NL2026655B1 - System and method for testing high-temperature tensile anisotropic r-values of metal plate - Google Patents

System and method for testing high-temperature tensile anisotropic r-values of metal plate Download PDF

Info

Publication number
NL2026655B1
NL2026655B1 NL2026655A NL2026655A NL2026655B1 NL 2026655 B1 NL2026655 B1 NL 2026655B1 NL 2026655 A NL2026655 A NL 2026655A NL 2026655 A NL2026655 A NL 2026655A NL 2026655 B1 NL2026655 B1 NL 2026655B1
Authority
NL
Netherlands
Prior art keywords
temperature
test sample
control
values
sample
Prior art date
Application number
NL2026655A
Other languages
Dutch (nl)
Other versions
NL2026655A (en
Inventor
Chen Liang
Original Assignee
Univ Shandong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Shandong filed Critical Univ Shandong
Publication of NL2026655A publication Critical patent/NL2026655A/en
Application granted granted Critical
Publication of NL2026655B1 publication Critical patent/NL2026655B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/0282Two dimensional, e.g. tapes, webs, sheets, strips, disks or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0694Temperature

Abstract

The invention discloses a system and method for testing high-temperature tensile anisotropic r-values of a metal plate, for accurately measuring the anisotropic r-values of the metal plate at high temperatures. The system comprises a tensile tester, a test sample arranged on the tensile tester, a temperature measurement and control system for controlling the temperature of the test sample, and a strain measurement system for measuring strain data of the test sample. The method comprises: measuring the temperature of the test sample and the maXimum output limit value of direct current, and calculating a limit value of temperature borne by the metal test sample, adjusting temperature control parameters, and adjusting the temperature of the test sample, measuring strain data of the test sample during hightemperature uniaXial tensile test, and determining the anisotropic r-values of the test sample at different temperatures according to the obtained strain data of the test sample.

