Disse prosentmengder og forhold er efter atomer. is preferably at least 10%, for example in the range 10 to 70%, especially 10 to 50%. The zinc content is preferably at least 20%, for example between 20 and 80%. Suitable catalysts thus contain copper, zinc and the additional metal or metals in the ratios 30:60:10, 40:40:20 and 60:30:10 and ratios between these ratios. These percentages and ratios are according to atoms.

Ved fremstilling av katalysatoren som anvendes i henhold til oppfinnelsen, omsettes en blanding av ikke-halogenid, svovelfri salter av metallene med et karbonat eller bikarbonat av et alkalimetall eller (mindre foretrukket) ammonium, hvorefter det resulterende bunnfall vaskes tilnærmet fritt for alkali, tørkes og kalsineres. Blandingen av oppløsningene på utfellingstrinnet utføres fortrinnsvis kontinuerlig. Temperaturen på blandingstrinnet er fortrinnsvis i området In the production of the catalyst used according to the invention, a mixture of non-halide, sulphur-free salts of the metals is reacted with a carbonate or bicarbonate of an alkali metal or (less preferred) ammonium, after which the resulting precipitate is washed approximately free of alkali, dried and calcined. The mixing of the solutions in the precipitation step is preferably carried out continuously. The temperature of the mixing step is preferably in the range

65 - 85°C, og fortrinnsvis heves den til 80 til 100°C efter 65 - 85°C, and preferably it is raised to 80 to 100°C after

blanding og holdes der inntil pH-verdien opphører å stige. Fortrinnsvis holdes en forholdsvis lav, men konstant alkali-tetsgrad (svarende til en pH-verdi ved 90°C i området opp til 9,8, særlig opp til 8,0) under og efter utfellingen. mixture and held there until the pH value stops rising. Preferably, a relatively low but constant degree of alkalinity (corresponding to a pH value at 90°C in the range up to 9.8, especially up to 8.0) is maintained during and after the precipitation.

(I "provisional specification" var den nedre grense på 7,0 angitt i betydningen "nøytralitet", selv om ved de temperaturer som her anvendes, kan nøytralitet være tilstede ved så lav pH-verdi som ca. 6,0). Vaskingen av bunnfallet, hvis det er fremstilt under anvendelse av en alkalimetallforbindelse, bør fortrinnsvis være slik at det blir tilbake mindre enn 0,5% alkali-metalloksyd (beregnet som Na20), mer foretrukket mindre enn (In the "provisional specification" the lower limit of 7.0 was stated in the sense of "neutrality", although at the temperatures used here, neutrality can be present at a pH value as low as about 6.0). The washing of the precipitate, if prepared using an alkali metal compound, should preferably be such that less than 0.5% alkali metal oxide (calculated as Na 2 O) remains, more preferably less than

0,2%. 0.2%.

Ved den ovennevnte fremgangsmåte foretrekkes at minst noe og fortrinnsvis alt innholdet av hver metalliske bestand-del som innføres ved utfelling, innføres som en forbindelse i hvilken metallet er tilstede som kationer, særlig som nitrat eller acetat. Det er imidlertid også mulig å innføre noe av en eller flere metalliske bestanddeler som anioner. Kalsine-ringen av katalysatoren foretaes fortrinnsvis.ved temperaturer opp til 350°C, for eksempel ca. 300°C. In the above-mentioned method, it is preferred that at least some and preferably all of the content of each metallic component which is introduced by precipitation is introduced as a compound in which the metal is present as cations, especially as nitrate or acetate. However, it is also possible to introduce some of one or more metallic constituents such as anions. The calcination of the catalyst is preferably carried out at temperatures up to 350°C, for example approx. 300°C.

