LV14875B - Method for arrangement and sealing of borehole for production of geothermal heat - Google Patents

Method for arrangement and sealing of borehole for production of geothermal heat Download PDF

Info

Publication number
LV14875B
LV14875B LVP-14-31A LV140031A LV14875B LV 14875 B LV14875 B LV 14875B LV 140031 A LV140031 A LV 140031A LV 14875 B LV14875 B LV 14875B
Authority
LV
Latvia
Prior art keywords
pipe
borehole
earth
hot
layers
Prior art date
Application number
LVP-14-31A
Other languages
Latvian (lv)
Other versions
LV14875A (en
Inventor
Ojārs Ozols
Dace OZOLA
Original Assignee
Ojārs Ozols
Dace OZOLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ojārs Ozols, Dace OZOLA filed Critical Ojārs Ozols
Priority to LVP-14-31A priority Critical patent/LV14875B/en
Publication of LV14875A publication Critical patent/LV14875A/en
Publication of LV14875B publication Critical patent/LV14875B/en
Priority to PCT/IB2015/052580 priority patent/WO2015159188A2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • C04B2111/00706Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like around pipelines or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Road Paving Structures (AREA)

Abstract

The present invention refers to a system for extraction of geothermal energy and describes the method of filling and directing the borehole for effective thermal exchange between hot dry rocks and heating fluid in a closed coaxial pipe-in-pipe system. The set of coaxial circulation pipes (2, 4) is placed into the borehole (1), perpendicularly to the earth surface (15) in the cold layers of the earth (16). Approaching the hot layers of the earth (17), the borehole is directed at an angle of 30-90° against vertical direction. After drilling the borehole (1) the casing of the external pipe (2), is bonded with hot rock (17) by injection under the pressure of a material (6) of increased thermal conductivity, tightly filling the borehole (1 ) and void spaces around the external pipe (2), providing maximum thermal contact between the pipe (2) and the rock (17). The coaxial system of the pipes provides downgoing flow (7) from the surface to hot subterranean area for heating in the external pipe (2), and upgoing flow (8) through the internal pipe (4). Thermal energy is carried to the surface of the ground by heating liquid. After transferring to the consumer through the heat exchanger (10) the heating liquid is returned to the pipe (2) for recurrent heating.

Description

Izgudrojuma aprakstsDescription of the Invention

Izgudrojums attiecas uz ģeotermālās siltumenerģijas ieguvi un vartikt izmantots ēku apsildīšanai un elektroenerģijas ražošanai.The invention relates to the production of geothermal heat and is mainly used for heating buildings and for generating electricity.

Zināmā tehnikas līmeņa analīzeAnalysis of prior art

Ģeotermālo enerģiju var iegūt ne tikai no ģeotermālajiem ūdeņiem, bet arī no kristālisko iežu siltuma (petrotermālā enerģija), kuras potences, ņemot vērā zemes dzīļu ģeoloģisko struktūru, ir lielas. Siltuma plūsma paaugstināto t° zonā sasniedz 60 līdz 100 MW/mz. Šie ieži ir neizsīkstošs enerģijas avots, jo tos no apakšas nepārtraukti karsē 1300 °C karstā magma. Zemes siltuma izmantošana nodrošina enerģijas piegādi patērētājam cauru gadu 24 stundas diennaktī, iegūstot neatkarību no mainīgajām kurināmo izejvielu izmaksām. Pazemes temperatūra pieaug proporcionāli dziļumam aptuveni vienu °C uz katriem 28 m. Tādējādi augstas ģeotermālās aktivitātes zonās 100 līdz 180°C var sasniegt 2 līdz 3 km dziļumā (L.Antons «Lietišķā fizika” 2.daļa, 1995., Rīga, Zvaigzne ABC, 287. līdz 294.lpp.), http://www.lvportals.lv/likumi-prakse.php?id=229943Geothermal energy can be obtained not only from geothermal waters, but also from the heat of crystalline rocks (petrothermal energy), which have a high potential due to the geological structure of the subterranean depths. The heat flux in the elevated zone reaches 60 to 100 MW / m z . These rocks are an inexhaustible source of energy because they are continuously heated from below by 1300 ° C hot magma. The use of geothermal energy supplies the consumer with energy 24 hours a day, seven years a year, gaining independence from variable fuel input costs. The underground temperature increases proportionally to a depth of about one ° C for every 28 m. Thus, high geothermal activity in the zones of 100 to 180 ° C can be achieved at depths of 2 to 3 km (L. Anton, Applied Physics, Part 2, 1995, Riga, Zvaigzne ABC, pp. 287-294), http: // www.lvportals.lv/models-practices.php?id=229943

