NL2007911C2 - METHOD AND DEVICE FOR PLASTIC DEFORMING A BODY - Google Patents

METHOD AND DEVICE FOR PLASTIC DEFORMING A BODY Download PDF

Info

Publication number
NL2007911C2
NL2007911C2 NL2007911A NL2007911A NL2007911C2 NL 2007911 C2 NL2007911 C2 NL 2007911C2 NL 2007911 A NL2007911 A NL 2007911A NL 2007911 A NL2007911 A NL 2007911A NL 2007911 C2 NL2007911 C2 NL 2007911C2
Authority
NL
Netherlands
Prior art keywords
fluid
gas
een
mold
pressure
Prior art date
Application number
NL2007911A
Other languages
Dutch (nl)
Inventor
Paulus Johannes Martinus Spoelstra
Original Assignee
Spoelstra Swinkels Gerarda Maria Josefa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spoelstra Swinkels Gerarda Maria Josefa filed Critical Spoelstra Swinkels Gerarda Maria Josefa
Priority to NL2007911A priority Critical patent/NL2007911C2/en
Priority to PCT/NL2012/050846 priority patent/WO2013081459A1/en
Priority to EP12798015.9A priority patent/EP2785478A1/en
Application granted granted Critical
Publication of NL2007911C2 publication Critical patent/NL2007911C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/06Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/06Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves
    • B21D26/10Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure by shock waves generated by evaporation, e.g. of wire, of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/0033Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 by shock-waves

Abstract

The present invention relates to a method for plastically deforming a body, whereby the body is positioned in a mould cavity of a mould between a first mould section and a second mould section. The body is subjected to a deformation force, which is directed towards a mould surface of the first mould section, in order to plastically deform the body and to conform it at least substantially to the mould surface. A first fluid is admitted into the mould cavity on a side of the body, which is averted from the first mould section, which comprises a gas, compressed under pressure, which has departed from a gaseous state of aggregation. In a mould cavity, which is at least partly filled with the first fluid, a second fluid is admitted at a temperature above a boiling point of the first fluid in order to allow the first fluid to expand, while forcing the body against the mould surface of the first mould section.