Description

SYSTEM AND METHOD FOR TESTING HIGH-TEMPERATURE TENSILE ANISOTROPIC R-VALUES OF METAL PLATE Field of the Invention
The present disclosure relates to the field of characterization of mechanical properties of metal plates, and in particular to a system and method for testing tensile anisotropic r-values of a metal plate under high-temperature conditions.
Background of the Invention With the development of lightweight design, high-temperature forming has become an important process for forming aluminum-magnesium alloys and high-strength steels.
Plates usually have the feature of anisotropic, and the accurate characterization of anisotropic r- values of the plates at different temperatures has important guiding significance for hot forming numerical simulation of the plates and optimization of forming process parameters.
In recent years, a non-contact strain measurement method (DIC technology) has been widely used in the mechanical property test of metal plates.
The DIC technology can not only obtain the accurate strain of a metal plate, but also record the strain development history during the deformation of the plate, and then accurately measure uniaxial tensile anisotropic r-values of the plate.
During the research and development process, the inventors found that the existing measurement method has the following problems: (1) When a furnace heating method is used for tensile test, the DIC technology cannot be applied well due to the closed furnace body, the high-temperature air in the furnace and the refraction of light by glass, which will affect the test precision and cannot accurately obtain the anisotropic r-values of the plate. (2) A self-resistance heating method refers to that the current is introduced into a test sample, and Joule heat is generated by means of the resistance of the metal test sample, thereby increasing the temperature of the test sample.
When the test sample is heated by means of self-resistance, the resistance of a heating zone will change in the presence of a thermal inertia and with the deformation during the thermal tensile test, so that the temperature of the test sample cannot be stabilized at an accurate temperature value.
Summary of the Invention In order to overcome the above shortcomings of the prior art, the present disclosure provides a system and method for testing high-temperature tensile anisotropic r-values of a metal plate, which can accurately measure the anisotropic r-values of the metal plate at high temperatures.
One aspect of the present disclosure provides a technical solution of a system for testing high- temperature tensile anisotropic r-values of a metal plate: A system for testing high-temperature tensile anisotropic r-values of a metal plate includes a tensile tester, a test sample arranged on the tensile tester, a temperature measurement and control system for controlling the temperature of the test sample, and a strain measurement system for measuring strain data of the test sample.
Another aspect of the present disclosure provides a technical solution of a method for testing high-temperature tensile anisotropic r-values of a metal plate: A method for testing high-temperature tensile anisotropic r-values of a metal plate includes the following steps: measuring the temperature of a test sample and the maximum output limit value of direct current, and calculating a limit value of temperature borne by the metal test sample; adjusting temperature control parameters, and implementing real-time feedback control on the temperature of the tensile test sample by PLC control; measuring strain data of the test sample during high-temperature uniaxial tensile test; and determining the anisotropic r-values of the test sample at different temperatures according to the obtained strain data of the test sample.
Through the above technical solutions, the beneficial effects of the present disclosure are: (1) The present disclosure can obtain stable temperatures during thermal tensile test by setting heating parameters reasonably, the time required for heating to a predetermined temperature is short, the temperature control is accurate and stable, and the equipment of the present disclosure is simple, easy to implement, and low in cost; (2) The present disclosure realizes on-line strain measurement of mechanical properties of the metal plate under high-temperature conditions, can accurately measure the historical data of strain development of the test sample during the thermal tensile test, eliminates the influence of cooperation of various clamps in the traditional thermal tensile device on the experimental results, and accurately obtains the anisotropic r-values of the metal plate at different temperatures.
Brief Description of the Drawings The accompanying drawings constituting a part of the present disclosure are intended to provide a further understanding of the present disclosure, and the illustrative embodiments of the present disclosure and the descriptions thereof are intended to interpret the present disclosure and do not constitute improper limitations to the present disclosure.
FIG. 1 is a structural diagram of a temperature measurement and control system in Embodiment 1; FIG. 2 is a structural diagram of a strain measurement system in Embodiment 1; FIG. 3 is a structural diagram of a tensile control system in Embodiment 1; FIG. 4 is a flowchart of a method for testing high-temperature tensile anisotropic r-values of a metal plate in Embodiment 2; FIGS. 5(a) and 5(b) are schematic diagrams of middle temperature distribution of a test sample in a strain analysis zone of a central area of the test sample.
Detailed Description of Embodiments The present disclosure will be further illustrated below in conjunction with the accompanying drawings and embodiments.
It should be noted that the following detailed descriptions are exemplary and are intended to provide further descriptions of the present disclosure. All technical and scientific terms used herein have the same meanings as commonly understood by those of ordinary skill in the technical filed to which the present disclosure belongs, unless otherwise indicated.