Hvis katalysatoren skal anvendes i et statisk lag,If the catalyst is to be used in a static layer,

kan den formes, for eksempel ved granulering, pelletisering eller ekstrudering. Disse operasjoner utføres fortrinnsvis efter kålsinering av bunnfallet. Pellettettheten i komposisjonen er fortrinnsvis i området 1,0 til 2,0, særlig 1,4 til 1,8. Før den bringes til anvendelse reduseres katalysatorkomposisjonen for å gi den aktive form; og dette utføres vanligvis av brukeren av katalysatoren i den konverter hvor den skal anvendes. Reduserende gasser så som hydrogen eller karbonmonoksyd, fortrinnsvis vesentlig fortynnet med en gass som er inert overfor katalysatoren, så som nitrogen eller damp, kan anvendes for reduksjonen forutsatt at de er tilnærmet fri for svovel og andre katalysatorgifter. En egnet reduksjonstemperatur er 230°C, it can be shaped, for example by granulation, pelletisation or extrusion. These operations are preferably carried out after charcoal sintering of the precipitate. The pellet density in the composition is preferably in the range 1.0 to 2.0, especially 1.4 to 1.8. Before it is put to use, the catalyst composition is reduced to give it its active form; and this is usually carried out by the user of the catalyst in the converter where it is to be used. Reducing gases such as hydrogen or carbon monoxide, preferably substantially diluted with a gas which is inert to the catalyst, such as nitrogen or steam, may be used for the reduction provided they are substantially free of sulfur and other catalyst poisons. A suitable reduction temperature is 230°C,

og for høye temperaturer bør selvsagt unngåes.and too high temperatures should of course be avoided.

Katalysatoren inneholder fortrinnsvis en andel av katalysator-bærer-materiale i tillegg til det som er innført ved sam-utfeIling. Dette materiale er hensiktsmessig det samme som det som ble innført ved sam-utfelling, selv om dette ikke er nødvendig. Fortrinnsvis innføres hovedandelen av katalysator-bærematerialet ved samutfeiling. En særlig god katalysator inneholder 2 til 8 vektprosent tilsatt aluminiumoksyd, og dette tilsettes fortrinnsvis i form av et aluminiumoksyd-hydrat eller et hydratiserbart aluminiumoksyd til én eller flere av de oppløsninger som tar del i sam-utfellingen, slik at utfellingen finner sted i dets nærvær. Katalysatoren som anvendes i henhold til oppfinnelsen kan eventuelt inneholde en andel kromoksyd, fortrinnsvis opp til ca. 25% av den totale komposisjon, og dette innføres fortrinnsvis ved sam-utfeiling. Begge de ovennevnte prosentdeler er efter vekt av oksydene som er tilstede i katalysator-komposisjonen, regnet The catalyst preferably contains a proportion of catalyst carrier material in addition to that introduced by co-precipitation. This material is conveniently the same as that introduced by co-precipitation, although this is not necessary. Preferably, the main part of the catalyst support material is introduced by co-elution. A particularly good catalyst contains 2 to 8 percent by weight of added alumina, and this is preferably added in the form of an alumina hydrate or a hydratable alumina to one or more of the solutions that take part in the co-precipitation, so that the precipitation takes place in its presence . The catalyst used according to the invention may optionally contain a proportion of chromium oxide, preferably up to approx. 25% of the total composition, and this is preferably introduced by co-definement. Both of the above percentages are calculated by weight of the oxides present in the catalyst composition

i oksydform.in oxide form.

Ved fremgangsmåten for omsetning av karbonmonoksyd med vanndamp deaktiveres katalysatoren ved forhøyede temperaturer, og prosessen utføres derfor ved temperaturer opptil 300°C. Trykk over et stort område, for eksempel 1 til 50 atmosfærer og høyere, kan anvendes. Innløpsgassen bør være tilnærmet svovelfri, dvs. inneholde mindre enn 5, særlig mindre enn 1 del fri eller bundet svovel pr. million, og det er derfor fordelaktig å beskytte katalysatoren ved hjelp av et svovel-absorberende lag eller annet beskyttende dekke, hensiktsmessig et som virker ved innløpstemperaturen for katalysatoren. Fremgangsmåten ifølge oppfinnelsen anvendes hensiktsmessig til behandling av en gassblanding hvis C0-innhold er nedsatt (for eksempel til mindre enn 5%) over en katalysator (så som jernoksyd eller et molybdat) som er effektiv ved høyere temperaturer. Slike to-trinns karbonmonoksyd-omdannelses-systemer er tidligere velkjent. Fremgangsmåten ifølge oppfinnelsen kan anvendes i forbindelse med kjente fremgangsmåte-trinn for justering av dampkonsentrasjonen og —temperaturen og for å fjerne karbondioksyd. In the process for reacting carbon monoxide with steam, the catalyst is deactivated at elevated temperatures, and the process is therefore carried out at temperatures up to 300°C. Pressures over a wide range, for example 1 to 50 atmospheres and higher, can be used. The inlet gas should be virtually sulphur-free, i.e. contain less than 5, especially less than 1 part of free or bound sulfur per million, and it is therefore advantageous to protect the catalyst by means of a sulphur-absorbing layer or other protective cover, suitably one which acts at the inlet temperature of the catalyst. The method according to the invention is suitably used for treating a gas mixture whose C0 content is reduced (for example to less than 5%) over a catalyst (such as iron oxide or a molybdate) which is effective at higher temperatures. Such two-stage carbon monoxide conversion systems are previously well known. The method according to the invention can be used in connection with known method steps for adjusting the steam concentration and temperature and for removing carbon dioxide.