Description

Werkwijze en inrichting voor het plastisch deformeren van een lichaam
De onderhavige uitvinding heeft betrekking op een werkwijze voor het plastisch vervormen van een lichaam, in het bijzonder een plaatlichaam, waarbij het lichaam in een matrijsholte 5 van een matrijs wordt gebracht tussen een eerste matrijsdeel en een tweede matrijsdeel, en het lichaam wordt onderworpen aan een naar een matrijsoppervlak van het eerste matrijsdeel gerichte deformatiedruk teneinde het lichaam plastisch te deformeren en althans in hoofdzaak aan het matrijsoppervlak te conformeren.
10 De uitvinding heeft tevens betrekking op een inrichting voor het plastisch vervormen van een lichaam, in het bijzonder een plaatlichaam, omvattende een matrijs met een eerste matrijsdeel en een tweede matrijsdeel die onderling een matrijsholte insluiten, houdermiddelen om het te vervormen lichaam tussen beide genoemde matrijs deels in de matrijsholte te ontvangen en drukmiddelen die in staat en ingericht zijn om, tijdens bedrijf, het lichaam te onderwerpen aan 15 een naar de eerste matrijsdeel gerichte deformatiekracht en het lichaam plastisch te conformeren aan een naar het lichaam gewend matrijsoppervlak van de eerste matrijsdeel.
Het plastisch deformeren van lichamen, in het bijzonder plaatlichamen van metaal, wordt op grote schaal toegepast in werktuigbouwkundige fabricageprocessen om daaruit onderdelen, 20 half-fabrikaten en gerede producten te vormen. Gewoonlijk wordt het lichaam daarbij in een matrijs gebracht en tegen een daarin voorzien matrijsoppervlak geforceerd ten einde het daaraan te conformeren.
Hiertoe kan wordt uitgegaan van processen die in de regel als statisch of quasi-statisch worden 25 aangeduid zoals dieptrekken. Daarbij strekt het matrijsoppervlak zich uit tussen een eerste matrijsdeel en een althans nagenoeg complementair tegenmatrijsdeel onder insluiting van het (plaat)lichaam daartussen. Beide matrijsdelen worden (hydro)mechanisch onder een (extreem) grote druk bijeen gebracht ten einde het lichaam blijvend plastisch te deformeren tot een schaaldeel conform het aangeboden matrijsoppervlak. Aldus kan een naadloze 30 driedimensionale vorm daaraan worden gegeven. Een bezwaar van een dergelijke dieptrek-techniek vormen echter de relatief hoge kosten en afschrijvingen van de toegepaste matrijzen en het daarvoor benodigde machinepark. Een groot voordeel is evenwel een uitstekende 2 controle en bestuurbaarheid van het proces, hetgeen resulteert in een grote mate van precisie.
Een goedkopere oplossing biedt vervormingstechniek die gewoonlijk als dynamisch worden 5 aangeduid en waarbij aan een van het matrijsoppervlak afgewende zijde van het lichaam in de matrijsholte kortstondig een hoge omgevingsdruk wordt aangelegd. Hiertoe kan een pyrolytisch gas tot detonatie worden gebracht maar bijvoorbeeld ook een elektrostatische ontlading of een hittepuls van een laser teweeg worden gebracht. Voordeel van deze technieken is de grote snelheid waarmee het lichaam in de gewenste vorm kan worden 10 gebracht, naast de relatief geringe installatiekosten van de te gebruiken machines en matrijzen. Een belangrijk nadeel is evenwel een relatief geringe procescontrole, mede door de onstuimigheid waarmee dit proces onvermijdelijk gepaard gaat.
Met de onderhavige uitvinding wordt ondermeer beoogd in een vervormingstechniek te 15 voorzien die de genoemde voordelen van beide bekende technieken verenigt zonder evenwel de nadelen in even grote mate te erven.
Om het beoogde doel te bereiken heeft een werkwijze van de in de aanhef beschreven soort als kenmerk dat aan een aan een van de eerste matrijsdeel afgewende zijde van het lichaam 20 een eerste fluïdum in de matrijsholte wordt ingelaten, welk eerste fluïdum een onder druk gecomprimeerd gas omvat dat een gasvormige aggregatietoestand heeft verlaten, en dat in een althans ten dele met het eerste fluïdum gevulde matrijsholte een tweede fluïdum wordt ingelaten met een temperatuur boven een kookpunt van het eerste fluïdum ten einde het eerste fluïdum te laten expanderen onder forcering van het lichaam tegen het 25 matrijsoppervlak van de eerste matrijsdeel. Het bijeenbrengen van beide fluïda resulteert in een ultra-snele faseovergang van het eerste fluïdum dat daarbij expandeert onder vorming van een drukgolf. Deze drukgolf blijkt in de praktijk van voldoende omvang om een (plaat)lichaam tegen het matrijsoppervlak te forceren en daarbij blijvend plastisch te deformeren.
30 Door beide fluïda gecontroleerd in te laten, is deze expansie in grote stuurbaar en blijft het proces in grote mate beheersbaar en controleerbaar. Een voorkeursuitvoeringsvorm van de werkwijze heeft daartoe als kenmerk dat ten minste één van het eerste en tweede fluïdum via regelbare inlaatmiddelen gecontroleerd wordt ingelaten.
3
Een bijzondere voorkeursuitvoeringsvorm van de werkwijze heeft volgens de uitvinding als kenmerk dat het eerste fluïdum in ten minste één van een vaste, natte en super-kritische aggregatietoestand wordt ingelaten. Door het eerste fluïdum in een dergelijke toestand in de 5 matrijsholte in contact te brengen met het naar verhouding "hete" tweede fluïdum wordt een ultra-snelle fase-overgang bereikt die een drukgolf teweeg brengt welke krachtig genoeg is om het materiaal van het lichaam plastisch te vervormen.
In beginsel lenen met name gassen, dat wil zeggen stoffen die bij kamertemperatuur en 10 atmosferische druk gewoonlijk gasvormig zijn, zich voor het eerste fluïdum, doch in de praktijk zijn bijzonder goede resultaten realiseerbaar met een bijzondere uitvoeringsvorm van de werkwijze, gekenmerkt doordat het eerste fluïdum ten minste één medium omvat uit een verzameling omvattende kooldioxide, argon en stikstof.
15 Om een extra hoeveelheid energie aan het eerste fluïdum toe te voeren ten einde een snellere en krachtiger expansie daarvan te verkrijgen, heeft een verdere voorkeursuitvoeringsvorm van de werkwijze volgens de uitvinding als kenmerk dat het tweede fluïdum werd verhit alvorens in de matrijsholte te worden ingelaten, en meer in het bijzonder dat het tweede fluïdum stoom omvat.
20
Om het expansie-proces daarentegen desgewenst te kunnen mitigeren, heeft een verdere voorkeursuitvoeringsvorm van de werkwijze volgens de uitvinding als kenmerk dat het eerste fluïdum door controleerbare verwarmingsmiddelen wordt geleid alvorens het in de matrijsholte in te laten. Aldus kunnen procesparameters optimaal worden ingesteld en 25 gekozen om het gehele proces adequaat onder controle te houden en te beheersen.
Hoewel de hiervoor beschreven ultra-snelle faseovergang en daarmee gepaard gaande expansie van het eerste fluïdum reeds op zichzelf toereikend is voor een plastische vervorming van het (plaat)lichaam, heeft een bijzonder uitvoeringsvorm van de werkwijze volgens de 30 uitvinding niettemin als kenmerk dat een pyrolytisch gas in de matrijsholte wordt ingelaten en daarin tot ontsteking wordt gebracht. Aldus kan de werkwijze worden aangevuld met een meer conventionele pyrolytische vervorming, naast een (hydro)mechanische statische kracht die kan worden uitgeoefend door één of beide fluïda onder druk in de matrijs holte in te laten.
4
De werkwijze bied daarmee een breed scala aan vervormingstechnieken, die naar wens in concreto kunnen worden geselecteerd en afgestemd. Het benodigde pyrolytische gas of gasmengsel wordt met voordeel door elektrolyse of katalyse in-situ verkregen.
5 Een inrichting voor het plastische deformeren van een lichaam onder invloed van drukmiddelen, van de in de aanhef beschreven soort, heeft volgens de uitvinding als kenmerk dat de drukmiddelen regelbare eerste inlaatmiddelen omvatten voor het gecontroleerd inlaten van een gecomprimeerd eerste fluïdum in de matrijsholte die zijn gekoppeld aan compressiemiddelen die in staat en ingericht zijn een gas onder verhoogde druk tot een van 10 een gasfase afwijkende aggregatietoestand te comprimeren, en dat de drukmiddelen regelbare tweede inlaatmiddelen voor het gecontroleerd inlaten van een tweede fluïdum in de matrijsholte die zijn gekoppeld aan verwarmingsmiddelen voor het verwarmen van het tweede fluïdum tot boven een kookpunt van het eerste fluïdum.
15 Voor een snelle werking en korte herhalingscyclus heeft een voorkeursuitvoeringsvorm van de inrichting volgens de uitvinding als kenmerk dat de compressiemiddelen een bufferruimte omvatten waarin het fluïdum onder verhoogde druk houdbaar is en dat de regelbare inlaatmiddelen van het fluïdum regelbare verstuivermiddelen omvatten tussen de matrijsholte en de bufferruimte, welke uitmonden in de matrijsholte en met een inlaat in open 20 communicatie met het buffervat verkeren.