It should be noted that the terms used here are merely used for describing specific embodiments, but are not intended to limit the exemplary embodiments of the present application. As used herein, the singular form is also intended to comprise the plural form unless otherwise indicated in the context. In addition, it should be understood that when the terms “contain” and/or “comprise” are used in the description, they are intended to indicate the presence of features, steps, operations, devices, components and/or combinations thereof.
Embodiment 1 This embodiment provides a system for testing high-temperature tensile anisotropic r-values of a metal plate. The system includes a temperature measurement and control system, a strain measurement system and a tensile control system.
Referring to FIG. 1, the temperature measurement and control system includes an embedded touch display screen 1, a control module 2, a temperature sensor 3 and a low-voltage high- current adjustable DC power supply 4. The control module 2 includes a PLC (Programmable Logic Controller) 6, a CPU (Central Processing Unit) 7, a thermocouple 8 and a power module. The low-voltage high-current adjustable DC power supply 4 is connected to both ends of a test sample 5, the temperature sensor 3 is connected to the thermocouple 8, and the thermocouple 8 is connected to the test sample, welded to the surface of the test sample, and used to collect the temperature of the test sample and output the temperature to the thermocouple 8; the CPU 7 is connected to the embedded touch display screen 1 and the thermocouple 8, the thermocouple 8 transmits the collected temperature data of the test sample to the CPU 7, the CPU 7 processes the temperature data of the test sample, and the embedded touch display screen 1 displays the real-time temperature of the test sample; the CPU 7 is also connected to the PLC 6, an output end of the PLC 6 is connected to the low- voltage high-current adjustable DC power supply 4, the CPU 7 transmits the processed data to the PLC 6, and the PLC 6 uses its PID function to output a control signal from the output port of the PLC to the low-voltage high-current adjustable DC power supply 4 in an automatic mode, thus controlling the output value of the low-voltage high-current adjustable DC power supply 4 to automatically adjust and control the temperature of the test sample.
In this embodiment, the temperature measurement and control system has two control modes, respectively open-loop control and closed-loop control.
(1) Open-loop control. The CPU is used as a host, and the thermocouple 1s expanded. The thermocouple is connected to the temperature sensor. The thermocouple obtains the temperature data of the test sample collected by the temperature sensor and transmits the temperature data to the CPU for processing, and the CPU transmits the processed data to the embedded touch display screen for displaying the real-time temperature of the test sample. In this process, the low-voltage high-current adjustable DC power supply adjusts the output value of the current in a manual mode to control the temperature of the test sample.
In a switch control state, the temperature measurement and control system measures a limit value of temperature borne by the metal test sample 5 and a maximum output limit parameter of direct current allowed by the metal test sample, so as to provide reference data for parameter setting of a closed-loop system. The output value of the direct current is manually controlled through a current control knob of the low-voltage high-current adjustable DC power supply, so that the current flowing through the test sample 5 gradually increases till the temperature of the test sample rises and the test sample fuses. The temperature of the test sample and the output value A of the direct current, displayed by the embedded touch display screen when the test sample fuses, are recorded. The temperature limit value of the test 5 sample is the recorded fusing temperature of the test sample; a calculation formula for the maximum output limit parameter M of the direct current is: M = 4 x 27648
Q Wherein, A is the maximum DC output limit value of the low-voltage high-current adjustable DC power supply when the test sample fuses, and Q is the range of the temperature sensor. (2) Closed-loop control. The CPU is used as a host, and the thermocouple is expanded. The thermocouple 1s connected to the temperature sensor. The temperature data of the test sample collected by the temperature sensor is processed, the thermocouple obtains the temperature data of the test sample collected by the temperature sensor and transmits the temperature data to the CPU for processing, the CPU transmits the processed data to the PLC, and the PLC outputs a control signal to the low-voltage high-current adjustable DC power supply in the automatic mode, thus controlling the output value of the low-voltage high-current adjustable DC power supply to automatically adjust and control the temperature of the test sample. A working process of the temperature measurement and control system proposed in this embodiment is: In the open-loop control state, the temperature measurement and control system measures the temperature limit value of the test sample and the maximum output limit parameter M of the direct current. Before the closed-loop control of the temperature measurement and control system is used, the temperature control parameters of the PLC need to be set. The control parameters include proportional gain, integral time, differential time, etc. First, the temperature limit value of the metal test sample, the temperature measurement range of the temperature sensor, and the maximum output limit parameter M of the direct current are input through the embedded touch display. Then, the temperature control parameters in the PLC are automatically set by using TIA Portal software to obtain the parameters such as proportional gain, integral time, and differential time required for the temperature control of the test sample, and the temperature control parameters are uploaded and saved to the PLC after the setting.