Fremgangsmåten ifølge oppfinnelsen er særlig egnetThe method according to the invention is particularly suitable

til fremstilling av ammoniakk-syntesegass eller hydrogen, eller til å fjerne karbonmonoksyd fra brennstoffgass for, for eksempel, å nedsette dens giftighet. for the production of ammonia synthesis gas or hydrogen, or to remove carbon monoxide from fuel gas to, for example, reduce its toxicity.

Oppfinnelsen illustreres ved de følgende eksempler. The invention is illustrated by the following examples.

EKSEMPEL 1EXAMPLE 1

En oppløsning (4 liter) av kobber(II)nitrat-trihydrat (0,694 kg), sinknitrat-heksahydrat (1,323 kg) og aluminium-nitrat-nonahydrat (0,853 kg) i vann ble blandet kontinuerlig ved 74°C med en oppløsning (20 liter) av natriumkarbonat (3,4 kg som Na2C0g). Strømningshastighetene under blandingen var slik at man fikk et lite overskudd av alkali, svarende til en pH for oppslemningen på 7,0 til 7,5. Hele oppslemningen ble derefter fortynnet med 10 liter vann, oppvarmet til 90°C og holdt der i 1 time. Det ble iaktatt at som et resultat av denne varmebehandlingen steg oppslemningens pH-verdi til 8,4.Bunnfallet ble oppsamlet på et filter, oppslemmet på nytt med 20 liter vann, derefter oppsamlet igjen og vasket med 30 liter A solution (4 liters) of copper(II) nitrate trihydrate (0.694 kg), zinc nitrate hexahydrate (1.323 kg) and aluminum nitrate nonahydrate (0.853 kg) in water was mixed continuously at 74°C with a solution (20 litres) of sodium carbonate (3.4 kg as Na2C0g). The flow rates during mixing were such that a small excess of alkali was obtained, corresponding to a pH for the slurry of 7.0 to 7.5. The entire slurry was then diluted with 10 liters of water, heated to 90°C and held there for 1 hour. It was observed that as a result of this heat treatment the pH value of the slurry rose to 8.4. The precipitate was collected on a filter, reslurried with 20 liters of water, then collected again and washed with 30 liters

vann. Filterkaken ble tørket ved 120°C, kalsinert ved 300°Cwater. The filter cake was dried at 120°C, calcined at 300°C

i 8 timer, og derefter finpulverisert. En prøve av denne ble pelletisert med 2% grafitt for å få 5 mm x 5 mm sylindriske pellets. Den prosentvise sammensetning av pelletene efter vekt var som følger: for 8 hours, and then finely powdered. A sample of this was pelletized with 2% graphite to obtain 5 mm x 5 mm cylindrical pellets. The percentage composition of the pellets by weight was as follows:

Dette svarer til et atomforhold på 35% kobber, 53% sink og 12% aluminium. Pelletene hadde en middels vertikal knusestyrke på 167 kg, pellet-tetthet på 1,191 og fyllingsvekt på 1,2. This corresponds to an atomic ratio of 35% copper, 53% zinc and 12% aluminium. The pellets had an average vertical crushing strength of 167 kg, pellet density of 1.191 and fill weight of 1.2.