Een verdere voorkeursinrichting van de inrichting volgens de onderhavige uitvinding heeft het kenmerk dat ten minste één onderdeel in contact met het fluïdum onder verhoogde druk of verhoogde temperatuur ten minste één medium omvat gekozen uit een groep omvattende 25 titanium, silicium, alumina of een combinatie daarvan. Een verdere voorkeursinrichting van de inrichting volgens de onderhavige uitvinding heeft het kenmerk dat een buffervat omvattende ten minste één sectie is omwonden met een draad, in het bijzonder een minerale draad, een metallische draad of een kunststofdraad.
30 Met het oog op een ultrasnelle inlaat en drukbestendigheid van de inlaatmiddelen heeft een voorkeursuitvoeringsvorm van de inrichting volgens de uitvinding als kenmerk dat de inlaatmiddelen verstuivermiddelen omvatten met een pyrolytisch en/of magneto-reologisch en/of elektro-reologisch bekrachtigde afsluiter.
5
De uitvinding zal thans nader worden toegelicht aan de hand van een uitvoeringsvoorbeeld en een bijbehorende tekening. In de tekening toont: figuur 1 een schematische weergave van een procesinstallatie met daarin een 5 uitvoeringsvoorbeeld van een inrichting volgens de uitvinding voor uitvoering van een uitvoeringsvoorbeeld van de werkwijze volgens de uitvinding; figuur 2 in dwarsdoorsnede, de matrijs zoals toegepast in de installatie van figuur 1; en figuur 3 een gedetailleerde dwarsdoorsnede van inlaatmiddelen zoals toegepast i de installatie van figuur 1.
10
De figuren zijn overigens zuiver schematische en niet steeds op schaal getekend. Met name kunnen ter wille van de duidelijkheid sommige dimensies in meer of minder mate overdreven zijn weergegeven. Overeenkomstige delen zijn in het algemeen in de figuren met eenzelfde verwijzingscijfer aangeduid.
15 A work piece (body), such as a metal or plastic sheet or a profile, is positioned inside a cavity (34) or a mould. The mould comprises one or more sections which enclose said cavity and enables the body to be shaped into a hollow or otherwise profiled product. Figure 1 shows a double sided die, but in practice also a single sided die can be used to form the work piece into 20 shape. The work piece will hereinafter be referred to as blank.
The sections (19,25) of the mould can be closed by means of a hydraulic cylinder (18) powered by a hydraulic pump (38) to apply a closing force preventing or limiting leakage between these sections. Such closing and clamping provisions are also seen in hydroforming or quick plastic 25 forming processes. One section surrounding the cavity may have a form, shape or curvature to assist the flow of a forming medium, this is preferably the side (25) where a working fluid like gas is introduced.
The closing means between the upper tool half and the lower tool half may comprise a blank 30 holder (26). Such a blank holder acts as a clamping or gripping device to provide a pressure on the work piece other than the closing force between the sections (19,25).
6
The cavity is connected to a gas supply (1, 2, 2a), as depicted in figure 1, by means of channels which are used for supply of gas. At least one channel is used for supply of gas at temperatures below gas specific triple-point, hereafter referred to as "cold gas".
At least one channel is being used for supply of gas above gas specific triple point, hereafter 5 referred to as "hot gas". This triple-point can be derived from phase diagrams describing the different phases.
A portion of cold gas is introduced into the cavity by means of valve operation (3). The gas flow is directed into a diverter station (7) at a pressure preferably higher than 20 bar. Inside the 10 diverter station (7) the gas flow is directed by appropriate valve operation towards valve (36). This valve can direct the gas flow towards a feeding arrangement which is equipped to control a density of the cold gas (31). As a result cold gas will be introduced into the cavity as solid gas particles ranging from micrometre sizes to millimetre sizes. A means of producing solid gas particles is represented. Such means could form a part of the density control section (31).
15
It is also possible to supply liquid gas to the cavity (34) by means of valve operation (3), for direct feeding into the diverter station (7) where a valve directs the gas flow through a compressor (24), and a recovery unit (16) where by-pass connections direct the gas flow towards a valve/pump (15) and, then, into the cavity (34).
20 When, instead of liquid gas, a gaseous flow is preferred, then the compressor may supply air by blowing air through a non-return valve (one-way-valve) which is present inside the recovery unit. There it meets with the liquid gas flow, whereupon mixing of cold gas at a temperature and a defined portion of air can take place. This air is generally provided at ambient temperature. The mixing of air at ambient temperature and a portion of liquid gas will result in 25 transformation of liquid gas to a gaseous state. This gas flow can be directed to valve (15) and into the cavity.
Following the introduction of solid gas particles inside the cavity, a gas flow at far higher temperatures is introduced into the cavity. As s result a process will unfold which is commonly 30 referred to as rapid phase transition (RPT). Such type of phase transition is able to produce pressure waves or shockwaves under the condition that the energy transfer between the cold gas flow and hot gas flow is in balance. This is the case when the portion of hot gas is large enough for the portion of cold gas particles to 7 sublimate at a high rate. The rate and force of this phase transition happens to be high enough to deform the work piece.
To provide the required amount of energy, a portion of gas is being heated. The temperature 5 difference between the cold gas and hot gas may range from 20 C° to more than 1000 C°. Such high temperatures can be achieved totally through external heating prior to introducing gas into the cavity. Gas is heated inside a reactor-array (6) by means of a catalytic reaction. This gas can be supplied from a gas storage (1, 2, 2a) by means of valve operation (3) and feeding into a pump unit (4). The pump-unit may comprise a pump, temperature sensors, pressure 10 sensors, valves, couplings, piping sections and the like.
Inside the pump unit the temperature of the gas flow is measured. Feeding to the reactor is only allowed to take place when gas temperatures are higher than the gas specific triple point. Normally, gas from the gas storage (1,2,2a) is stored at a temperature below the operational 15 temperature of the reactor. To achieve a temperature elevation in case the initial gas temperature is too low, heating must take place. When the heater (5) reaches a temperature preferably higher than said triple point, gas is being pumped into the heater (5) by means of the pump unit (4).
20 After the gas has been pre-heated, it is directed through the diverter station (7) where the gas flow is being directed to the reactor (6). Inside the reactor-array (6) gas is heated to temperatures preferably higher than 150 C°. After this heating arrangement the gas flow turns back into the diverter station (7) which further comprises a high pressure pump, such as a pump for supercritical fluids. By means of this pump, the gas flow is being pumped under high 25 pressure into an intermediate storage facility, such as a rectifier vessel (32) or high pressure container (8).
During normal operation it may be economical to re-use gas which has been used during forming-operations. In this manner, processed gas leaving the cavity through pump (15) 30 is directed into a recovery unit (16). This recovery unit comprises of a storage container which volumetric capacity is sufficient to contain at least the volume of the cavity when filled under high pressure. The recovery unit further comprises of piping connections, a temperature and pressure sensor, a safety valve, non-return valves and a pressure regulator.
8
The gas pressure exiting the cavity forces a non-return valve inside the recovery unit to open through which gas flows into a storage container of the recovery unit. The pump (15) only assists when the pressure exiting the cavity drops below the pressure inside the storage 5 container of the recovery unit (16), and will operate until the gas volume inside the cavity has been evacuated. Evacuation is said to have taken place when the pressure inside the cavity has reached ambient pressure.
Once filling of the gas storage container inside the recovery unit (16) is completed, the 10 pressure and temperature are measured. When the gas temperature is sufficient, the gas flow will be directed through the diverter station (7) and into the reactor-array (6). When used for rapid phase transition, the gas temperature exiting the cavity will be below the operating temperature of the reactor-array (6). When this temperature is below this value, then the gas flow will be directed through diverter station (7) and to valves (35) and (3). From this point the 15 gas flow needs to follow the heater routing as described hereinbefore.