The PLC compares the collected real-time temperature of the test sample with a given temperature to obtain an error value between the real-time temperature and the given temperature, an output value proportional to the error value is calculated by proportional control of the PID function in the PLC, a steady-state error caused by the proportional control output value is eliminated by integral control, the future change trend of the error value is predicted by differential control and advanced control is implemented to suppress hysteresis errors of the proportional control and integral control output values in temperature adjustment, and then a control signal obtained by the combined action of proportional control, integral control and differential control is output from the output port of the PLC to the low- voltage high-current adjustable DC power supply in the automatic mode, to control the output value of the low-voltage high-current adjustable DC power supply, thereby realizing an automatic adjustment and control function on the temperature of the test sample.
In this embodiment, the temperature measurement and control system further includes a safety protection system.
The safety protection system is an emergency stop button.
The emergency stop button of the PLC realizes an instantaneous current output stop function of the low-voltage and high-current adjustable DC power supply, which can realize safety protection of the system in emergencies.
Referring to FIG. 2, the strain measurement system is a DIC three-dimensional digital speckle strain measurement system.
The three-dimensional digital speckle strain measurement system includes an adjustable measuring head 9, a control box 10 and a PC 11. The control box is connected to the adjustable measuring head 9 to control the adjustable measuring head, and camera power is triggered externally.
The control box 10 is connected to the PC 11, and the PC 11 is connected to the adjustable measuring head 9 by a cable.
The adjustable measuring head 9 includes a bracket, and a camera, a laser and an LED arranged on the bracket.
A working process of the strain measurement system proposed in this embodiment is: Before measurement, the surface of the test sample is sprayed with random speckles by using a high-temperature and oxidation resistant spray paint, and then the measurement distance between the measuring head and the test sample is adjusted according to the breadth parameters of the camera.
During measurement, the setting parameters are initialized at the PC, the cross central line of the camera is corrected, and images are captured.
After the images are captured, a patch area and seed points are created, and measurement results are automatically calculated.
Speckle images on the test sample are captured by the camera, deformation points on the surface are matched by using a digital image correlation algorithm (DIC), and a strain field of the thermal tensile test sample is calculated through the changes of three-dimensional coordinates of each point.
As an optical non-contact three-dimensional strain measuring system, it has the advantages of rapidness, simplicity, flexibility and high precision, and can achieve non-contact measurement, obtain real strain data of the test sample during the high- temperature uniaxial tensile process, and then determine anisotropic r-values of the plate at different temperatures.
Referring to FIG. 3, the tensile control system includes a tensile tester, the tensile tester includes a workbench 14, two clamps 12 arranged on the workbench and a test sample 5 held between the two clamps, the two clamps 12 are respectively provided with a terminal 15, one end of each of the terminals 15 is connected to the low-voltage high-current adjustable DC power supply 4 through a high current-carrying wire 16, and the low-voltage high-current adjustable DC power supply 4, the high current-carrying wires 16, the terminals 15, the clamps 12 and the test sample 5 form a current loop; the PLC 6 is connected to the low- voltage high-current adjustable DC power supply 4 to automatically control the low-voltage high-current adjustable DC power supply.
In this embodiment, each clamp 12 is provided with an insulating gasket 13, and the insulating gasket is used to reliably insulate the current loop and the tensile tester.
The tensile control system proposed in this embodiment implements thermal stretch of the metal test sample by means of the self-resistance heating of the metal test sample and the uniaxial tensile function of the tensile tester, and the tensile tester records a force-time curve of the test sample during the thermal tensile test process.
A working process of the tensile control system is: Positive and negative poles of the low-voltage high-current adjustable DC power supply 4 are respectively connected to the upper and lower clamps 12 of the tester through the high current-carrying wires 16 and the terminals 15. The direct current output by the low-voltage high-current adjustable DC power supply 4 flows through the test sample 5 held by the clamps via the high current-carrying wires 16, the terminals 15 and the clamps 12, the metal test sample 5 is thermally stretched by means of the self-resistance heating of the metal test sample and the uniaxial tensile function of the tester, and the force-time curve of the test sample 5 during the thermal tensile test process is recorded by the tensile tester and combined with a strain-time curve obtained by the strain measurement system to obtain accurate strain data of the test sample.
Referring to FIGS. 5(a) and 5(b), the temperature of the self-resistance electric heating test sample is in a gradient distribution, and a temperature constant zone in the middle area is selected for strain measurement. Although the self-resistance heating will reduce the elongation of the tensile test sample, when anisotropic r-values are measured, the data at small strain can be selected for obtaining accurate anisotropic r-values.
