NL2007712C2 - Apparatus and method for soldering contacts in a solar panel. - Google Patents

Apparatus and method for soldering contacts in a solar panel. Download PDF

Info

Publication number
NL2007712C2
NL2007712C2 NL2007712A NL2007712A NL2007712C2 NL 2007712 C2 NL2007712 C2 NL 2007712C2 NL 2007712 A NL2007712 A NL 2007712A NL 2007712 A NL2007712 A NL 2007712A NL 2007712 C2 NL2007712 C2 NL 2007712C2
Authority
NL
Netherlands
Prior art keywords
laser
solar panel
laser beam
receiving surface
contacts
Prior art date
Application number
NL2007712A
Other languages
Dutch (nl)
Inventor
André Reinoud Wit
Ludovicus Marie Augustin
Jacobus Johannes Hendrikus Maria Krutwagen
Original Assignee
Solland Solar Cells B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solland Solar Cells B V filed Critical Solland Solar Cells B V
Priority to NL2007712A priority Critical patent/NL2007712C2/en
Priority to PCT/NL2012/050769 priority patent/WO2013066182A1/en
Application granted granted Critical
Publication of NL2007712C2 publication Critical patent/NL2007712C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • B23K1/0056Soldering by means of radiant energy soldering by means of beams, e.g. lasers, E.B.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0734Shaping the laser spot into an annular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