Gas may be heated and pumped into a rectifier vessel (32) or high pressure container (8), when the temperature in the rectifier vessel (32) drops more than 10% below the normal feeding temperature on leaving the reactor-array (6). The gas flow can be reheated by means 20 of redirecting the gas flow through valve (35) and (3). From this point the gas flow needs to follow the heater routing as described before until the temperature inside the rectifier vessel has been compensated. Fleat compensation can also be provided by means of direct heating of pressure vessel (8) or (32).
25 The reactor-array (6) preferably comprises multiple reactors, and each reactor is provided with an internal structure comprising reactor channels. The diameter of these channels is preferably as small as possible to achieve a large surface area per unit volume. Because micro sized reactors may add substantial costs to the production of the reactors, also additional length of each individual channel may be provided for to obtain more reactive surface area.
30
The maximum internal channel diameter preferably stays below 4 millimeters in order to avoid runaway reactions from the gas flow. Determination of the diameter range is highly dependent on the catalyst formulation and crystallite size, and furthermore on the initial gas flow 9 conditions and type of gas. Appropriate diameters are ranging from 20 micrometers ranging up to 4 millimeters in diameter. Said flow takes place in an environment where flow conditions, such as pressure and volume are controlled by pressure regulators and valves. All gaseous or otherwise fluid media are transported and controlled independently in order to 5 avoid undesired mixtures.
By passing a gas flow through a reactor a temperature elevation of the gas flow of at least beyond the specific triple-point temperature of the gas entering the reactor is achieved. Preferably a temperature rise of at least 150 C° above ambient temperature is 10 imposed. Higher temperatures may be achieved by changing the composition of a specific catalyst formulation inside the reactor. Preferably a catalyst formulation is chosen containing metallic substances, like Magnesium, so that the maximum temperature of gas exiting the reactor-array (6) will be below a recrystallization temperature of the catalyst material. In practice a temperature even higher than 250 C° may be chosen in this manner.
15
Typically several reactors of the same type can be coupled parallel for initial capacity demands of the process, or incorporated later, at any time, for possible up scaling purpose. Regardless the number of reactors, it is hereafter referred to as "reactor-array".
20 The internal channel structure of the reactors of the reactor-array contain a material acting as a catalyst. This catalyst can be coated to the surface of the internal walls of the channel structure as seen in microchannel reactors, or form an homogeneous structure which can be moulded, extruded, sintered or produced otherwise as to form a solid reactor with an internal structure as seen in monolith-type of reactors. The level of catalyst activity is related to the 25 surface area of the catalyst. This, in turn, is related to the crystallite size. A preferred catalyst features a crystallite size of at least 2 nanometers and below 70 micrometers. The catalyst may comprise a metallic material, such as magnesium or compounds thereof, or any other composition acting as catalyst inside a channel structure.
30 Once the gas flow enters the reactor-array, the gas acts as reactant upon contacting the surface of the internal channel-like structure of the reactor array. This reaction results in elevated gas temperature and gas pressure. The temperature and/or pressure can be measured by means of thermocouples or pressure transmitters or by other measuring 10 methods providing the same. The signal produced by this measurement provide information through which the flow conditions, such as pressure of the initial gas flow can be regulated/adjusted prior to reactor entry. By altering the residence-time of the gas flow within the reactor-array it is possible to control the gas temperature to an order of 0.1 C° or better.
5
The reactant gasses (2, 2a) are preferably nitrogen, argon and/or carbon dioxide. These gasses are handled separately throughout the total process. Carbon dioxide offers the advantage over Nitrogen of a more practical phase conversion temperature, whereas nitrogen provides a different chemical reactivity which may be preferred during production. A drawback of using 10 Nitrogen is its low phase conversion temperature which is costly. Using both Nitrogen and Carbon dioxide covers the desired processing bandwidth.
The availability of Argon (1) in the process provide an opportunity to mix Argon with Nitrogen or Carbon dioxide prior to transporting a gas into the reactor-array. By this means the 15 intensity of the reaction can be lowered or additionally fine tuned. This is performed by means of a gas regulator at a set pressure and a mixing orifice or a gas mixer/gas blender providing the same. This step should be avoided when re-use of gas by means of the recovery unit (16) is targeted.
20 The mixture ratio of Argon (1) can be adjusted to a maximum of 30% in case of mixing with Carbon dioxide or Nitrogen but preferably is below 7% in order to avoid an undesired low activity between catalyst and the reactant gasses during operation. Mixing Argon is advised up to the maximum mixture ratio only when calibration takes place after replacement of reactors or during initial process start-up after equipment installation. Then the reactor activity is 25 measured and controlled as described. The level of activity within the reactor-array is essentially arranged by changing the residence time of Nitrogen or Carbon dioxide within the reactor-array while Argon is mainly used for tempering the catalytic activity inside the reactor.
Another purpose of Argon could be to secure initial flow conditions, such as avoiding a 30 pressure drop below a critical value during operation. Otherwise the reactor activity could rise to undesired levels due to an extended residence time of Nitrogen or Carbon dioxide inside the reactor possibly leading to premature failure of a reactor. To avoid failure, the critical temperature should stay preferably 8% below the metallurgie recrystallization temperature of 11 the catalyst used, while the normal range of operation is preferably 12% below recrystallization temperature.
The reactor-array is equipped with measurement and controlling devices, such as sensors, 5 transmitters, and controllers and the like, to measure temperature and pressure of the gas flow passing the reactor at multiple locations. When a temperature rise is detected through sensors with value's exceeding normal operational range, a indication can be made of failing flow conditions. A second signal is provided by means of pressure transmitters fitted at both reactor entry and reactor exit. In case of failing gas flow conditions the reactant gas flow will 10 be terminated by means of valve operation and Argon under elevated pressure will be transferred into the reactor-array.
The pressure of the Argon (1) flow may be calibrated to achieve a transit time from Argon reaching the most remote distance of the reactor preferably below 2 seconds. By this means 15 reactant gasses are evacuated rapidly preventing the temperature to rise further. The maximum residence time of Argon inside the reactor array should preferably stay below 3 to 4 seconds to avoid thermal shock.
Thermal shock is also suppressed by preheating of Argon. This is provided for by means of a 20 heat exchanger with a volumetric capacity of preferably 10 times the available gas volume inside the reactor-array, and a heating capacity high enough to heat said volume of Argon within two minutes from the gas temperature exiting the main Argon gas storage up to at least 50% and preferably 65% of the temperature inside the reactor-array during normal operation. The heat exchanger and thus also the Argon gas are heated primarily by means of waste gas 25 resulting from the process taking place inside the cavity.