The system for testing high-temperature tensile anisotropic r-values of a metal plate according to this embodiment implements on-line strain measurement of mechanical properties of the metal plate under high-temperature conditions, and can accurately measure the historical data of strain development of the test sample during the thermal tensile test process, eliminate the influence of cooperation between various clamps in the traditional thermal tensile device on the experimental results, and accurately obtain the anisotropic r-values of the metal plate at different temperatures.
Embodiment 2 This embodiment provides a method for testing high-temperature tensile anisotropic r-values of a metal plate. This method is implemented based on the system for testing high- temperature tensile anisotropic r-values of a metal plate as described in Embodiment 1. Referring to FIG. 4, the method for testing high-temperature tensile anisotropic r-values of a metal plate includes the following steps: S101, a limit value of temperature borne by the metal test sample and a maximum output limit parameter of direct current allowed by the metal test sample are measured.
Specifically, in the open-loop control state of the temperature measurement and control system, the DC output value of the low-voltage high-current adjustable DC power supply is manually controlled, so that the current flowing through the test sample 5 gradually increases till the temperature of the test sample rises and the test sample fuses. The temperature data of the test sample collected by the temperature sensor is obtained by the thermocouple, and transmitted to the CPU for processing to obtain a temperature of the test sample and a maximum output limit value A of the direct current, and the limit value of temperature borne by the metal test sample is calculated by using the maximum output limit value A of the direct current and the range of the sensor.
S102, temperature control parameters in the PLC are set to obtain the parameters such as proportional gain, integral time, and differential time required for the temperature control of the test sample.
S103, the output value of the low-voltage high-current adjustable DC power supply 1s controlled by a PID control method, so as to automatically adjust and control the temperature of the test sample.
Specifically, in the closed-loop control state of the temperature measurement and control system, the PLC compares the collected real-time temperature of the test sample with a given temperature to obtain an error value between the real-time temperature and the given temperature, an output value proportional to the error value is calculated by proportional control of the PID function in the PLC, a steady-state error caused by the proportional control output value is eliminated by integral control, the future change trend of the error value is predicted by differential control and advanced control is implemented to suppress hysteresis errors of the proportional control and integral control output values in temperature adjustment, and then a control signal obtained by the combined action of proportional control, integral control and differential control is output from the output port of the PLC to the low- voltage high-current adjustable DC power supply in the automatic mode, to control the output value of the low-voltage high-current adjustable DC power supply, thereby realizing an automatic adjustment and control function on the temperature of the test sample.
S104, a high-temperature uniaxial tensile test is performed on the test sample, and strain data of the test sample during the high-temperature uniaxial tensile test is measured.
Positive and negative poles of the low-voltage high-current adjustable DC power supply 4 are respectively connected to the upper and lower clamps 12 of the tester through the high current-carrying wires 16 and the terminals 15. The direct current output by the low-voltage high-current adjustable DC power supply 4 flows through the test sample 5 held by the clamps via the high current-carrying wires 16, the terminals 15 and the clamps 12, and the metal test sample 5 is thermally stretched by means of the self-resistance heating of the metal test sample 5 and the uniaxial tensile function of the tester.
Before measurement, the surface of the test sample is sprayed with random speckles by using a high-temperature and oxidation resistant spray paint, and then the measurement distance between the measuring head and the test sample is adjusted according to the breadth parameters of the camera.
During measurement, the setting parameters are initialized at the PC, the cross central line of the camera is corrected, and images are captured.
After the images are captured, a patch area and seed points are created, speckle images on the test sample are captured by the camera, deformation points on the surface are matched by using a digital image correlation algorithm (DIC), and a strain field of the thermal tensile test sample is calculated through the changes of three-dimensional coordinates of each point.
S105, the anisotropic r-values of the test sample at different temperatures are determined according to the obtained strain data of the test sample during the high-temperature uniaxial tensile process.
In this embodiment, the test sample is a metal plate.
The method for testing high-temperature tensile anisotropic r-values of a metal plate according to this embodiment implements on-line strain measurement of mechanical properties of the metal plate under high-temperature conditions, and can accurately measure the historical data of strain development of the test sample during the thermal tensile test process, eliminate the influence of cooperation between various clamps in the traditional thermal tensile device on the experimental results, and accurately obtain the anisotropic r- values of the metal plate at different temperatures.
Although the specific embodiments of the present disclosure are described above in combination with the accompanying drawings, the protection scope of the present disclosure is not limited thereto.
It should be understood by those skilled in the art that various modifications or variations could be made by those skilled in the art based on the technical solution of the present disclosure without any creative effort, and these modifications or variations shall fall into the protection scope of the present disclosure.