Apparatus and method for soldering contacts in a solar panel
The present invention relates to the assembly of solar panels and more in particular to the soldering of contacts within a solar panel by laser.
5 WO-A-2010/027265 describes an apparatus for soldering solder contacts in a solar panel wherein the solar panel comprises a substantial flat structure with a receiving surface having at least one reflecting area and at least one solder contact being positioned at some distance from the receiving surface under the reflecting area, the 10 apparatus comprising a support for supporting the solar panel, at least one laser source for generating a laser beam and laser conducting means for directing the laser beam to the at least one reflecting area on the receiving surface of the solar panel, wherein the laser source and the laser conducting means are adapted to make the laser beam heat locally the parts of the solar panel surrounding the solder contact to melt the solder 15 present on said solder contact, such method wherein laser beams are used to heat the solder connections.
In this prior art apparatus the laser is used to allow quick and, heating the whole structure causes problems as the melting temperature of the solder is higher than the 20 melting temperature of the other materials in the panel. Laser allows such a quick and local heating.
This prior art document apparatus is applicable to establish the connections in solar panels of the ‘metal wrap through’ type. These solar panels or modules comprise a 25 transparent upper layer or carrier and solar cells located there under. The transparent upper layer must be transparent to sunlight to allow the sunlight reach the surface of the solar cells. This implies that the layer is also transparent for most laser light, so that the upper surface of the solar cells forms the receiving surface.
30 Solar panels of this type comprise conducting vias in the solar cells for establishing a conducting connection between the conductor structure at the upper side of the solar cells and the conductors on the backing layer of the solar panels. Herein the connection between the conductor structure at the upper side of the solar cells is already made when the channels forming the vias are filled with conducting material or when the conductor 2 structure is established, that is during the construction of the solar cells. When these solar cells are assembled to form a solar panel, the lower side of these vias must be connected to the conductors of the backing layer through soldering or through curing of a conducting adhesive. However the location of the solder connection is covered by the 5 centre of the conducting structure at the upper side of the solar cells. These conducting structures have light reflecting properties, forming reflecting areas. Any laser energy directed to said locations would be reflected, leading to energy concentrations at less desirable locations in the apparatus and to loss of energy deposition in the locations where it is needed. Further alignment tolerances leads to an unpredictable energy 10 deposition.
The aim of the present invention is to provide a system wherein the energy provided by the laser is for a large part absorbed by the structure of the solar panel to heat the solder connection and the part reflected by the reflecting structure on the solar panel is reduced 15 as much as possible to reduce the heat loading or energy deposition in unwanted places.
This aim is reached by an apparatus of the kind referred to above wherein the cross section of the laser beam on the receiving surface comprises a first section and a second section, the first section substantially surrounding the second section and wherein 20 substantially all laser energy is directed to the first section. This allows the second section to cover the reflecting area, reducing reflection, while the surrounding, non reflecting area’s on the receiving surface can be irradiated sufficiently to supply sufficient energy into the solar cell to cause melting of the solder at the solder contacts in a controlled and predictable manner.
25
Accordingly the present invention proposes a method of soldering contacts in a solar panel comprising a substantial flat structure with a receiving surface having at least one reflecting area and at least one solder contact being positioned at some distance from the receiving surface under the reflecting area by directing at least one laser beam to the 30 at least one reflecting area on the receiving surface to make the laser beam locally heat the parts of the solar cells surrounding the solder contact to melt the solder present on said solder contact, which is characterized in that the laser beam is directed to the reflecting area wherein the cross section of the laser beam on the reflecting area 3 comprises a first section and a second section, the first section surrounding the second section and wherein substantially all laser energy is directed to the first section.
The invention also relates to a combination of an apparatus of the kind referred to above 5 and a solar panel comprising a substantial flat structure with a receiving surface with at least one reflecting area and at least one contact to be soldered being positioned at some distance from the upper surface under the receiving surface.
Although other shapes such as rectangular or polygonal are not excluded, the first 10 section of the cross section of the laser beam has preferably a substantially circular circumference. This is in line with the common practice of laser beams having a substantial circular cross section, often due to the circular cross section of fibres used for conducting laser beams. Further the circular shape leads to an even distribution of the energy over the spot area.
15
Another preferred embodiment provides the feature that the second section of the laser beam has a substantially circular circumference. This feature allows a further contribution to the even distribution of the energy.