En prøve av komposisjonen ble undersøkt som pellets ved å redusere dem med fortynnet hydrogen (1,5%H2, 98,5% N2) ved 230°C. En katalysator inneholdende bare kobber og sink (molforhold 34:66) og med en middels vertikal knusestyrke på 68 kg, en pellet-tetthet på 2,46 og en fyllingsvekt på 1,5 A sample of the composition was tested as pellets by reducing them with dilute hydrogen (1.5% H 2 , 98.5% N 2 ) at 230°C. A catalyst containing only copper and zinc (molar ratio 34:66) and with an average vertical crushing strength of 68 kg, a pellet density of 2.46 and a fill weight of 1.5

ble prøvet på samme måte. Aktiviteten av katalysatorene ved 240°C, uttrykt som hastighetskonstanter basert på nedbrytningsgraden for karbonmonoksyd, er gitt i tabellen. Verdiene i parentes er prosent av opprinnelig aktivitet. was tested in the same way. The activity of the catalysts at 240°C, expressed as rate constants based on the degree of decomposition of carbon monoxide, is given in the table. The values in parentheses are percentages of original activity.

En annen prøve av filterkaken ble pelletisert med 2% grafitt, men under anvendelse av et lavere pelletiseringstrykk. Den middels vertikale knusestyrke for disse pellets var 68 kg og deres tetthet var 1,66. Ved prøvning på samme måte som katalysatorene med høyere tetthet, fikk man de følgende aktiviteter: Another sample of the filter cake was pelletized with 2% graphite, but using a lower pelletizing pressure. The average vertical crushing strength of these pellets was 68 kg and their density was 1.66. When tested in the same way as the higher density catalysts, the following activities were obtained:

EKSEMPEL 2 EXAMPLE 2

Fremgangsmåten fra eksempel 1 ble fulgt med den unntagelse at 0,256 kg magnesiumnitrat-heksahydrat ble anvendt istedenfor aluminiumnitratet, og mindre forandringer ble gjort ved vaskingen av bunnfallet. Under de anvendte betingelser utfelles ikke magnesium fullstendig, og som et resultat av dette var magnesiuminneholdet i katalysatoren mindre enn alumi-niuminnholdet i katalysatoren i eksempel 1. Den prosentvise sammensetning av katalysatoren var The procedure from Example 1 was followed with the exception that 0.256 kg of magnesium nitrate hexahydrate was used instead of the aluminum nitrate, and minor changes were made when washing the precipitate. Under the conditions used, magnesium is not completely precipitated, and as a result the magnesium content of the catalyst was less than the aluminum content of the catalyst in Example 1. The percentage composition of the catalyst was

Dette svarer til et atomforhold på 34,9% kobber, 58,4% sink This corresponds to an atomic ratio of 34.9% copper, 58.4% zinc

og 6,7% magnesium. Pelletene hadde en middels vertikal knusestyrke på 73 kg, en pelletstetthet på 1,66 og en fyllingsvekt på 1,11. and 6.7% magnesium. The pellets had an average vertical crushing strength of 73 kg, a pellet density of 1.66 and a fill weight of 1.11.

For å undersøke denne katalysator ble pelletene knust slik at de gikk igjennom en 17 B.S.S, sikt, men ble holdt tilbake på 25 B.S.S, sikt, og derefter redusert ved hjelp av en blanding av hydrogen (1,5 volumprosent) og en nitrogen ved 230°C. Over den reduserte katalysator ble det derefter ført en blanding av vanndamp (50 %), karbonmonoksyd (25%) , og hydrogen (25%, med en tørr gass volumhastighet på 18.000 time""'". To examine this catalyst, the pellets were crushed to pass a 17 B.S.S, sieve, but retained on a 25 B.S.S, sieve, and then reduced using a mixture of hydrogen (1.5% by volume) and a nitrogen at 230 °C. A mixture of water vapor (50%), carbon monoxide (25%), and hydrogen (25%) was then passed over the reduced catalyst at a dry gas volume rate of 18,000 hours.

Aktiviteten av katalysatoren i reciproke sekundenheter ved 240°C var som angitt i tabell 3. The activity of the catalyst in reciprocal second units at 240°C was as indicated in Table 3.