Argon gas, still residing after flowing through the reactor-array, will be collected and diverted to a waste gas provision. In this case the gas is directed out of the reactor-array (6), through the diverter station (7), and from there towards a scroll expander/heat exchanger (28). The 30 scroll expander is a provision meant for energy recovery as it will expand a gas flow meanwhile lowering its temperature and collecting electricity by means of a rotating scroll and coupling of this scroll to a generator. A heat exchanger is being used (28) to recover excess heat. This recovered heat is primarily used for heating of Argon, and subsidiary to obtain a constant 12 temperature inside the storage containers. The waste gas provision (20) may comprise a catalyst to lower emissions once the gas leaves the exhaust (37). For large installations a gas washing device may be used to decrease emissions.
5 After the reactant gasses, such as nitrogen or carbon dioxide, are heated as described in the previous steps, the gasses may be stored inside a pressure vessel. Preferably two or more pressure vessels are being used for this purpose. In that case, during operation, one vessel can be filled with gas while a second vessel is used for supplying a medium for the metal forming operations. Switching between the pressure vessels is performed by means of a valve 10 (39). This valve is operated based on a pressure dependent signal coming from a pressure transmitter. This transmitter communicates with a control unit, such as a PLC, where a pre-set pressure activates the valve between the vessels.
The pressure containers may comprise a number of parts or sections to form a center body.
15 The sections are preferably of a same diameter and are enclosed between cone-shaped top and bottom sections. The sections may be treaded or otherwise equipped with locking means.
The high pressure containers (8, 32) are preferably wire wound with high strength wires such as Basalt fiber or Ultra high strength steel wire. Other high temperature resistant wires can be 20 used.
The function of wire wound vessels, especially when pre-stressed prior to winding, are primarily to enable higher pressure regions without the need of excessive wall thickness of a pressure vessel. Pre-stressing also lowers fatigue risks, and provide additional safety in case of failure. A vessel may be cooled with Nitrogen and the like prior to, and during winding. All 25 parts subject to elevated pressures and temperatures, such as (8,9,11,19,25,26,32) may comprise Ti (titanium), Si (silicium) or Ti (titanium) and Al (Alumina). A number of sealings subject to high pressure, such as sealings used in (8,9,11,19,25,26,32) may comprise Ti (titanium) and Nb (niobium) and compounds thereof.
30 The high pressure containers (8,32) further comprise an opening and closing means through which gas can be filled and released. Opening of the valve (23) enables filling of the manifolds (9) equally with a portion of gas preferably in supercritical state.
13
The temperature of the gas may vary upon preferred process conditions from gas specific triple point to over 500 C°.
Valve (23) operation offers the functionality to enable controlled filling of portions supercritical 5 fluids to the manifolds (9). By this means filling of the manifolds (9) is established at a pressure that is possibly different from the pressure inside the pressure containers (8,32).
Each individual manifold (9) is equipped with a valve on both entrance and exit side in order to control the pressure in which each manifold (9) is filled. By this means it is possible to control 10 the gas release mode from each manifold individually.
The release of pressurized substances, such as gasses in supercritical state, from the manifolds (9) is performed by means of valve operation on the exit side of the manifold. Upon valve operation, a gas flow is initiated into the manifold connection (72) and into the shut-off nozzle. 15 At the same moment of operating the valve on the exit side of the manifold, actuator (66) is operated providing an open connection between the manifold (9), the manifold connection (72), through channel (62) and nozzle cavity (58), and into the gas outlet (63).
The function of the channel (62) is to provide a delay functionality for the released 20 supercritical fluid from the manifold to reach the needle holder (57). By this means the needle (55) and the needle holder are enabled to reach a completely opened position prior to the high pressure reaches the needle holder. If necessary, calibration on this motion can be established by adjusting the needle cap (56). This calibration is not be necessary during daily operation while the opening rate can be controlled by altering the velocity with which the actuator (66) 25 travels.
The form, shape and/or curvature of the needle holder (57) enables compensation of the pressure acting on the needle holder from the side of the channel (62) and the counteracting pressure imposed from the side of the nozzle cavity (58) during operation.
30
This facilitates fast opening and closing rates and thus fast reaction time of the nozzle.
14
The magneto-rheological dampener (64) has multiple functions. The first function is to dampen the velocity just before the needle-holder and needle reach their fully opened or fully closed position. This is necessary while the force imposed on the same must be high to reach the desired rate of opening and closing. Dampening would be required during opening to avoid the 5 needle holder of striking the C-sealing (60) at a force possible leading to damage. During closing, on the other hand, dampening would be required to prevent the needle (55) striking the front end (59) from leading to rigorous damage. The second function of the magneto-rheological dampener to control the release from supercritical fluid exiting the manifold (9).
To perform this it would be required to control the opening and closing position of the needle-10 holder and needle, the rate of the travelling stroke, and how fast the desired final position will be reached.
The magneto-rheological dampener (64) provides the desired reaction speed, dampening profile, and dampening force to provide this action.
15 The magneto-rheological damper (64) further offers the advantage of very low contra-directional resistance against actuation as seen in common gas-dampeners and springs.
The needle-position sensor (61) provides a signal to a control unit through which the needle position can be monitored. This control unit can be programmed by means of software and 20 communicates with the magneto-rheological dampener to establish the exact stroke position, stroke velocity, start,- and end position, and the dampening profile.
Closing of the needle is provided by means of a actuator (67) acting force on the lever (70). The needle will be kept in its maximum closing position by means of a electro-rheological clutch 25 (65) or the magneto-rheological damper (64).
The actuator (66,67) is driven by electromagnetic force resulting from discharging energy from a accumulator like a capacitor-bank.
In the scope of the invention, the activation means can also be provided by electro-hydraulic 30 force, in this case a capacitor discharge is fluid assisted to generate the described activation means.
15 A person skilled in the art has the option to choose between various types of shut-off nozzles, such as the shut-off nozzle shown in figure 3 or types that prove different opening and closing rates.
5 Other means to control the velocity in which the lever travels can be found in a electro- rheological clutch. This clutch would then be connected to the pivoting axis of the lever (70). The advantage of such a clutch is fast response, high power density and it can be used for reversible motion.
10 The individual manifolds (9) can be heated by external means or by heat exchanger (28) through recuperation of gas via route (28, followed by 11).
With these means additional control of the gas pressure and gas temperature inside the manifolds can be arranged. If a higher temperature is required then provided through recuperation, then heater (30) is able to heat gas from the storage container through route (1 15 or 2, or 2a, followed by diverting through the diverter station (7), compressor (24), heater (30). In this case a by-pass connection / piping section must be installed between (30) and (11).
Once the preferred pressure, density, and temperature of the gas inside the manifold is reached, a gas flow may be initiated out of the manifolds (9), through the nozzle-sections 20 (10,11) and into the cavity (34) by said control means.
The air or gas inside the cavity (34 ) is preferably evacuated prior to releasing gas and the feeding of cold gas particles.
25 The air between the workpiece (40) and the die (17) may be evacuated by means of a pump, such as a vacuum pump, or at least a venting arrangement as depicted in figure 1 (42). Such an evacuation is commonly undertaken at high velocity forming processes.