20 One of the possibilities to generate the beam having the properties required by the invention is to use a single laser beam hitting the whole of the first section of the laser beam simultaneously. This embodiment provides an apparatus wherein the laser source and the laser conducting means are adapted to generate and direct a laser beam which hits the whole of the first section of the cross section of the laser beam at the receiving 25 surface simultaneously. This embodiment can do with relatively little control for the laser source and the laser conducting means.
Another possibility is to use a laser beam which subsequently hits parts of the first section. This embodiment provides an apparatus as claimed of the kind referred to 30 above, wherein the laser source and the laser conducting means are adapted to generate and direct a laser beam which subsequently hits different parts of the first section of the cross section of the laser beam at the receiving surface. Herein all sections of the first area are subsequently hit by the laser beam. This embodiment requires more control for the laser source and the laser conducting means.
5 4
Although a constant laser beam can be used, it is attractive when the laser beam is a pulsed laser beam and the pulses of the laser beam subsequently hit different sections of the first section of the cross section of the laser beam at the receiving surface.
In view of the large number of connections to be made in an average solar panel, it is attractive to make use of multiple laser beams to allow soldering of the panels within a time acceptable in industrial manufacturing. A corresponding embodiment provides an apparatus of the kind referred to above, wherein the laser source and the laser 10 conducting means are adapted to generate a first plurality of laser beams, each directed to a reflecting area on the receiving surface of the solar panel. Herein the word laser source may encompass multiple laser generating units.
This embodiment provides also a method of the kind referred to above wherein the solar 15 panel comprises a plurality of solder contacts covered by a corresponding reflecting area on the receiving surface and that each of the reflecting areas is irradiated by a laser beam comprising a first section and a second section, the first area substantially surrounding the second section and wherein substantially all laser energy is directed to the first section.
20
The contacts to be soldered in a solar panel are commonly arranged in a grid. This is the consequence of the solar cells having the contacts arranged in a grid and the fact that the solar cells are arranged in a grid within the solar panel themselves. To be more precisely, the contacts are often arranged in two grids within the solar cells, i.e. one grid 25 of the contacts of the rear side of the solar cells and another grid of the contacts of the vias, wherein both grids together from another grid. To allow soldering of the contacts of a solar cell in one action, it is attractive that the laser conducting means are adapted to direct the laser beams to areas on the receiving surface of a solar panel which are arranged in a grid. Herein it is important that the grids within each of the solar cells is 30 the same so that the same template can be used for each of the solar cells. Of course it cannot be excluded that, when the grid structure allows so, the contacts of a single solar cell can be soldered in two or more actions. The subsequent irradiating of the different groups of solder contacts may require adapted beam setting due to different optical coupling properties.
5
As stated before the solar cells of the type to which the invention pertains, also comprises contacts to be soldered, which are not covered by reflecting areas. Expressed otherwise these solder contacts are covered by non reflecting areas of the receiving 5 surface. For those contacts it is preferred that the laser source and the laser conducting means are adapted to generate at least one laser beam directed to an area on the receiving surface of the solar panel, wherein the energy on cross section of the laser beam on the receiving surface is distributed over both the first and the second sections. Expressed otherwise this concerns ‘solid’ laser beams, contrary to the ‘hollow’ laser 10 beams used for hidden contacts.
This embodiment also provides a method of the kind referred to above, wherein the solar panel also comprises a plurality of solder contacts covered by a non-reflecting area on the receiving surface and that all non reflecting areas are irradiated by a laser beam 15 wherein the energy on the receiving surface is distributed over both the first and the second area’s.
To allow a proper alignment between the laser and the solder contacts it is preferred that the apparatus comprises detection means for detecting the position of the solar panel 20 and control means for controlling the laser conducting means to make the position of the spots where the laser beam hits the receiving surface of the solar panel coincide with the contacts to be soldered of the solar cells. The detecting means may be adapted for detecting the position of the individual solar cells, which would offer the best accuracy, but it is not excluded that the detecting means are adapted to detect the position of parts 25 of the solar panel, not belonging to the solar cells, although this would require a substantial accuracy in the positioning of the solar cells within the solar panel. It is however also possible that the location of the actual solder contacts are detected to allow proper positioning.
30 Another embodiment provides an apparatus comprising temperature detection means adapted for detecting the temperature of parts of the solar panel wherein the detection means are adapted to control the laser source. This feature avoids overheating and corresponding damage to the solar panels. Further it allows to control the amount of power entering the solar cell and hence the development of the melting process.
6
The upper surface of the solar panel often is not completely flat to avoid the reflection of sunlight. Due to this lack of flatness directing of the laser beams to the solder spots is not always sufficiently accurate. To improve accuracy of the laser beams a preferred 5 embodiment proposes that the apparatus comprises liquid means for establishing a liquid layer with a flat upper surface on the upper surface of the solar panel. The flat surface of the liquid allows a better accuracy of the laser beams. To avoid reflections on the interface between the liquid and the upper layer of the solar panel, which will often be formed by glass, it is preferred that the refraction index of the liquid is equal to or 10 similar to that of the upper layer. Of course the liquid must be removed later from upper surface of the panel, to avoid the liquid layer hampering subsequent handling and treatment. This removal may be caused by evaporation through heating but also through tilting of the panel, possibly after removal of the confining means.