EKSEMPEL 3 EXAMPLE 3

En oppløsning (4 liter) av kobber(II)nitrat-trihydrat (0,694 kg), sinknitrat-heksahydrat (1,488 kg) og mangannitrat-heksahydrat (0,143 kg) i vann ble blandet kontinuerlig ved 70°C med en oppløsning (20 liter) av natriumkarbonat (3,4 kg som Na^O^) . Strømningshastighetene under blanding var slik at man fikk et lite overskudd av alkali, svarende til en pH- A solution (4 liters) of copper (II) nitrate trihydrate (0.694 kg), zinc nitrate hexahydrate (1.488 kg) and manganese nitrate hexahydrate (0.143 kg) in water was mixed continuously at 70°C with a solution (20 liters) of sodium carbonate (3.4 kg as Na^O^) . The flow rates during mixing were such that a small excess of alkali was obtained, corresponding to a pH

verdi for oppslemningen på 7,0 til 7,5. Hele oppslemningen ble derefter fortynnet med 6 liter vann, oppvarmet til 90°C value for the slurry of 7.0 to 7.5. The entire slurry was then diluted with 6 liters of water, heated to 90°C

og holdt der i 1/2 time. Det ble iakttatt at som et resultat av denne behandling steg oppslemningens pH-verdi til 8,7. Bunnfallet ble oppsamlet på et filter, oppslemmet pånytt med and held there for 1/2 hour. It was observed that as a result of this treatment the pH of the slurry rose to 8.7. The precipitate was collected on a filter, reslurried with

20 liter vann, derefter oppsamlet igjen og vasket med 2020 liters of water, then collected again and washed with 20

liter vann. Filterkaken ble tørket ved 120°C, kalsinert ved 300°C i 8 timer, og derefter finpulverisert. En prøve av denne ble pelletisert med 2% grafitt for å gi 5 mm x 5 mm sylindriske pellets. Den prosentvise sammensetning av pelletene efter vekt var: CuO 29,0, ZnO 54,7, MnO 5,3, tap ved 900°C liters of water. The filter cake was dried at 120°C, calcined at 300°C for 8 hours, and then finely pulverized. A sample of this was pelletized with 2% graphite to give 5 mm x 5 mm cylindrical pellets. The percentage composition of the pellets by weight was: CuO 29.0, ZnO 54.7, MnO 5.3, loss at 900°C

10,5 (omfatter flyktige stoffer og grafitt). Dette svarer til et atomforhold på 32,2% kobber, 59,4% sink og 8,4% mangan. Pelletene hadde en middels vertikal knusestyrke på 52kg, en pellettetthet på 1,55 og en fyllingsvekt på 1,0. 10.5 (includes volatile substances and graphite). This corresponds to an atomic ratio of 32.2% copper, 59.4% zinc and 8.4% manganese. The pellets had an average vertical crushing strength of 52kg, a pellet density of 1.55 and a filling weight of 1.0.

En prøve av den pelletiserte komposisjon ble under— søkt efter at den var redusert med fortynnet hydrogen (1,5% A sample of the pelletized composition was examined after it had been reduced with dilute hydrogen (1.5%

H2, 98,5% N2) ved 230°C. En katalysator inneholdende bareH2, 98.5% N2) at 230°C. A catalyst containing only

kobber og sink (atomforhold 34:66) og med en middels vertikal knusestyrke på 68 kg og en pellettetthet på 2,46 ble under- copper and zinc (atomic ratio 34:66) and with an average vertical crushing strength of 68 kg and a pellet density of 2.46 was under-

søkt på samme måte.applied in the same way.

Under anvendelse av en innløpsgass-blanding beståendeWhen using an inlet gas mixture consisting of

av CO 3,3%, C0210%, H2 53,3% og H20 33,4% ved atmosfærisk of CO 3.3%, C0210%, H2 53.3% and H20 33.4% at atmospheric

