MX2012005204A - Sistemas y metodos para el procesamiento de peliculas por fusion parcial mediante pulsos no periodicos. - Google Patents

Sistemas y metodos para el procesamiento de peliculas por fusion parcial mediante pulsos no periodicos.

Info

Publication number
MX2012005204A
MX2012005204A MX2012005204A MX2012005204A MX2012005204A MX 2012005204 A MX2012005204 A MX 2012005204A MX 2012005204 A MX2012005204 A MX 2012005204A MX 2012005204 A MX2012005204 A MX 2012005204A MX 2012005204 A MX2012005204 A MX 2012005204A
Authority
MX
Mexico
Prior art keywords
film
laser
pulse
laser pulse
region
Prior art date
Application number
MX2012005204A
Other languages
English (en)
Spanish (es)
Inventor
James S Im
Yikang Deng
Qiongying Hu
Ui-Jin Chung
Alexander B Limanov
Original Assignee
Univ Columbia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2010/033565 external-priority patent/WO2011065992A1/en
Priority claimed from US12/776,756 external-priority patent/US8440581B2/en
Application filed by Univ Columbia filed Critical Univ Columbia
Publication of MX2012005204A publication Critical patent/MX2012005204A/es

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • H01L21/0268Shape of mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/702Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof of thick-or thin-film circuits or parts thereof
    • H01L21/707Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof of thick-or thin-film circuits or parts thereof of thin-film circuits or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78678Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)
MX2012005204A 2009-11-03 2010-11-02 Sistemas y metodos para el procesamiento de peliculas por fusion parcial mediante pulsos no periodicos. MX2012005204A (es)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US25765709P 2009-11-03 2009-11-03
US25765009P 2009-11-03 2009-11-03
US26408209P 2009-11-24 2009-11-24
US28664309P 2009-12-15 2009-12-15
US29166309P 2009-12-31 2009-12-31
US29148809P 2009-12-31 2009-12-31
US29428810P 2010-01-12 2010-01-12
PCT/US2010/033565 WO2011065992A1 (en) 2009-11-24 2010-05-04 Systems and methods for non-periodic pulse sequential lateral solidification
US12/776,756 US8440581B2 (en) 2009-11-24 2010-05-10 Systems and methods for non-periodic pulse sequential lateral solidification
PCT/US2010/055106 WO2011056787A1 (en) 2009-11-03 2010-11-02 Systems and methods for non-periodic pulse partial melt film processing

Publications (1)

Publication Number Publication Date
MX2012005204A true MX2012005204A (es) 2012-09-21

Family

ID=46752051

Family Applications (1)

Application Number Title Priority Date Filing Date
MX2012005204A MX2012005204A (es) 2009-11-03 2010-11-02 Sistemas y metodos para el procesamiento de peliculas por fusion parcial mediante pulsos no periodicos.

Country Status (5)

Country Link
JP (2) JP2013510443A (zh)
CN (1) CN102770939B (zh)
MX (1) MX2012005204A (zh)
TW (1) TWI575571B (zh)
WO (1) WO2011056787A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI528418B (zh) * 2009-11-30 2016-04-01 應用材料股份有限公司 在半導體應用上的結晶處理
KR20150013731A (ko) * 2012-05-14 2015-02-05 더 트러스티스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 박막들을 위한 개선된 엑시머 레이저 어닐링
JP5788855B2 (ja) * 2012-11-20 2015-10-07 株式会社日本製鋼所 レーザ処理方法およびレーザ処理装置
KR101483759B1 (ko) * 2013-07-19 2015-01-19 에이피시스템 주식회사 멀티 레이저를 이용한 취성 기판 가공 장치 및 방법
KR101840520B1 (ko) * 2014-10-24 2018-03-20 주식회사 엘지화학 배터리용 분리막 커팅 방법 및 이에 의하여 제조된 배터리용 분리막
TWI577488B (zh) * 2014-11-17 2017-04-11 財團法人工業技術研究院 表面加工方法
WO2017003754A1 (en) * 2015-07-02 2017-01-05 Applied Materials, Inc. Correction of non-uniform patterns using time-shifted exposures
WO2017120584A1 (en) * 2016-01-08 2017-07-13 The Trustees Of Columbia University In The City Of New York Methods and systems for spot beam crystallization
US9991122B2 (en) * 2016-08-31 2018-06-05 Micron Technology, Inc. Methods of forming semiconductor device structures including two-dimensional material structures
US20200238441A1 (en) * 2017-10-13 2020-07-30 The Trustees Of Columbia University In The City Of New York Systems and methods for spot beam and line beam crystallization