15 The same embodiment also provides a method of the kind referred to above wherein the solar panels are covered with a flat layer of liquid before the solar panels are irradiated.
Another embodiment forming a further development of the embodiment described above provides an apparatus, wherein the liquid means comprise a confining structure 20 adapted to be located on the solar panels extending substantially with their sides in the vicinity of the edges of the solar panel and means for supplying liquid to the upper surface of the solar panels within the confining means. It will be clear that the confining means could be formed by a strip forming a closed structure and extending over the circumference of the area to be covered by a liquid layer. The strip has 25 preferably a height of several millimetres only, as the layer may have a swallow depth only. To provide for a proper seal between the strip and the upper layer of the panel, the strip is preferably mad of a material providing a proper seal such as rubber or a softe plastic. Of course the confining means may be formed by a structure which can be located quickly onto the solar panels and be removed quickly as well, for instance 30 trough connection to handling device.
A preferred embodiment provides a combination of the kind referred to above wherein the solar panel comprises a transparent carrier, a number of solar cells located there under of which the upper surfaces form the receiving layer and having solder contacts at 7 their lower surfaces and a backing layer comprising solder contacts at the side of the solar cells, to be soldered to the solder contacts on the solar cells and wherein at least a number of the solder contacts is positioned under the reflecting areas.
5 Said embodiment provides also a method of the kind referred to above wherein the solar panel comprises a plurality of contacts, the contacts are arranged in groups, all the contacts of a group are irradiated simultaneously and the contacts of different groups are irradiated subsequently. Often the number of contacts within a cell fits well with the available power of laser sources so that its is attractive to irradiate the connections of 10 one solar cell simultaneously. Another argument in favour of this embodiment is the fact that the solar cells mostly have the same structure so that the same template can be used for all solar cells, simplifying the control of the laser conducting means. Further easier control of the laser by measuring the temperature of the surface of the solar panel is allowed, just as easier alignment.
15
The same embodiment provides a method wherein initially the position of the solar panel is determined, subsequently the position of laser conducting means are adapted to the position of the solar panel and finally the spots are irradiated.
20 Subsequently the present invention will be elucidated with the help of the accompanying drawings wherein show:
Figures la, lb, lc: a partial schematic top view, a cross section and a bottom view respectively of a solar cell to be used in the soldering process according to the invention; 25 Figure 2: a diagram showing a cross section of a part of a solar panel to be used in the soldering process according to the invention;
Figure 3a, 3b, 3c: diagrams showing the area where the laser beam hits the surface of the solar panel, both as in prior art as in to the invention; and Figure 4: a diagram showing a side view of an apparatus according to the 30 invention.
Initially the structure of a solar cell will briefly discussed, to provide a proper understanding of the invention. Figure la shows a top view of such a solar cell 1. The solar cell 1 is formed by a sheet or slate of a semiconductor such as silicon, which has 8 been processed to generate a voltage between the rear and front surfaces. The process includes the provision of a pn-junction, and possibly secondary structures. To access the voltage, the front surface 2 of the solar cell 1 is provided of a number of electrically conducting patterns 3. Each pattern 3 is centred around a centre 4. At the location of the 5 centre 4 of each pattern 3 a via 5 extending in the solar cell 1 has been provided. The via comprises an electrically conducting plug 6 as is shown in figure lb. The plug 6 is electrically connected with the centre 4 of the pattern 3. At its lower side the plug 6 is provided of a solder contact 7, commonly having a larger diameter than the diameter of the plug 6. Further to access the voltage generated at the lower side of the solar cell 1 a 10 number of conducting patterns 8 has been provided at the lower side of the solar cell 1. This pattern comprises a solder contact 9, which is offset from the solder contact 7 having the reverse polarity. Further the conducting pattern 8 avoids the location of the solder contact 7. Both solder contacts 7, 9 need to be permanently contacted by the electrical contacts on the backing layer to provide a functional solar panel.
15
Figure 2 shows a cross section of the semi finished product to form a solar panel 12, including solar cells 1, a transparent carrier 10 and a backing layer 11. The layers of cured plastic used to unite the solar panel 12 are designated by the number 13. The figure shows clearly the pairs of contacts 7, 17 and 9, 19 respectively to be made. These 20 include the contacts 7 which must be connected with corresponding contacts 17 on the backing layer 11 and the contacts 9, which must be connected with corresponding contacts 19 on the backing layer 11. Herein it is understood that the contacts 7, 9 and or 17, 19 have already been provided with the required quantity of solder.