trykk, ) ved en volumhast' ighet på 22,500 time -1, var omdannelsen ved 230°C 32, 5% for kobber-sink-mangan-katalysatoren, og 30% for kobber-sink-katalysatoren. Disse resultater ble oppnådd under anvendelse av den samme vekt av hver katalysator, selv om kobber-sink-katalysatoren er betraktelig tettere. Aktiviteten av katalysatorene, uttrykt som hastighetskonstanter basert på nedbrytningsgraden for karbonmonoksyd ved 240°C, var 9,6 sek.<->"<*>"for kobber-sink-mangan-katalysatoren og 12,5 sek.<->'<*>' for kobber-sink-katalysatoren. Selv om aktiviteten for kobber-sink -mangan-katalysatoren er mindre enn for kobber-sink-katalysatoren, er dette imidlertid den opprinnelige aktivitet, og efter noen få ukers anvendelse er kobber-sink-mangan-katalysatoren den mest aktive. pressure, ) at a volume rate of 22,500 hour -1, the conversion at 230°C was 32.5% for the copper-zinc-manganese catalyst, and 30% for the copper-zinc catalyst. These results were obtained using the same weight of each catalyst, although the copper-zinc catalyst is considerably denser. The activity of the catalysts, expressed as rate constants based on the degree of decomposition of carbon monoxide at 240°C, was 9.6 sec.<->"<*>"for the copper-zinc-manganese catalyst and 12.5 sec.<->'< *>' for the copper-zinc catalyst. Although the activity of the copper-zinc-manganese catalyst is less than that of the copper-zinc catalyst, this is the original activity, and after a few weeks of use the copper-zinc-manganese catalyst is the most active.

EKSEMPEL 4EXAMPLE 4

Fremgangsmåten ifølge eksempel 1 ble fulgt med den unntagelse at 0,286 kg mangannitrat-heksahydrat ble anvendt istedenfor0,143 kg og 1,323 kg sinknitrat-heksahydrat istedenfor 1,488 kg. Pelletene hadde en middels vertikal knusestyrke på 61 kg, en pellettetthet på 1,68 og en fyllingsvekt på 1,07. The procedure according to Example 1 was followed with the exception that 0.286 kg of manganese nitrate hexahydrate was used instead of 0.143 kg and 1.323 kg of zinc nitrate hexahydrate instead of 1.488 kg. The pellets had an average vertical crushing strength of 61 kg, a pellet density of 1.68 and a fill weight of 1.07.

Den prosentvise sammensetning av disse pellets efter vekt varCuO 28,7,ZnO 47,6,MnO 10,6, tap ved 900°C 12,0. Dette svarer til et atomforhold på 32,8% kobber, 53,5% sink The percentage composition of these pellets by weight was CuO 28.7, ZnO 47.6, MnO 10.6, loss at 900°C 12.0. This corresponds to an atomic ratio of 32.8% copper, 53.5% zinc

og 13,6% mangan.and 13.6% manganese.

Katalysatoren ble undersøkt som beskrevet i eksempelThe catalyst was investigated as described in Example

3 og resultatene er vist i tabell 4.3 and the results are shown in table 4.

Selv om den manganholdige katalysator er noe dårligere med hensyn til opprinnelig aktivitet, er den åpenbart den mest aktive efter langvarig bruk. Although the manganese-containing catalyst is somewhat inferior in terms of initial activity, it is obviously the most active after long-term use.

EKSEMPEL 5EXAMPLE 5

Til en oppløsning av kobbernitrat-trihydrat (1,04 kg), sinknitrat-heksahydrat (2,56 kg) og konsentrert salpetersyre (400 ml) i 3 liter vann ble satt 0,19 kg natriumaluminat i C00 ml vann. Aluminiumoksyd ble utfelt, men ble gjenoppløst ved omrøring. Derefter ble 0,075 kg findelt, fast aluminiumoksyd-trihydrat tilsatt. Den resulterende suspensjon ble blandet ved dets strømningsknutepunkt med en natriumkarbonat-opp.løsning tilstrekkelig til å gi en pH-verdi på 7,0 til 8,0 ved utfellingstemperaturen som var 70°C. Oppslemningen ble fortynnet med 6 liter vann, oppvarmet ved 90°C i 1 time (endelig pH-verdi 8,5), og derefter filtrert. Vaske-, kalsinering- og pelletiseringsprosessen var som beskrevet i eksempel 1. Pelletene (5,4 mm diameter, 3,6 mm lange) hadde en middels vertikal knusestyrke på 85 kg, en pellettetthet To a solution of copper nitrate trihydrate (1.04 kg), zinc nitrate hexahydrate (2.56 kg) and concentrated nitric acid (400 ml) in 3 liters of water was added 0.19 kg of sodium aluminate in 00 ml of water. Alumina was precipitated, but redissolved upon stirring. Then 0.075 kg of finely divided, solid alumina trihydrate was added. The resulting suspension was mixed at its flow junction with a sodium carbonate solution sufficient to give a pH of 7.0 to 8.0 at the precipitation temperature of 70°C. The slurry was diluted with 6 liters of water, heated at 90°C for 1 hour (final pH 8.5), and then filtered. The washing, calcining and pelletizing process was as described in Example 1. The pellets (5.4 mm diameter, 3.6 mm long) had an average vertical crushing strength of 85 kg, a pellet density