Līdz šim pazīstamās metodes paredz ar vairāku urbumu palīdzību izmantot dabisko pazemē radušos tvaiku vai dabiskos karstos pazemes ūdeņus, kas veidojas seismiskās aktivitātes zonās un tiek izsūknēti virszemē, kā arī ūdeņus, kas mākslīgi iesūknēti uzsildīšanai pazemē atklātā ģeotermālā sistēmā. Tomēr dabiskais pazemes tvaiks un karstie ūdeņi satur bīstamas ķīmiskas sastāvdaļas, kas var radīt apkārtējās vides piesārņojumu, ieplūstot augsnē vai ūdenskrātuvēs. Pazemes ūdeņu sastāvā esošie sāļi un skābes rada bojājumus un aizsērējumus cirkulācijas sistēmās, sūkņos u.c. iekārtās. Pie minētās metodes trūkumiem pieder augstas izmaksas vairāku izpētes urbumu izveidošanai un ilgs projekta realizācijas laiks (līdz 10 gadiem). Šie trūkumi izskatīti starptautiskajā konferencē ,.Ģeotermālo resursu izmantošanas iespējas Latvijas pašvaldību teritorijās” Rīgā, 2011.g. 27. aprīlī http.//www.lnga.lv/files/Geotermiias konference RD Juris Golunovs 27-04-2011.pdfMethods known to date include the use of multiple wells to utilize natural underground steam or natural hot groundwater formed in seismic activity zones and pumped to the surface, as well as water artificially pumped for underground geothermal heating. However, natural underground steam and hot water contain hazardous chemical components that can pollute the environment by leaching into soil or water bodies. Salts and acids in groundwater cause damage and clogging of circulatory systems, pumps, etc. Equipment. Disadvantages of this method include the high cost of multiple exploration wells and the long project life (up to 10 years). These shortcomings have been reviewed at the international conference, “Possibilities of Geothermal Resources Use in the Territories of Latvian Municipalities”, Riga, 2011. April 27 http.//www.lnga.lv/files/Geotermiias Conference RD Juris Golunovs 27-04-2011.pdf

Cita ģeotermālā siltuma iegūšanas metode paredz siltumnesēja cirkulāciju pa urbumā ievietotām koncentriskām vai paralēlām caurulēm slēgtā ģeotermālā sistēmā. Taču šīs metodes efektivitāte ir 8 reizes mazāka par atklāto sistēmu, jo siltuma iegūšanas efektivitāti samazina salīdzinoši mazais sildvirsmas laukums, ko nosaka urbuma izvietojums perpendikulāri zemes virsmai un tukšumi, kas atrodas ap cirkulācijas cauruli. Šāda urbuma siltumatdeves matemātiskais modelis ir aprakstīts Šveices pilsētas Veisbādes dziļurbuma siltumapmaiņas uzņēmumā un prezentēts starptautiskajā ģeotermālajā konferencē Kioto, Japānā, 2000.gada maijā - jūnijā http://www.gtr.ethz.ch/kohl www/PDF Paper/VVGC Weissbad.pdfAnother method of obtaining geothermal heat involves the circulation of the heat carrier through concentric or parallel tubes in a well in a closed geothermal system. However, the efficiency of this method is 8 times lower than that of the open system, since the heat generation efficiency is reduced by the relatively small heating surface area, which is determined by the location of the hole perpendicular to the ground and the voids around the circulation pipe. The mathematical model for the heat output of such a well is described in the Swiss city of Vyachesha boring heat exchange company and presented at the International Geothermal Conference in Kyoto, Japan, May - June 2000 http://www.gtr.ethz.ch/kohl www / PDF Paper / VVGC Weissbad.pdf

Līdz šim zināmo sistēmas ..caurule caurulē” darbības principu apraksta patenti RU 2288413 C1, US 4512156 un patenta pieteikums EP 1808652 A2. Pašreiz izmantotās urbumu aizpildīšanas metodes un materiāli nodrošina urbumā ievietoto cauruļu mehānisko noturību un aizsardzību pret agresīviem vides faktoriem, bet neuzlabo siltumapmaiņas procesu.The principle of operation of the system known as ..pipe in the prior art is described in patent RU 2288413 C1, US 4512156 and patent application EP 1808652 A2. Existing well-filling methods and materials provide mechanical resistance and protection against aggressive environmental factors in wells, but do not improve the heat exchange process.