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181419A (ja) * 1989-01-06 1990-07-16 Hitachi Ltd レーザアニール方法
JPH04282869A (ja) * 1991-03-11 1992-10-07 G T C:Kk 薄膜半導体装置の製造方法及びこれを実施するための装置
JP3322440B2 (ja) * 1993-06-24 2002-09-09 三洋電機株式会社 薄膜多結晶シリコンの製造方法
JP3388042B2 (ja) * 1994-11-18 2003-03-17 三菱電機株式会社 レーザアニーリング方法
JPH10256178A (ja) * 1997-03-07 1998-09-25 Toshiba Corp レーザ熱処理方法及びその装置
JP3343492B2 (ja) * 1997-04-02 2002-11-11 シャープ株式会社 薄膜半導体装置の製造方法
JP3201395B2 (ja) * 1999-11-15 2001-08-20 セイコーエプソン株式会社 半導体薄膜の製造方法
US6830993B1 (en) * 2000-03-21 2004-12-14 The Trustees Of Columbia University In The City Of New York Surface planarization of thin silicon films during and after processing by the sequential lateral solidification method
JP4353352B2 (ja) * 2001-05-15 2009-10-28 シャープ株式会社 半導体装置及びその製造方法
US6645454B2 (en) * 2001-06-28 2003-11-11 Sharp Laboratories Of America, Inc. System and method for regulating lateral growth in laser irradiated silicon films
JP4566503B2 (ja) * 2001-07-30 2010-10-20 株式会社半導体エネルギー研究所 レーザー処理装置並びに半導体装置の作製方法
JP3860444B2 (ja) * 2001-08-28 2006-12-20 住友重機械工業株式会社 シリコン結晶化方法とレーザアニール装置
JP2003109912A (ja) * 2001-10-01 2003-04-11 Matsushita Electric Ind Co Ltd レーザアニール装置
US7749818B2 (en) * 2002-01-28 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP2003347208A (ja) * 2002-05-27 2003-12-05 Sumitomo Heavy Ind Ltd アモルファス材料の結晶化方法
JP4034165B2 (ja) * 2002-10-29 2008-01-16 住友重機械工業株式会社 レーザを用いた多結晶膜の製造方法
DE10301482A1 (de) * 2003-01-16 2004-07-29 Microlas Lasersystem Gmbh Vorrichtung und Verfahren zur Kristallisation amorpher Siliziumschichten
US7318866B2 (en) * 2003-09-16 2008-01-15 The Trustees Of Columbia University In The City Of New York Systems and methods for inducing crystallization of thin films using multiple optical paths
TWI359441B (en) * 2003-09-16 2012-03-01 Univ Columbia Processes and systems for laser crystallization pr
US7364952B2 (en) * 2003-09-16 2008-04-29 The Trustees Of Columbia University In The City Of New York Systems and methods for processing thin films
JP2005333117A (ja) * 2004-04-23 2005-12-02 Semiconductor Energy Lab Co Ltd レーザ照射装置及び半導体装置の作製方法
JP3977379B2 (ja) * 2005-03-29 2007-09-19 株式会社日本製鋼所 薄膜材料の結晶化方法及びその装置
JP4577114B2 (ja) * 2005-06-23 2010-11-10 ソニー株式会社 薄膜トランジスタの製造方法および表示装置の製造方法
KR101132404B1 (ko) * 2005-08-19 2012-04-03 삼성전자주식회사 다결정 실리콘 박막의 제조 방법 및 이를 포함하는 박막트랜지스터의 제조 방법
JP2008041868A (ja) * 2006-08-04 2008-02-21 Sumitomo Heavy Ind Ltd 不純物活性化方法及びレーザ照射装置
DE102007025942A1 (de) 2007-06-04 2008-12-11 Coherent Gmbh Verfahren zur selektiven thermischen Oberflächenbehandlung eines Flächensubstrates
US20090078940A1 (en) * 2007-09-26 2009-03-26 Sharp Laboratories Of America, Inc. Location-controlled crystal seeding
US7800081B2 (en) * 2007-11-08 2010-09-21 Applied Materials, Inc. Pulse train annealing method and apparatus
CN101919058B (zh) * 2007-11-21 2014-01-01 纽约市哥伦比亚大学理事会 用于制备外延纹理厚膜的***和方法
US8012861B2 (en) * 2007-11-21 2011-09-06 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
WO2009075281A1 (ja) * 2007-12-13 2009-06-18 Idemitsu Kosan Co., Ltd. 酸化物半導体を用いた電界効果型トランジスタ及びその製造方法

Also Published As

Publication number Publication date
CN102770939B (zh) 2015-12-02
TW201135807A (en) 2011-10-16
TWI575571B (zh) 2017-03-21
WO2011056787A1 (en) 2011-05-12
JP2015188110A (ja) 2015-10-29
JP2013510443A (ja) 2013-03-21
CN102770939A (zh) 2012-11-07

Similar Documents

Publication Publication Date Title
MX2012005204A (es) Sistemas y metodos para el procesamiento de peliculas por fusion parcial mediante pulsos no periodicos.
US9087696B2 (en) Systems and methods for non-periodic pulse partial melt film processing
US6635932B2 (en) Thin film crystal growth by laser annealing
US8440581B2 (en) Systems and methods for non-periodic pulse sequential lateral solidification
US8598588B2 (en) Systems and methods for processing a film, and thin films
US8802580B2 (en) Systems and methods for the crystallization of thin films
KR101212378B1 (ko) 결정 방위 제어형 폴리실리콘막을 생성하기 위한 장치 및 방법
US9646831B2 (en) Advanced excimer laser annealing for thin films
MX2012006043A (es) Sistemas y metodos para la solidificacion lateral secuencial de impulso no periodico.
US7651931B2 (en) Laser beam projection mask, and laser beam machining method and laser beam machine using same
US20040087116A1 (en) Semiconductor devices and methods of manufacture thereof
KR20150013731A (ko) 박막들을 위한 개선된 엑시머 레이저 어닐링
US20040084679A1 (en) Semiconductor devices and methods of manufacture thereof
KR20120082022A (ko) 비-주기적 펄스 부분 용융 막가공을 위한 시스템 및 방법
EP2497105A1 (en) Systems and methods for non-periodic pulse partial melt film processing
TWI556284B (zh) 非週期性脈衝連續橫向結晶之系統及方法
JP2007207896A (ja) レーザビーム投影マスクおよびそれを用いたレーザ加工方法、レーザ加工装置
KR100575235B1 (ko) 레이저 광학계 및 이를 이용한 결정화 방법
JP2008147236A (ja) 結晶化装置およびレーザ加工方法
JP2005101311A (ja) 半導体デバイスおよびその製造方法

Legal Events

Date Code Title Description
FG Grant or registration