på 1,56 og en fyllingsvekt på 0,99. Den prosentvise sammensetning av pelletene var of 1.56 and a filling weight of 0.99. The percentage composition of the pellets was

Dette svarer til et atomforhold på 29% kobber, 60% sink, 11% aluminium. This corresponds to an atomic ratio of 29% copper, 60% zinc, 11% aluminium.

Pelletene ble knust og undersøkt som beskrevet i eksempel 2. Ved 200°C var omdannelsen 32% og ved 250°C 51%. The pellets were crushed and examined as described in example 2. At 200°C the conversion was 32% and at 250°C 51%.

Claims (2)

1. Fremgangsmåte for omsetning av karbonmonoksyd med vanndamp, særlig for fremstilling av ammoniakk-syntesegass eller hydrogen eller for å gjøre brennstoffgass ugiftig, ved temperaturer under 300°C over en katalysator inneholdende kobber og sink, karakterisert ved at det anvendes en katalysator omfattende produktet fra delvis reduksjon av de sam-felte oksyder av kobber og sink og minst ett ytterligere metall valgt fra gruppen bestående av aluminium, magnesium og mangan, hvis oksyder er anvendelige som katalysatorbærere, og eventuelt et ikke-samfelt katalysator-bæremateriale.1. Process for reacting carbon monoxide with water vapour, in particular for the production of ammonia synthesis gas or hydrogen or for making fuel gas non-toxic, at temperatures below 300°C over a catalyst containing copper and zinc, characterized in that the a catalyst is used comprising the product from the partial reduction of the combined oxides of copper and zinc and at least one additional metal selected from the group consisting of aluminium, magnesium and manganese, whose oxides are usable as catalyst carriers, and optionally a non-combined catalyst support material . 2.F remgangsmåte som angitt i krav 1, karakterisert ved at det ytterligere metall som anvendes i katalysatoren/ er aluminium.2. Process as stated in claim 1, characterized in that the additional metal used in the catalyst is aluminium.
NO65160945A 1965-01-05 1965-12-16 NO122755B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB428/65A GB1131631A (en) 1965-01-05 1965-01-05 Catalysts of high activity at low temperature
GB3647865 1965-08-25

Publications (1)

Publication Number Publication Date
NO122755B true NO122755B (en) 1971-08-09

Family

ID=26235915

Family Applications (1)

Application Number Title Priority Date Filing Date
NO65160945A NO122755B (en) 1965-01-05 1965-12-16

Country Status (9)