25 As described in WO-A-2010/027265, the soldering is effected through irradiating with a laser beam 20 from the front side of the assembly of the solar panel 12. Herein the laser energy travels through the transparent carrier 10 and is absorbed by the silicon of the solar cells 1, which is heated so much that the accumulated heat is transferred to the contacts 7, 17, 9, 19 to make the solder melt, and after cooling down the solder 30 connection is established. This works well with the contacts 9 and 19, but it leads to problems with the contacts 7 and 17, as the laser beam directed to these contacts will hit the centre 4 of the conducting patterns which is exactly above the contacts 7, 17 to be soldered. The consequence is that the amount of laser radiation reaching the solar cells 1 to be converted into heat is limited, but, more important, that a substantial portion of the 9 laser heat is reflected and scattered. This may lead to unwanted effects in the apparatus performing the assembly. By using a laser beam 20 having a pipe like shape, or rather having a ring like cross section, these problems are at least substantially limited.
5 Hence the laser source and the laser conducting means are adapted to define a laser beam 20, having an annular cross section, wherein the laser beam 20 is centred on the centre 4 of the patterns 3. This leads to a situation as depicted in figure 3, showing the spot of the laser beam 20 or rather its cross section when it hits the upper side of the solar cells 1, forming the receiving surface. In figure 3a the situation according to the 10 prior art is shown, wherein a ‘solid’ laser beam 21 is used which hits the centre 4 of the conducting pattern 3. As a substantial part of the cross section of the laser beam 20 hits the reflecting part centre 4. This is avoided in the situation depicted in figure 3b wherein the cross section of the laser beam 20 is ring shaped and a substantial portion of the laser beam 20 is absorbed in the solar cell 1 and only a limited portion of the laser 15 energy is reflected by the centre 4. The same counts for the situation depicted in figure 3c.
The situations of the figures 3b and 3 c differ only in the alignment of the laser beam 20 relative to the reflecting centre 4 of the pattern 3. From these figures it appears that the 20 configuration of the beam according to the invention is much more tolerant for errors in the alignment than the prior art configuration. Further the ratio between the diameters of the centre of the pattern 4, the inner hollow of the laser beam 20 and of the laser beam itself is important. It has appeared that it is preferable when the diameter of the second section of the beam, transferring no energy is smaller than the diameter of the reflecting 25 part of the solar cells. Herein it is assumed that both the second section of the cross section of the beam and the reflecting part have a round shape. However the shapes may deviate from a circle and in such cases the surface area of the second area is preferably smaller than that of the reflecting part.
30 Finally figure 4 shows a diagram of the apparatus according to the invention wherein a solar panel 12 is irradiated by laser. The apparatus comprises a support for the solar panel 12 in the shape of a belt 30. Other configurations of the support are not excluded. Further the apparatus comprises a laser source 31, connected by a laser fiber 32 to a laser distributor 33, which is movable in two directions through a rail system 34. The 10 laser fiber 32, the laser distributor 33 and the rail system 34 form together the laser conducting means. Finally the apparatus comprises a camera 35 and a control unit 36, preferably formed by a digital computer and which is connected to the laser source 31, the laser conducting means 32, 33, 34 and the motor of the belt 30. The solar panel 12 is 5 shown to be composed of solar cells 1. Although not disclosed in this embodiment, the laser source may comprise multiple lasers generators.
Initially a solar panel 12 is brought to the position indicated in figure 1 by driving the belt 30. The camera 35 or other optical or mechanical means detect the presence and the 10 position of the solar panel 12. The position of the solar panel 12 is transferred to the control unit and the control unit 36 controls the laser distributor 33 and the rail system 34 such that the laser distributor 33 is position above one of the solar cells 1 within the solar panel 12, with alignment to the solder contacts present in the solar cell 1. Then the laser source 31 is switched on and the laser beams emerging from the laser distributor 15 33 are directed to the solder contacts, so that the soldering is effected. This process is repeated for all of the solar cells 1 within the solar panel 12 until all solar cells 1 are soldered and the solar panel 12 is transported further.
In the embodiment shown in figure 4 the laser distributor 33 is adapted to irradiate the 20 solder contacts of one solar cell simultaneously. The solder contacts of different solar cells are irradiated consecutively. As some of the solder contacts within one solar cell are not hidden by a reflecting area, the laser beams directed to those solder contacts are preferably ‘solid’ beams, while the laser beams directed to the ‘hidden’ solder contacts are preferably ‘hollow’ beams with a cross section of a ring. The laser light power is 25 preferably adapted for different type of contacts and for the different rates of absorption and conductance of heat.
Within the context of the invention, it is possible to use other configurations, such as the use of a laser distributor which is adapted to irradiate only a part of the number of solder 30 contacts of a solar cell, or to irradiate the contacts belonging to two or more solar cells at the same time. Herein the repetition rate of the grid is decisive to determine the number of solder contacts to be used at the same time. The invention further encompasses the use of both a continuous laser or a pulsed laser. In the embodiments disclosed above, the solar panel is stationary during the irradiation process, while the 11 laser conducting means are moveable. It is also possible to keep the laser conducting means stationary while moving the solar panel, or to move each in one direction and the other in the perpendicular. Other embodiments within the scope of the claims may be used.
5