Hydrogen is used to cover higher strain rate regions then normally is achieved with heavy 30 gasses, such as nitrogen, carbon dioxide, and argon. Hydrogen is one of the lightest abundant gasses and is highly flammable. With a catalytic hydrogen reactor (13), it is possible to produce di-atomic hydrogen in-situ, which would be favoured taking into account the present storage challenges and hazards. The procedure is to supply water (12) which can be pre-treated prior 16 to feeding the catalytic hydrogen reactor (13). Inside the reactor, the water vapour reacts with a catalyst, such as magnesium, providing di-hydrogen to valve (14).
By means of valve (14) operation, the desired amount of di-hydrogen can flow inside the cavity 5 (34). The valve (14) is preferably equipped with a flame-arrestor and may be a non-return type of valve. Air inside the cavity (34) must be evacuated prior to feeding di-hydrogen through valve (14). The air is said to be evacuated when the pressure inside the cavity (34) has reached vacuum. High vacuum is not desirable prior to feeding di-hydrogen due to explosion risks. Air or gasses inside the cavity (34) are evacuated through port (15).
10
Once the desired volume of di-hydrogen gas is present inside the cavity, valve (14) is closed, trapping di-hydrogen gas inside the cavity (34). The temperature / pressure inside the cavity (34) should be below an auto-ignition temperature of the gas. Ignition of di-atomic hydrogen is occurs by means of a spark generated by a spark plug (33). This action ignites the hydrogen 15 and the resultant energy will force the work piece into the die (17). A safety vent (27) is provided functioning to divert overpressure, this safety vent may be equipped with a flame arrestor or be connected to an exhaust provision (37).
Providing di-atomic hydrogen may also be generated by means of Electrolysis.
20 This could be a PEM (proton exchange membrane) electrolyser (29) or other electrolyser providing the same. As a result, a gas flow is initiated from the electrolyser (29) towards valve (14) and inside the cavity (34). After this the mentioned procedure to evacuate air and igniting hydrogen should be undertaken.
25 Figure 1 also shows how the whole process may be incorporated into existing processes, also known as hydroforming processes . Through water supply (12), water flows through the hydraulic pump (21). This pump forces pressurized fluid through a intensifier (22) which intensifies the pressurized fluid to the desired pressure. The chosen pressure should be sufficient to force the work piece (40) to conform to the shape of the die (17). It is also possible 30 to use other fluids or mixtures instead of water and mixtures thereof.
Figure 2 shows a cross-section of the mould shown in figure 1.
17 A work piece (80) is placed above the die cavity (93), where the workpiece is being clamped by means of closing the hydraulic cylinders (83). The hydraulic cylinders are supported by platens (82) in order to spread the closing force more evenly onto the lower tooling / die cabinet (84).
5 In practice, a profiled surface on a blank holder (86) can be provided in order to provide a different or non-linear clamping force along the surface of the blank holder. This can be applied to impose a pressure onto the workpiece which may be different then the closing/clamping force, and hence, provide different strains.
10 To force a work piece (80) into conformance with the shape of the die (81), a portion of cold fluïdum, such as solid gas particles is provided through the Cold fluïdum supply channel (89). The pressure inside the forming chamber (87) in this example is preferably atmospheric pressure.
15 The air temperature inside the forming chamber (87) can be measured by means of a thermocouple (92) and can be at or around ambient temperature. A lower temperature then ambient temperature is also possible, because this functions as a delay of sublimation from the solid gas particles which is being undertaken in this procedure. The air / available gas inside the forming chamber is evacuated prior to feeding of solid gas particles through a fluid 20 release channel (88).
The amount of solid gas particles can be controlled by means of valve operation. The size of solid gas particles preferably varies from less then 1 micrometer to 4 or 5 millimeters. The pressure in which solid gas particles are brought into the forming chamber (87) is preferably 25 around 2 Mpa but can be performed at a different pressure
After the portion of cold gas particles is forced in to the forming chamber (87), and appropriate valve operation blocks the inflow, then a portion of hot Fluid is supplied directly through supply (91).
30 In this example the pressure of the hot fluid in this example is 300 Mpa and the temperature of the hot fluid is 473 K. Once the portion of hot fluid and the portion of cold fluid interact a process unfolds commonly referred to as Rapid Phase Transition. During Rapid Phase Transition, solid gas particles carrying a temperature of 194 K, will be forced to sublimate at 18 extremely high rate. This is caused by the high temperature difference while the inflowing hot fluid, such as carbon dioxide is in supercritical state at a temperature of 473 K. The temperature differential is in this case 279 K.
5 The high rate of sublimation can produce a pressure wave or shockwave.
The pressure rise time inside the forming chamber cavity (95), can be controlled effectively by altering the temperature or pressure of the inflowing hot fluid, the size and amount of the solid gas particles.
10 Releasing only a hot fluid under high pressure inside a closed system at atmospheric pressure and ambient temperature may also lead to the formation of a pressure wave.
This is caused by instant superheating upon pressure relief, also known as BLEVE Reactions (Boiling Liquid Evaporation Explosions). Providing solid gas particles in such a system changes the number of nucleation sites and is functional to delay the path of the BLEVE 15 reaction. The strain rate, which is a decisive parameter in High Energy Rate Forming processes (HERF) is hereby controlled more effectively.
Formation of a shockwave during depressurization is based on three impulses. The first impulse is created by the blow-down itself where acceleration of gas under high pressure exits 20 the release means at such a high velocity that a shockwave is sent out. The strength of this shockwave is directly proportional to the gauge pressure of gas prior to venting. The second impulse occurs when gas in supercritical phase expands explosively due to rapid homogeneous nucleation. The third impulse occurs by rapid growth of a bubble followed after instant superheating. The expansion can lead to the formation of a shockwave.
25
Avoiding a shockwave can be controlled by means of lowering the release rate of the fluid. By this means the thermodynamic path will affect the mode of homogeneous nucleation. Then the fluid will expand at a lower rate allowing time for heat transfer between any gaseous medium which may be present inside the cavity and cavity walls. This lower rate process may 30 still be fast enough to produce a pressure wave instead of a shockwave. The described heat transfer is effectively controlled by the amount of solid gas particles, the density and size of the particles, and furthermore also dependent on the time between filling of the solid particles and release of hot fluid.
19
The pressure/pressure rise time inside the forming chamber (87) is monitored on the pressure transmitter (90). The strain rate is measured by means of calculating the time difference in which the pressure transmitters (85) are being contacted by the work piece (80) while being 5 forced into the die cavity (93). The pressure transmitters also provide a measurement of the force in which the work piece (80) contacts the die (81).
When the pressure still rises further after each of the pressure transmitters (85) are contacted by the work piece (80), an indication can be made that the pressure is above the value needed 10 to form a specific work piece in conformance with the die.
Prior to forming a work piece (80) it is commonly undertaken in high rate forming processes, also known as impulse forming, to evacuate the air present inside the die cavity (93) prior to forming. This air can be evacuated by vacuum connection (94).
15
This aspect may be important to avoid entrapment of air inside the die cavity, possibly leading to non-complete forming. The scope of this invention is such that the pressure rise time can be controlled more effectively then with existing impulse forming processes.
20 While the invention was explained with the previously described embodiments.it is obvious that the invention is not limited hereto. On the contrary, within the scope of the invention there are many variations and embodiments possible for a person skilled in the art.
25