Claims (10)

ConclusiesConclusions 1. Systeem voor het testen van anisotropische r-waarden bij trekbelasting op hoge temperatuur voor een metaalplaat, omvattende een trekproefapparaat, een proefmonster op het trekproefapparaat opgesteld, een temperatuurmetings- en regelsysteem ter regeling van de temperatuur van het proefmonster, en een rekmetingssysteem ter meting van rekgegevens van het proefmonster.A system for testing anisotropic high-temperature tensile load r values for a metal sheet, comprising a tensile testing apparatus, a test sample arranged on the tensile testing apparatus, a temperature measurement and control system for controlling the temperature of the sample, and an elongation measurement system for measuring of strain data of the test sample. 2. Systeem voor het testen van anisotropische r-waarden bij trekbelasting op hoge temperatuur voor een metaalplaat volgens conclusie 1, waarbij het trekproefapparaat een werkbank en twee op de werkbank opgestelde klemmen omvat, het proefmonster tussen de twee klemmen vastgehouden is en elke klem van een elektrische klem voorzien is.The system for testing anisotropic high temperature tensile load r values for a metal sheet according to claim 1, wherein the tensile testing apparatus comprises a workbench and two clamps arranged on the workbench, the test sample is held between the two clamps and each clamp of a electrical clamp is provided. 3. Systeem voor het testen van anisotropische r-waarden bij trekbelasting op hoge temperatuur voor een metaalplaat volgens conclusie 2, waarbij het temperatuurmetings- en regelsysteem een ingebouwd aanraakbeeldscherm, een regelmodule, een temperatuursensor en een regelbare gelijkstroomvoeding op laagspanning en sterkstroom omvat; de positieve en negatieve polen van de regelbare gelijkstroomvoeding op laagspanning en sterkstroom respectievelijk met de elektrische klemmen op de klemmen bij middel van draden verbonden zijn; en de regelmodule met de temperatuursensor, de regelbare gelijkstroomvoeding op laagspanning en sterkstroom en het ingebouwde aanraakbeeldscherm verbonden is, de temperatuurgegevens van het proefmonster ontvangt die door de temperatuursensor verzameld zijn, een uitgevoerde waarde van de regelbare gelijkstroomvoeding op laagspanning en sterkstroom regelt, dus de temperatuur van het proefmonster automatisch instelt en regelt.The system for testing anisotropic high temperature tensile load r values for a metal sheet according to claim 2, wherein the temperature measurement and control system comprises a built-in touch screen display, a control module, a temperature sensor and a low voltage and high current controllable DC power supply; the positive and negative poles of the low voltage and high current controllable direct current power supply are connected to the electrical terminals on the terminals respectively by means of wires; and the control module is connected to the temperature sensor, the low voltage and high current adjustable DC power supply and the built-in touch screen, receives the temperature data of the sample collected by the temperature sensor, an output value of the low voltage and high current adjustable DC power supply, so controls the temperature of the sample automatically sets and controls. 4. Systeem voor het testen van anisotropische r-waarden bij trekbelasting op hoge temperatuur voor een metaalplaat volgens conclusie 3, waarbij de regelmodule een programmeerbare logische sturing, een centrale verwerkingseenheid, een thermokoppel en een energiemodule omvat; een invoeruiteinde van het thermokoppel met de temperatuursensor verbonden is, en een uitvoeruiteinde met de centrale verwerkingseenheid verbonden is; de centrale verwerkingseenheid met het ingebouwde aanraakbeeldscherm en met de programmeerbare logische sturing verbonden is, de temperatuurgegevens van het proefmonster ontvangt die door het thermokoppel verzameld zijn, de temperatuurgegevens verwerkt, en het verwerkingsresultaat naar het ingebouwde aanraakbeeldscherm en naar de programmeerbare logische sturing stuurt; de programmeerbare logische sturing de PID- regeling op het verwerkingsresultaat uitvoert, en een regelsignaal naar de regelbare gelijkstroomvoeding op laagspanning en sterkstroom uitvoert ter regeling van de uitvoerwaarde van de regelbare gelijkstroomvoeding op laagspanning en sterkstroom.The system for testing anisotropic high temperature tensile load r values for a metal sheet according to claim 3, wherein the control module comprises a programmable logic controller, a central processing unit, a thermocouple and a power module; an input end of the thermocouple is connected to the temperature sensor, and an output end is connected to the central processing unit; the central processing unit is connected to the built-in touch screen display and to the programmable logic controller, receives the sample temperature data collected by the thermocouple, processes the temperature data, and sends the processing result to the built-in touch screen display and to the programmable logic controller; the programmable logic controller performs PID control on the processing result, and outputs a control signal to the low voltage and high current adjustable DC power supply to control the output value of the low voltage and high current controllable DC power supply. 5. Systeem voor het testen van anisotropische r-waarden bij trekbelasting op hoge temperatuur voor een metaalplaat volgens conclusie 1, waarbij het rekmetingssysteem een meetkop, een bedieningskast en een PC omvat; de bedieningskast met de meetkop ter bediening van de meetkop verbonden is, en de bedieningskast met de PC verbonden is; en de PC met de meetkop bij middel van een kabel verbonden is, gespikkelde beelden van het proefmonster ontvangt die bij middel van de meetkop verzameld zijn, vervormingspunten op het oppervlak van het proefmonster bij middel van een algoritme ter correlatie van digitale beelden koppelt, rekveldgegevens van het proefmonster via de veranderingen van de driedimensionale coördinaten van elk punt berekent, en de anisotropische r-waarden van de plaat bij verschillende temperaturen bepaalt.The system for testing anisotropic high temperature tensile load r values for a metal sheet according to claim 1, wherein the strain measurement system comprises a measuring head, a control box and a PC; the control box is connected to the measuring head for operating the measuring head, and the control box is connected to the PC; and the PC is connected to the probe by a cable, receives speckled images of the sample collected from the probe, couples deformation points on the surface of the sample by means of a digital image correlation algorithm, strain field data from calculates the sample through the changes in the three-dimensional coordinates of each point, and determines the anisotropic r-values of the plate at different temperatures. 