Claims (20)

1. Inrichting voor het solderen van soldeercontacten in een zonnepaneel dat een hoofdzakelijk vlakke structuur omvat met een ontvangstvlak dat tenminste een 5 reflecterend gebied omvat en met tenminste een soldeercontact dat op een afstand van het ontvangstvlak onder het reflecterende gebied is gelegen, waarbij de inrichting omvat: - een steun voor het ondersteunen van het zonnepaneel; - tenminste een laserbron voor het opwekken van een laserbundel; 10. lasergeleidemiddelen voor het naar het tenminste ene reflecterende gebied op het ontvangstvlak geleiden van de laserbundel, waarbij de laserbron en de lasergeleidemiddelen zijn ingericht voor het tenminste lokaal verwarmen van de het soldeercontact omgevende delen van het zonnepaneel voor het doen smelten van het op het soldeercontact aanwezige soldeer, 15 met het kenmerk, dat de doorsnede van de laserbundel op het ontvangstvlak een eerste en een tweede stuk omvat, waarbij het eerste stuk hoofdzakelijk het tweede stuk omgeeft en waarbij het overgrote deel van de laserenergie is gericht op het eerste stuk.1. Device for soldering solder contacts in a solar panel comprising a substantially flat structure with a receiving surface comprising at least one reflecting area and with at least one soldering contact located at a distance from the receiving surface below the reflecting area, the device comprising : - a support for supporting the solar panel; - at least one laser source for generating a laser beam; 10. laser guide means for guiding the laser beam to the at least one reflective area on the receiving surface, the laser source and the laser guide means being adapted to at least locally heat the parts of the solar panel surrounding the solder contact to melt the solder contact on the solder contact solder present, characterized in that the cross-section of the laser beam on the receiving surface comprises a first and a second piece, the first piece substantially surrounding the second piece and wherein the majority of the laser energy is directed to the first piece. 2. Inrichting volgens conclusie 1, met het kenmerk, dat het eerste stuk van de 20 doorsnede van de laserbundel op het ontvangstvlak een hoofdzakelijk cirkelvormige omtrek heeft.2. Device as claimed in claim 1, characterized in that the first part of the section of the laser beam on the receiving surface has a substantially circular circumference. 3. Inrichting volgens conclusie 1 of 2, met het kenmerk, dat het tweede stuk van de doorsnede van de laserbundel op het ontvangstvlak een hoofdzakelijk cirkel vormige 25 omtrek heeft.3. Device as claimed in claim 1 or 2, characterized in that the second part of the cross-section of the laser beam on the receiving surface has a substantially circular contour. 4. Inrichting volgens conclusie 1, 2 of 3, met het kenmerk, dat de laserbon en de lasergeleidemiddelen zijn ingericht voor het opwekken van een laserbundel die tegelijkertijd het geheel van het eerste stuk van de doorsnede van de laserbundel op het 30 ontvangstvlak treft. 1 Inrichting volgens conclusie 1, 2 of 3, met het kenmerk, dat de laserbron en de lasergeleidemiddelen zijn ingericht voor het opwekken en richten van een laserbundel, die achtereenvolgens verschillende delen van het eerste stuk van de doorsnede van de laserbundel op het ontvangstvlak treft.4. Device as claimed in claim 1, 2 or 3, characterized in that the laser receipt and the laser guide means are adapted to generate a laser beam which at the same time affects the whole of the first part of the cross section of the laser beam on the receiving surface. Device as claimed in claim 1, 2 or 3, characterized in that the laser source and the laser guide means are adapted to generate and direct a laser beam which successively strikes different parts of the first part of the cross section of the laser beam on the receiving surface. 6. Inrichting volgens conclusie 5, met het kenmerk, dat de laserbundel een 5 gepulseerde laserbundel is en dat de pulsen van de laserbundel achtereenvolgens verschillende delen van het eerste stuk van de doorsnede van de laserbundel op het ontvangstvlak treft.6. Device as claimed in claim 5, characterized in that the laser beam is a pulsed laser beam and that the pulses of the laser beam successively hit different parts of the first part of the section of the laser beam on the receiving surface. 7. Inrichting volgens één van de voorafgaande conclusies, met het kenmerk, dat 10 de laserbron en de lasergeleidemiddelen zijn ingericht voor het opwekken van een eerste reeks laserbundels die elk zijn gericht naar een reflecterend gebied op het ontvangstvlak van het zonnepaneel.7. Device as claimed in any of the foregoing claims, characterized in that the laser source and the laser guide means are adapted to generate a first series of laser beams which are each directed to a reflective area on the receiving surface of the solar panel. 8. Inrichting volgens conclusie 7, met het kenmerk, dat de laserbron en de 15 lasergeleidemiddelen zijn ingericht voor het richten van de laserbundels op volgens een rooster op het ontvangstvlak van het zonnepaneel gerangschikte reflecterende gebieden.8. Device as claimed in claim 7, characterized in that the laser source and the laser guide means are adapted to direct the laser beams to reflective areas arranged according to a grid on the receiving surface of the solar panel. 9. Inrichting volgens conclusie 7 of 8, met het kenmerk, dat de laserbron en de lasergeleidemiddelen zijn ingericht voor opwekken van tenminste één laserbundel die is 20 gericht op het gebied op het ontvangstvlak van het zonnepaneel, waarbij de energie op de doorsnede van de laserbundel op het ontvangstvlak is verdeeld over het eerste en het tweede stuk.9. Device as claimed in claim 7 or 8, characterized in that the laser source and the laser guide means are adapted to generate at least one laser beam directed at the area on the receiving surface of the solar panel, wherein the energy on the cross section of the laser beam on the receiving surface is divided between the first and the second piece. 10. Inrichting volgens één van de voorafgaande conclusies, met het kenmerk, dat 25 de inrichting detectiemiddelen omvat voor het detecteren van de positie van het zonnepaneel en besturingsmiddelen omvat voor het besturen van de lasergeleidemiddelen opdat de positie waar de laserbundel het ontvangstvlak treft, samenvalt met de te solderen contacten van de zonnepanelen.10. Device as claimed in any of the foregoing claims, characterized in that the device comprises detection means for detecting the position of the solar panel and control means for controlling the laser guide means so that the position where the laser beam hits the receiving surface coincides with the contacts of the solar panels to be soldered. 11. Inrichting volgens één van de voorafgaande conclusies, met het kenmerk, dat de inrichting temperatuurdetectiemiddelen omvat voor het detecteren van de temperatuur van delen van het zonnepaneel, waarbij de detectiemiddelen zijn ingericht voor het besturen van de laserbron.11. Device as claimed in any of the foregoing claims, characterized in that the device comprises temperature detection means for detecting the temperature of parts of the solar panel, wherein the detection means are adapted to control the laser source. 12. Inrichting volgens één van de voorafgaande conclusies, met het kenmerk, dat de inrichting vloeistofmiddelen omvat voor het op het zonnepaneel vormen van een vloeistoflaag met een vlak bovenvlak.Device as claimed in any of the foregoing claims, characterized in that the device comprises liquid means for forming a liquid layer with a flat top surface on the solar panel. 