Claims (16)

1. Werkwijze voor het plastisch vervormen van een lichaam, in het bijzonder een plaatlichaam, waarbij het lichaam in een matrijsholte van een matrijs wordt gebracht tussen 5 een eerste matrijsdeel en een tweede matrijsdeel en het lichaam wordt onderworpen aan een naar een matrijsoppervlak van het eerste matrijsdeel gerichte deformatiedruk teneinde het lichaam plastisch te deformeren en althans in hoofdzaak aan het matrijsoppervlak te conformeren, met het kenmerk dat aan een aan een van de eerste matrijsdeel afgewende zijde van het lichaam een eerste fluïdum in de matrijsholte wordt ingelaten, welk eerste 10 fluïdum een onder druk gecomprimeerd gas omvat dat een gasvormige aggregatietoestand heeft verlaten, en dat in een althans ten dele met het eerste fluïdum gevulde matrijsholte een tweede fluïdum wordt ingelaten met een temperatuur boven een kookpunt van het eerste fluïdum ten einde het eerste fluïdum te laten expanderen onder forcering van het lichaam tegen het matrijsoppervlak van de eerste matrijsdeel. 15Method for plastically deforming a body, in particular a plate body, wherein the body is introduced into a mold cavity of a mold between a first mold part and a second mold part and the body is subjected to a mold surface of the first mold part-oriented deformation pressure to plastically deform the body and at least substantially conform to the mold surface, characterized in that a first fluid is introduced into the mold cavity on a side of the body remote from the first mold part, which first fluid is introduced into the mold cavity comprises compressed gas which has left a gaseous state of aggregation and which in a mold cavity at least partially filled with the first fluid is admitted a second fluid having a temperature above a boiling point of the first fluid in order to cause the first fluid to expand under forcing of the body against the die surface ak of the first mold part. 15 2. Werkwijze volgens conclusie 1 met het kenmerk dat ten minste één van het eerste en tweede fluïdum via regelbare inlaatmiddelen gecontroleerd wordt ingelaten.Method according to claim 1, characterized in that at least one of the first and second fluid is controlled in a controlled manner via controllable inlet means. 3. Werkwijze volgens conclusie 1 of 2 met het kenmerk dat het eerste fluïdum in ten 20 minste één van een vaste, natte en super-kritische aggregatietoestand wordt ingelaten.3. Method as claimed in claim 1 or 2, characterized in that the first fluid is introduced into at least one of a solid, wet and supercritical aggregation state. 4. Werkwijze volgens conclusie 3 met het kenmerk dat het eerste fluïdum ten minste één medium omvat uit een verzameling omvattende kooldioxide, argon en stikstof.Method according to claim 3, characterized in that the first fluid comprises at least one medium from a collection comprising carbon dioxide, argon and nitrogen. 5. Werkwijze volgens één of meer der voorgaande conclusies met het kenmerk dat het tweede fluïdum werd verhit alvorens in de matrijsholte te worden ingelaten.Method according to one or more of the preceding claims, characterized in that the second fluid was heated before being introduced into the mold cavity. 6. Werkwijze volgens conclusie 5 met het kenmerk dat het tweede fluïdum stoom omvat.Method according to claim 5, characterized in that the second fluid comprises steam. 7. Werkwijze volgens één of meer der voorgaande conclusies met het kenmerk dat een pyrolytisch gas in de matrijsholte wordt ingelaten en daarin tot ontsteking wordt gebracht.Method according to one or more of the preceding claims, characterized in that a pyrolytic gas is introduced into the mold cavity and ignited therein. 8. Werkwijze volgens conclusie 7 met het kenmerk dat het pyrolytische gas door elektrolyse of katalyse werd verkregen.Method according to claim 7, characterized in that the pyrolytic gas was obtained by electrolysis or catalysis. 9. Werkwijze volgens één of meer der voorgaande conclusie met het kenmerk dat het 5 eerste fluïdum door controleerbare verwarmingsmiddelen wordt geleid alvorens het in de matrijsholte in te laten.9. Method as claimed in one or more of the foregoing claims, characterized in that the first fluid is passed through controllable heating means before it is introduced into the mold cavity. 10. Inrichting voor het plastisch vervormen van een lichaam, in het bijzonder een plaatlichaam, omvattende een matrijs met een eerste matrijsdeel en een tweede matrijsdeel 10 die onderling een matrijsholte insluiten, houdermiddelen om het te vervormen lichaam tussen beide genoemde matrijsdeels in de matrijsholte te ontvangen en drukmiddelen die in staat en ingericht zijn om, tijdens bedrijf, het lichaam te onderwerpen aan een naar de eerste matrijsdeel gerichte deformatiekracht en het lichaam plastisch te conformeren aan een naar het lichaam gewend matrijsoppervlak van de eerste matrijsdeel, met het kenmerk, dat de 15 drukmiddelen regelbare eerste inlaatmiddelen omvatten voor het gecontroleerd inlaten van een gecomprimeerd eerste fluïdum in de matrijsholte die zijn gekoppeld aan compressiemiddelen die in staat en ingericht zijn een gas onder verhoogde druk tot van een gasfase afwijkende aggregatietoestand te comprimeren, en dat de drukmiddelen regelbare tweede inlaatmiddelen voor het gecontroleerd inlaten van een tweede fluïdum in de 20 matrijsholte die zijn gekoppeld aan verwarmingsmiddelen voor het verwarmen van het tweede fluïdum tot boven een kookpunt van het eerste fluïdum.10. Device for plastically deforming a body, in particular a plate body, comprising a mold with a first mold part and a second mold part 10 mutually enclosing a mold cavity, holder means for receiving the body to be deformed between both said mold parts in the mold cavity and pressure means capable and adapted, during operation, to subject the body to a deforming force directed toward the first mold part and to plastic conform the body to a mold surface of the first mold part facing the body, characterized in that the body pressure means include controllable first inlet means for controlled inlet of a compressed first fluid into the mold cavity coupled to compression means capable of compressing a gas under elevated pressure to an aggregate state deviating from a gas phase, and that the pressure means controllable second inlet means it controlled inlet of a second fluid into the mold cavity coupled to heating means for heating the second fluid to above a boiling point of the first fluid. 11. Inrichting volgens conclusie 10 met het kenmerk dat de compressiemiddelen een bufferruimte omvatten waarin het fluïdum onder verhoogde druk houdbaar is en dat de 25 regelbare inlaatmiddelen van het fluïdum regelbare verstuivermiddelen omvatten tussen de matrijsholte en de bufferruimte, welke uitmonden in de matrijsholte en met een inlaat in open communicatie met het buffervat verkeren.11. Device as claimed in claim 10, characterized in that the compression means comprise a buffer space in which the fluid can be kept under elevated pressure and in that the controllable inlet means of the fluid comprise controllable atomizing means between the mold cavity and the buffer space, which open into the mold cavity and with a are in open communication with the buffer tank. 12. Inrichting volgens conclusie 10 of 11 met het kenmerk dat ten minste één onderdeel in 30 contact met het fluïdum onder verhoogde druk of verhoogde temperatuur ten minste één medium omvat gekozen uit een groep omvattende titanium, silicium, alumina of een combinatie daarvan.12. Device as claimed in claim 10 or 11, characterized in that at least one component in contact with the fluid under elevated pressure or elevated temperature comprises at least one medium selected from a group comprising titanium, silicon, alumina or a combination thereof. 13. Inrichting volgens één of meer van de conclusies 10 tot en met 12 met het kenmerk dat een buffervat omvattende ten minste één sectie is omwonden met een draad, in het bijzonder een minerale draad, een metallische draad of een kunststofdraad.Device according to one or more of claims 10 to 12, characterized in that a buffer vessel comprising at least one section is wound with a wire, in particular a mineral wire, a metallic wire or a plastic wire. 14. Inrichting volgens één of meer van de conclusies 10 tot en met 13 met het kenmerk dat de inlaatmiddelen verstuivermiddelen omvatten met een pyrolytisch en/of magneto-reologisch en/of elektro-reologisch bekrachtigde afsluiter.Device according to one or more of claims 10 to 13, characterized in that the inlet means comprise atomizing means with a pyrolytically and / or magneto-reologically and / or electro-reologically actuated valve. 15. Inrichting volgens één of meer van de conclusies 10 tot en met 14 met het kenmerk dat 10 in een aanvoerpad van het eerste fluïdum controleerbare verwarmingsmiddelen zijn voorzien.Device as claimed in one or more of the claims 10-14, characterized in that 10 are provided in a supply path of the first fluid-controllable heating means. 16. Inrichting volgens conclusie 15 met het kenmerk dat de verwarmingsmiddelen een katalytische reactor omvatten. 15Device according to claim 15, characterized in that the heating means comprise a catalytic reactor. 15
NL2007911A 2011-11-30 2011-11-30 METHOD AND DEVICE FOR PLASTIC DEFORMING A BODY NL2007911C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NL2007911A NL2007911C2 (en) 2011-11-30 2011-11-30 METHOD AND DEVICE FOR PLASTIC DEFORMING A BODY
PCT/NL2012/050846 WO2013081459A1 (en) 2011-11-30 2012-11-28 Method and device for plastically deforming a body
EP12798015.9A EP2785478A1 (en) 2011-11-30 2012-11-28 Method and device for plastically deforming a body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2007911A NL2007911C2 (en) 2011-11-30 2011-11-30 METHOD AND DEVICE FOR PLASTIC DEFORMING A BODY
NL2007911 2011-11-30