6. Systeem voor het testen van anisotropische r-waarden bij trekbelasting op hoge temperatuur voor een metaalplaat volgens conclusie 1, waarbij de meetkop een steun, een camera, een laser en een LED op de steun opgesteld omvat.The system for testing anisotropic high temperature tensile load r values for a metal sheet according to claim 1, wherein the measuring head comprises a support, a camera, a laser and an LED arranged on the support. 7. Systeem voor het testen van anisotropische r-waarden bij trekbelasting op hoge temperatuur voor een metaalplaat volgens conclusie 2, waarbij de klem van een isolerende dichting voorzien is.The system for testing anisotropic high temperature tensile load r values for a metal sheet according to claim 2, wherein the clamp is provided with an insulating seal. 8. Werkwijze voor het testen van anisotropische r-waarden bij trekbelasting op hoge temperatuur voor een metaalplaat, omvattende de volgende stappen: meten van de temperatuur van een proefmonster en van de maximale uitvoergrenswaarde van de gelijkstroom, en berekenen van een grenswaarde voor de temperatuur die door het metalen proefmonster verdragen wordt; instellen van temperatuurregelingsparameters, en instellen van de temperatuur van het proefmonster; meten van rekgegevens van het proefmonster tijdens een éénassige proef bij hoge temperatuur; en bepalen van de anisotropische r-waarden van het proefmonster bij verschillende temperaturen volgens de verkregen rekgegevens van het proefmonster.A method of testing anisotropic high temperature tensile load r values for a metal sheet, comprising the steps of: measuring the temperature of a test sample and the maximum output limit value of the direct current, and calculating a limit value for the temperature which is tolerated by the metal sample; setting temperature control parameters, and adjusting the temperature of the test sample; measuring strain data of the test sample during a high temperature uniaxial test; and determining the anisotropic r values of the test sample at different temperatures according to the obtained strain data of the test sample. 9. Werkwijze voor het testen van anisotropische r-waarden bij trekbelasting op hoge temperatuur voor een metaalplaat volgens conclusie 8, waarbij een werkwijze ter instelling van de temperatuur van het proefmonster de volgende stappen omvat: instellen van temperatuuregelingsparameters waaronder proportionele versterking, integrale tijd and differentiële tijd;The method for testing anisotropic high temperature tensile load r values for a metal sheet according to claim 8, wherein a method for adjusting the temperature of the sample comprises the steps of: setting temperature control parameters including proportional gain, integral time and differential time; vergelijken van de verzamelde temperaturen in reële tijd van het proefmonster met een gegeven temperatuur ten einde een foutwaarde begrepen tussen de temperatuur in reële tijd en de gegeven temperatuur te verkrijgen; berekenen van een uitvoerwaarde evenredig met de foutwaarde bij middel van een proportionele regeling, verwijderen van een constante fout teweeggebracht door de uitvoerwaarde van de proportionele regeling bij middel van een integrale regeling, voorspellen van de tendens van de toekomstige verandering van de foutwaarde bij middel van een differentiële regeling, en toepassen van een gevorderde regeling om hysteresisfouten van de uitvoergegevens van de waarden van de proportionele regeling en van de integrale regeling bij de temperatuurinstelling te verwijderen; en uitvoeren van een regelsignaal verkregen door de proportionele regeling, de integrale regeling en de differentiële regeling naar de regelbare gelijkstroomvoeding op laagspanning en sterkstroom ten einde de uitvoerwaarde van de regelbare gelijkstroomvoeding op laagspanning en sterkstroom te regelen, dus instellen van de temperatuur van het proefmonster.comparing the collected real-time temperatures of the test sample with a given temperature to obtain an error value comprised between the real-time temperature and the given temperature; calculating an output value proportional to the error value by means of a proportional control, removing a constant error caused by the output value of the proportional control by means of an integral control, predicting the tendency of the future change of the error value by means of an differential control, and applying advanced control to remove hysteresis errors from the output data of the values of the proportional control and of the integral control at the temperature setting; and outputting a control signal obtained by the proportional control, the integral control and the differential control to the low voltage and high current adjustable DC power supply to control the output value of the low voltage and high current controllable DC power supply, thus adjusting the temperature of the sample. 10. Werkwijze voor het testen van anisotropische r-waarden bij trekbelasting op hoge temperatuur voor een metaalplaat volgens conclusie 8, waarbij een werkwijze ter meting van rekgegevens van het testmonster tijdens de éénassige trekproef bij hoge temperatuur de volgende stappen omvat; besproeien van het oppervlak van het proefmonster met willekeurige spikkels bij middel van een sproeiverf bestendig tegen hoge temperaturen en tegen oxidatie, en instellen van de meetafstand tussen de meetkop en het testmonster volgens de breedteparameters van de camera; initialiseren van de regelparameters, rechtzetten van de dwarse middenlijn van de camera, en opnemen van gespikkelde beelden op het proefmonster; en realiseren van een pleistergebied en van zaaipunten, verwerken van de opgenomen gespikkelde beelden bij middel van een algoritme ter correlatie van digitale beelden, koppelen van vervormingspunten op het oppervlak van het proefmonster, en berekenen van rekveldgegevens van het proefmonster via de veranderingen van de driedimensionale coördinaten van elk punt.A method for testing anisotropic high temperature tensile stress r values for a metal sheet according to claim 8, wherein a method for measuring strain data of the test sample during the uniaxial high temperature tensile test comprises the following steps; spraying the surface of the test sample with random specks by means of a spray paint resistant to high temperatures and to oxidation, and adjusting the measuring distance between the measuring head and the test sample according to the width parameters of the camera; initializing the control parameters, straightening the transverse centerline of the camera, and recording speckled images on the sample; and realizing a patch area and seeding points, processing the recorded speckled images by means of a digital image correlation algorithm, coupling deformation points on the surface of the sample, and calculating strain field data of the sample through the changes of the three-dimensional coordinates from every point.
NL2026655A 2019-10-17 2020-10-12 System and method for testing high-temperature tensile anisotropic r-values of metal plate NL2026655B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910989103.8A CN110658082A (en) 2019-10-17 2019-10-17 System and method for testing r value of high-temperature tensile anisotropy of metal plate