Country Link
AT (1) AT285524B (en)
BE (1) BE674365A (en)
DE (1) DE1542222B2 (en)
ES (1) ES321501A1 (en)
FR (1) FR1462839A (en)
GB (1) GB1131631A (en)
NL (1) NL153099B (en)
NO (1) NO122755B (en)
SE (1) SE343042B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199479A (en) 1978-02-24 1980-04-22 Chevron Research Company Hydrogenation catalyst
NO146046L (en) * 1980-03-28
US4565803A (en) * 1983-12-16 1986-01-21 Shell Oil Company Methanol synthesis catalyst
FR2558738B1 (en) * 1984-01-27 1987-11-13 Inst Francais Du Petrole PROCESS FOR THE MANUFACTURE OF CATALYSTS CONTAINING COPPER, ZINC AND ALUMINUM FOR USE IN THE PRODUCTION OF METHANOL FROM SYNTHESIS GAS
FR2560531B1 (en) * 1984-03-02 1988-04-08 Inst Francais Du Petrole PROCESS FOR THE MANUFACTURE OF CATALYSTS CONTAINING COPPER, ZINC, ALUMINUM AND AT LEAST ONE GROUP METAL FORMED BY RARE EARTHS AND ZIRCONIUM AND USE OF THE CATALYSTS OBTAINED FOR REACTIONS USING SYNTHESIS GAS
DE3837308A1 (en) * 1988-11-03 1990-05-10 Basf Ag COPPER-CONTAINING CATALYST FOR TEMPERATURE CONVERSION
EP0721799B1 (en) 1995-01-11 1999-12-08 United Catalysts, Inc. Promoted and stabilized copper oxide and zinc oxide catalyst and preparation method
US6693057B1 (en) 2002-03-22 2004-02-17 Sud-Chemie Inc. Water gas shift catalyst
US6903050B2 (en) 2002-10-28 2005-06-07 Engelhard Corporation Method of preparation of non-pyrophoric copper-alumina catalysts
KR100728124B1 (en) * 2006-02-10 2007-06-13 삼성에스디아이 주식회사 Catalyst for water gas shift for fuel cell system, method of preparing same and fuel cell system comprising same
US9440218B2 (en) 2013-06-13 2016-09-13 Clariant Corporation Methods and active materials for reducing halide concentration in gas streams
GB201519133D0 (en) 2015-10-29 2015-12-16 Johnson Matthey Plc Process
GB201519139D0 (en) 2015-10-29 2015-12-16 Johnson Matthey Plc Process
EA035796B1 (en) 2015-10-29 2020-08-12 Джонсон Мэтти Паблик Лимитед Компани Water-gas shift catalyst
US11045793B1 (en) * 2020-07-24 2021-06-29 Qatar University Controlled on-pot design of mixed copper/zinc oxides supported aluminum oxide as an efficient catalyst for conversion of syngas to heavy liquid hydrocarbons and alcohols under ambient conditions feasible for the Fischer-Tropsch synthesis
CN114669191B (en) * 2022-03-31 2023-05-19 中国科学院生态环境研究中心 Manganese copper ore material and application thereof in room temperature carbon monoxide removal

Also Published As

Publication number Publication date
NL153099B (en) 1977-05-16
BE674365A (en) 1966-06-27
ES321501A1 (en) 1967-01-01
GB1131631A (en) 1968-10-23
DE1542222A1 (en) 1969-12-18
DE1542222B2 (en) 1976-12-16
SE343042B (en) 1972-02-28
AT285524B (en) 1970-10-27
NL6516883A (en) 1966-07-06
FR1462839A (en) 1966-12-16

Similar Documents

Publication Publication Date Title
NO160945B (en) THERMAL P EFFECTED ROCKET ENGINE SAFETY SYSTEM.
NO122755B (en)
CA1144911A (en) Catalyst and method for producing the catalyst
JP4062647B2 (en) Catalyst for steam reforming of methanol
CA1228345A (en) Modified copper- and zinc-containing catalyst and process for producing methanol using said catalyst
NO126254B (en)
US4191664A (en) Thermally stable nickel-alumina catalysts useful for methanation and other reactions
US3961037A (en) Process for forming hydrogen and carbon dioxide using a catalyst consisting essentially of oxides of copper, zinc and aluminum or magnesium
US3303001A (en) Low temperature shift reaction involving a zinc oxide-copper catalyst
US3546140A (en) Low temperature shift reactions
US3899577A (en) Carbon monoxide conversion catalysts
JPH08229399A (en) Stabilized copper oxide-zinc oxide catalyst containing co-catalyst and its preparation
US1937728A (en) Catalyst
JP2005537119A (en) Cu / Zn / Al catalyst for methanol synthesis
US4865827A (en) Process for removing nitrogen oxides
JPH05245376A (en) Copper oxide-aluminum oxide-magnesium oxide catalyst for conversion of carbon monoxide
US2274639A (en) Process for the production of hydrocarbons
US1746781A (en) Catalyst and catalytic process
JPH06122501A (en) Method for producing hydrogen and catalyst used therefor
CN114984998A (en) Catalyst with KIT-6 as carrier and preparation method and application thereof
GB2025252A (en) Preparation of Methanol Synthesis Catalyst
US1681751A (en) Synthesis of methanol
US1681750A (en) Synthesis op organic compounds
JPH0515501B2 (en)
JPH0371174B2 (en)