13. Inrichting volgens conclusie 12, met het kenmerk, dat de vloeistofmiddelen een beperkende structuur omvatten die is ingericht om op de zonnepanelen te worden geplaatst met hun zijden in de nabijheid van de randen van het zonnepaneel en middelen omvatten voor het toevoeren van vloeistof aan het bovenvlak van de zonnepanelen binnen de beperkende structuur. 1013. Device as claimed in claim 12, characterized in that the liquid means comprise a limiting structure which is adapted to be placed on the solar panels with their sides in the vicinity of the edges of the solar panel and comprising means for supplying liquid to the upper surface of the solar panels within the restrictive structure. 10 14. Combinatie van een inrichting volgens één van de voorafgaande conclusies en een zonnepaneel dat een hoofdzakelijk vlakke structuur omvat met een ontvangstvlak met tenminste een reflecterend gebied en tenminste een soldeercontact dat op een afstand van het ontvangstvlak onder het reflecterende gebied is gelegen. 1514. Combination of a device according to any one of the preceding claims and a solar panel comprising a substantially flat structure with a receiving surface with at least one reflecting area and at least one soldering contact which is located below the reflecting area at a distance from the receiving surface. 15 15. Combinatie volgens conclusie 14, met het kenmerk, dat het zonnepaneel omvat: - een transparante drager; - een aantal daaronder geplaatste zonnecellen, waarvan het bovenvlak de ontvangende 20 laag vormt en die zijn voorzien van soldeercontacten bij hun ondervlak; - een ruglaag met soldeercontacten aan de zijde van de zonnecellen, die moeten worden gesoldeerd aan de soldeercontacten van de zonnecellen en waarbij tenminste een deel van het aantal soldeercontacten onder de reflecterende gebieden is gelegen.15. Combination as claimed in claim 14, characterized in that the solar panel comprises: - a transparent carrier; - a number of solar cells placed underneath, the top surface of which forms the receiving layer and which are provided with solder contacts at their bottom surface; - a backing layer with solder contacts on the side of the solar cells, which are to be soldered to the solder contacts of the solar cells and wherein at least a part of the number of solder contacts is located below the reflective areas. 16. Werkwijze voor het solderen van soldeercontacten in een zonnepaneel dat een hoofdzakelijk vlakke structuur omvat met een ontvangstvlak met tenminste een reflecterend gebied en tenminste een soldeercontact dat op een afstand van het ontvangstvlak onder het reflecterende gebied is gelegen, door het richten van een tenminste één laserbundel naar het tenminste ene reflecterende gebied op de 30 transparante drager om de laserbundel lokaal de het soldeercontact omgevende delen lokaal te doen verwarmen voor het doen smelten van het op het soldeercontact aanwezige soldeer, met het kenmerk, dat de laserbundel is gericht op het reflecterende gebied, waarbij de doorsnede van de laserbundel op het ontvangstvlak een eerste en een tweede stuk omvat, waarbij het eerste stuk hoofdzakelijk het tweede stuk omgeeft en waarbij het overgrote deel van de laserenergie is gericht op het eerste stuk.16. Method for soldering solder contacts in a solar panel comprising a substantially flat structure with a receiving surface with at least one reflecting area and at least one soldering contact located at a distance from the receiving surface below the reflecting area, by directing an at least one laser beam to the at least one reflective area on the transparent support to cause the laser beam to locally heat the parts surrounding the solder contact to melt the solder present on the solder contact, characterized in that the laser beam is directed to the reflective area , wherein the cross section of the laser beam on the receiving surface comprises a first and a second piece, the first piece substantially surrounding the second piece and wherein the majority of the laser energy is directed to the first piece. 17. Werkwijze volgens conclusie 16, met het kenmerk, dat het zonnepaneel een 5 aantal door een reflecterend gebied bedekte soldeercontacten heeft en dat elk van de reflecterende gebieden wordt bestraald door een laserbundel waarvan de doorsnede op het ontvangstvlak een eerste en een tweede stuk omvat, waarbij het eerste stuk hoofdzakelijk het tweede stuk omgeeft en waarbij het overgrote deel van de laserenergie is gericht op het eerste stuk. 1017. Method as claimed in claim 16, characterized in that the solar panel has a number of solder contacts covered by a reflecting area and that each of the reflecting areas is irradiated by a laser beam whose cross-section on the receiving surface comprises a first and a second piece, wherein the first piece substantially surrounds the second piece and wherein the majority of the laser energy is directed to the first piece. 10 18. Werkwijze volgens conclusie 16 of 17, met het kenmerk, dat het zonnepaneel tevens een aantal door een niet-reflecterend gebied bedekte soldeercontacten heeft en dat elk van de niet-reflecterende gebieden wordt bestraald door een laserbundel waarbij de laserenergie is verdeeld over het eerste en het tweede stuk.A method according to claim 16 or 17, characterized in that the solar panel also has a number of solder contacts covered by a non-reflecting area and that each of the non-reflecting areas is irradiated by a laser beam with the laser energy distributed over the first and the second piece. 19. Werkwijze volgens conclusie 16, 17 of 18, met het kenmerk, dat de contacten in groepen zijn gerangschikt, dat de gebieden boven tot een groep behorende contacten tegelijkertijd worden bestraald en de gebieden boven tot verschillende groepen behorende contacten achtereenvolgens worden bestraald. 20A method according to claim 16, 17 or 18, characterized in that the contacts are arranged in groups, that the areas above contacts belonging to a group are irradiated simultaneously and the areas above contacts belonging to different groups are successively irradiated. 20 20. Werkwijze volgens één van de conclusies 16-19, met het kenmerk, dat aanvankelijk de positie van het zonnepaneel wordt bepaald, vervolgens de positie van de lasergeleidemiddelen wordt aangepast aan de positie van het zonnepaneel en ten slotte de gebieden boven de contacten worden bestraald. 25A method according to any one of claims 16-19, characterized in that initially the position of the solar panel is determined, then the position of the laser guide means is adjusted to the position of the solar panel and finally the areas above the contacts are irradiated . 25 21. Werkwijze volgens één van de conclusie 16-20, met het kenmerk, dat voorafgaande aan het bestralen van het zonnepaneel met laser, het bovenvlak van het zonnepaneel met een vlakke laag vloeistof wordt bedekt.A method according to any one of claims 16-20, characterized in that prior to irradiating the solar panel with laser, the upper surface of the solar panel is covered with a flat layer of liquid.
NL2007712A 2011-11-03 2011-11-03 Apparatus and method for soldering contacts in a solar panel. NL2007712C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2007712A NL2007712C2 (en) 2011-11-03 2011-11-03 Apparatus and method for soldering contacts in a solar panel.
PCT/NL2012/050769 WO2013066182A1 (en) 2011-11-03 2012-11-02 Apparatus and method for soldering contacts in a solar panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2007712 2011-11-03
NL2007712A NL2007712C2 (en) 2011-11-03 2011-11-03 Apparatus and method for soldering contacts in a solar panel.