Publications (1)

Publication Number Publication Date
NL2007911C2 true NL2007911C2 (en) 2013-06-03

Family

ID=47297368

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2007911A NL2007911C2 (en) 2011-11-30 2011-11-30 METHOD AND DEVICE FOR PLASTIC DEFORMING A BODY

Country Status (3)

Country Link
EP (1) EP2785478A1 (en)
NL (1) NL2007911C2 (en)
WO (1) WO2013081459A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431263B1 (en) * 2017-07-21 2021-04-21 CL Schutzrechtsverwaltungs GmbH Method for operating at least one apparatus for additively manufacturing three-dimensional objects
CN107457301A (en) * 2017-07-31 2017-12-12 江苏大学 A kind of automation equipment and its method of laser high-speed shaping micro-volume part
CN107442637A (en) * 2017-07-31 2017-12-08 江苏大学 A kind of automation equipment and its method of multistation Laser shock loading shaping micro-volume part
CN110802155B (en) * 2019-09-29 2021-01-26 中南大学 Electromagnetic gasification forming device and method for forming and forming integrated plate
CN114798888B (en) * 2022-04-02 2023-03-21 南京航空航天大学 Magnetorheological elastomer bulging device and method for flareless pipeline connection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3208254A (en) * 1960-04-23 1965-09-28 Inoue Kiyoshi High pressure generating apparatus
US5449109A (en) * 1993-11-15 1995-09-12 Chuang; Tung-Han Method for superplastic forming by internal pressure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3208254A (en) * 1960-04-23 1965-09-28 Inoue Kiyoshi High pressure generating apparatus
US5449109A (en) * 1993-11-15 1995-09-12 Chuang; Tung-Han Method for superplastic forming by internal pressure

Also Published As

Publication number Publication date
WO2013081459A1 (en) 2013-06-06
EP2785478A1 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
NL2007911C2 (en) METHOD AND DEVICE FOR PLASTIC DEFORMING A BODY
US3529457A (en) Method of forming sheet or plate material
US4732556A (en) Apparatus for synthesizing and densifying materials using a shape memory alloy
EP3714202B1 (en) System for multiple pressure relief device activation
Hohmann et al. FCI experiments in the aluminum oxide/water system
Chen et al. Granular media-based tube press hardening
Urbanczyk et al. Demonstration of Mg 2 FeH 6 as heat storage material at temperatures up to 550 C
CN107252866A (en) The multiple protrusion ozzle large-sized end enclosure forging integral forging and forming methods of nuclear reactor band
KR100749687B1 (en) Hydraulically controlled pressure-relief valve for high-pressure reactors
US9234626B2 (en) Conformable pressure vessel for high pressure gas storage
US5764716A (en) Process and apparatus for generating an inerting gas
Cheng et al. Review of common hydrogen storage tanks and current manufacturing methods for aluminium alloy tank liners
Shang et al. Experimental research on the two-phase explosive boiling mechanism of superheated liquid under different leakage conditions
CN206725480U (en) A kind of experimental rig compatible with oxygen for deep cooling container heat-insulating material
EP1661852B1 (en) Hydrogen closed-cycle hardening unit
Liang et al. Research on quick superplastic forming for aluminium alloy sheet
US2621105A (en) High-temperature solid material-fluid contact apparatus and method of operation
JPS6239056B2 (en)
SU1722688A1 (en) Unit for manufacturing products at high pressures under combustion conditions
CN102699263A (en) Method for forging nuclear island main pipe
CN201232081Y (en) High pressure synthesis equipment for combustion synthesis
US511900A (en) Apparatus for drawing metal tubes
CN212275647U (en) Device for measuring autoxidation heat release characteristics of crude oil under near adiabatic condition
CN216845820U (en) Separate heat exchanger structure for preventing overtemperature tube explosion
JPH06190466A (en) Method and device for forming superplastic metallic sheet

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20161201