Publications (2)

Publication Number Publication Date
NL2026655A NL2026655A (en) 2021-06-07
NL2026655B1 true NL2026655B1 (en) 2022-02-22

Family

ID=69041139

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2026655A NL2026655B1 (en) 2019-10-17 2020-10-12 System and method for testing high-temperature tensile anisotropic r-values of metal plate

Country Status (2)

Country Link
CN (1) CN110658082A (en)
NL (1) NL2026655B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879628A (en) * 2020-07-01 2020-11-03 中国科学院金属研究所 System and method for detecting PLC effect of alloy
CN114062135B (en) * 2021-11-16 2024-03-26 武汉工程大学 Rock strain data correction method for high-temperature triaxial tester

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308384A (en) * 2013-05-06 2013-09-18 杭州电子科技大学 Device for measuring anisotropism of sheet metal
CN105738680B (en) * 2016-04-08 2019-01-18 西南交通大学 The anisotropic test device of high-temperature superconductor band and test method under a kind of pulling force
CN106289999A (en) * 2016-07-29 2017-01-04 重庆大学 Metal material Mechanics Performance Testing equipment under the high temperature conditions and method of testing thereof
CN106769525B (en) * 2016-11-28 2019-05-31 哈尔滨工业大学 The system and test method of tested conductor material mechanical performance under vacuum environment
CN108593429A (en) * 2018-06-21 2018-09-28 武汉钢铁有限公司 Material high-speed stretch stress-strain test device and method

Also Published As

Publication number Publication date
NL2026655A (en) 2021-06-07
CN110658082A (en) 2020-01-07

Similar Documents

Publication Publication Date Title
NL2026655B1 (en) System and method for testing high-temperature tensile anisotropic r-values of metal plate
CN104515707A (en) Temperature measurement method for electrified tensile test piece and tensile test device
JP2005249427A (en) Thermophysical property measuring method and device
CN109581241B (en) Battery characteristic simulation method and device
US20110073583A1 (en) Soldering Equipment
CN109613051B (en) Device and method for measuring Seebeck coefficient of material by using contrast method
CN111060798B (en) Automatic power aging test system and test method for MOS (metal oxide semiconductor) tube
CN205821415U (en) Mechanical control equipment for Ti 6Al 4V alloy wire rapid thermal treatment
NL2026678B1 (en) Cruciform tensile characterization heating test platform and method
CN103323483A (en) Double-wire test method for melting and crystallization properties
CN110672427B (en) System and method for testing high-temperature mechanical properties of plate in one-way stretching mode
JP6127830B2 (en) Electric heating device
CN202511619U (en) System for controlling tin melting furnace
KR20100101990A (en) Thermo couple temperature measurement apparatus
CN107515637A (en) A kind of glass plate steel process course control method for use
CN111579384A (en) High temperature environment metal material tensile test system
NL2026662A (en) Cross dual tensile comprehensive test platform and method suitable for high-temperature conditions
US20190154510A1 (en) Method for Determining a Temperature without Contact and Infrared Measuring System
JP4953061B2 (en) Object heating method and apparatus
CN103116374A (en) Temperature control system of reflow soldering machine
CN105352991A (en) Powder coating gel time exact measurement determinator
CN203900760U (en) Temperature alarm device for welding
CN207798269U (en) A kind of emissivity measurement device
CN105486576A (en) Automatic stretching alignment device for synchrotron radiation in-situ test
CN103134337B (en) Automatic-temperature-control fixed-point furnace is used to generate the method for Wen Ping