Publications (1)

Publication Number Publication Date
NL2007712C2 true NL2007712C2 (en) 2013-05-07

Family

ID=47297360

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2007712A NL2007712C2 (en) 2011-11-03 2011-11-03 Apparatus and method for soldering contacts in a solar panel.

Country Status (2)

Country Link
NL (1) NL2007712C2 (en)
WO (1) WO2013066182A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090294412A1 (en) * 2007-01-15 2009-12-03 Japan Unix Co., Ltd. Laser type soldering apparatus
WO2010027265A2 (en) * 2008-09-05 2010-03-11 Solland Solar Energy Holding B.V. Method of monolithic photo-voltaic module assembly
EP2361714A1 (en) * 2010-02-26 2011-08-31 Reis Group Holding GmbH & Co. KG Method and assembly for laser soldering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090294412A1 (en) * 2007-01-15 2009-12-03 Japan Unix Co., Ltd. Laser type soldering apparatus
WO2010027265A2 (en) * 2008-09-05 2010-03-11 Solland Solar Energy Holding B.V. Method of monolithic photo-voltaic module assembly
EP2361714A1 (en) * 2010-02-26 2011-08-31 Reis Group Holding GmbH & Co. KG Method and assembly for laser soldering

Also Published As

Publication number Publication date
WO2013066182A1 (en) 2013-05-10

Similar Documents

Publication Publication Date Title
US11292084B2 (en) Method for joining a substrate and a part with structuring of the substrate
KR102426820B1 (en) Method for laser processing of metallic materials for controlling the lateral power distribution of a laser beam in a working plane and a machine and computer program for implementing said method
CN103290176B (en) A kind of multi irradiation laser-quenching method and device
US20210138577A1 (en) Using lasers to reduce reflection of transparent solids, coatings and devices employing transparent solids
CN103978306A (en) Laser repair device and repair method of fused quartz optical element
US20120145229A1 (en) Irradiating A Plate Using Multiple Co-Located Radiation Sources
KR20140138456A (en) Laser glass cutting system and method for cutting glass using the same
NL2007712C2 (en) Apparatus and method for soldering contacts in a solar panel.
KR20190063539A (en) Glass surface machining device for solar module using laser
CN102615421A (en) Method and apparatus for processing multilayer thin film substrate
TWI694881B (en) Method and apparatus for forming a conductive track
TWI497741B (en) System and method for removing coating from an edge of a substrate
KR101094322B1 (en) Laser machining apparatus and Method for manufacturing multi-layer substrate using the same
KR102468061B1 (en) Repairing apparatus and method
WO2010048733A1 (en) Method for dividing a semiconductor film formed on a substrate into plural regions by multiple laser beam irradiation
CN111032590A (en) Improved heat treatment equipment
TWI642508B (en) Process for obtaining a substrate,the substrate obtainable thereby,and apparatus for treating a substrate
CN114078978A (en) Preparation method and preparation equipment of solar cell selective emitter
JP6801999B2 (en) Laser welding method for resin materials and laser welding equipment used for this
KR102640334B1 (en) Sealant removing apparatus using laser and sealant removing method using laser
JP2014076513A (en) Laser induction type electric discharge machine
KR20130061897A (en) Substrate processing apparatus
CN115805367A (en) Metal nanowire impact welding device and method based on laser thermal coupling effect
JPS61241603A (en) Position detection method
TW201037761A (en) Irradiating a plate using multiple co-located radiation sources

Legal Events

Date Code Title Description
SD Assignments of patents

Effective date: 20130605

MM Lapsed because of non-payment of the annual fee

Effective date: 20211201