Izgudrojuma mērķis un būtībaPurpose and substance of the invention

Izgudrojums paredz ekoloģiski nekaitīgu pazemes siltuma iegūšanu no sausajiem iežiem ar maksimālu siltumapmaiņas efektivitāti bez dabisko šķidrumu vai gāzu nonākšanas virszemē. Ir piedāvāta urbuma izveidošanas un aizpildīšanas metode ģeotermālās enerģijas ieguves vietai, kuras tehniskais uzdevums ir paaugstināt efektivitāti zemes dzīļu siltuma pārnešanai uz siltumnesēja šķidrumu (piemēram, ūdeni) slēgtā koncentriski izvietotu cauruļu sistēmā «caurule caurulē”.The present invention provides for the environmentally friendly production of underground heat from dry rocks with maximum heat exchange efficiency without the transfer of natural liquids or gases to the surface. A method of creating and filling a well for a geothermal energy production site has been proposed with the technical task of increasing the efficiency of the transfer of heat from subterranean depths to a heat carrier fluid (such as water) in a closed, concentric pipe system.

Izgudrojuma realizācijas konstruktīvā urbuma shēma ir attēlota aprakstam pievienotajos zīmējumos. Fig.1 ir parādīts kopējais sistēmas garengriezums virszemē un pazemē, Fig.2 ir parādīts sistēmas šķērsgriezums aukstajos zemes slāņos, Fig.3 ir parādīts sistēmas šķērsgriezums karstajos zemes slāņos, Fig.4 ir parādīts sistēmas garengriezums pazemes daļā. Shēma ietver sekojošus elementus: Γ - vertikālais urbums zemes aukstajos slāņos, 1 - novirzītais urbums zemes karstajos slāņos, 2 - ārējā caurule, 3 - ārējās caurules izolācija zemes aukstajos slāņos, 4 - iekšējā caurule, 5 - iekšējās caurules izolācija, 6 paaugstinātas siltuma vadītspējas materiāls zemes karstajos slāņos, 7 - turpgaitas siltumnesēja plūsma, 8 - atpakaļgaitas siltumnesēja plūsma, 9 - iekšējās caurules atvere, 10 - siltumapmaiņas iekārta, 11 - savienojošā caurule, 12 - sūknis, 13 caurule uz siltuma patērētāju, 14 - caurule no siltuma patērētāja, 15 - zemes virsma, 16 - aukstie zemes slāņi, 17 - karstie zemes slāņi, 18 - ārējās caurules noslēgbloks.A schematic drawing of the embodiment of the invention is illustrated in the accompanying drawings. Fig. 1 shows the total longitudinal section of the system underground and underground, Fig. 2 shows the cross-section of the system in cold earth layers, Fig. 3 shows the cross-section of the system in hot ground layers, Fig. 4 shows the longitudinal section of the system. The scheme includes the following elements: Γ - vertical hole in the earth's cold layers, 1 - deflected hole in the earth's hot layers, 2 - outer pipe, 3 - outer pipe insulation in cold earth layers, 4 - inner pipe, 5 - inner pipe insulation, 6 increased thermal conductivity material in hot soil layers, 7 - flow of heat transfer medium, 8 - flow of heat transfer medium, 9 - opening of internal pipe, 10 - heat exchange unit, 11 - connecting pipe, 12 - pump, 13 pipe to heat consumer, 14 - pipe from heat consumer, 15 - earth surface, 16 - cold earth layers, 17 - hot earth layers, 18 - outer pipe block.

Piedāvātās metodes būtība ir sekojoša:The essence of the proposed method is as follows:

1) Vispirms tiek veikts vertikāls urbums perpendikulāri pret zemes virsmu, lai sasniegtu karsto iežu zonu. Tuvojoties karsto iežu zonai (17), urbums tiek novirzīts 30 līdz 90° leņķī pret vertikāli, lai maksimāli izmantotu zemes siltuma enerģijas plūsmu atbilstoši urbuma dziļumam, caurules garumam un diametram.1) First a vertical drill is made perpendicular to the ground surface to reach the hot rock area. As the hot rock zone (17) approaches, the bore is shifted at an angle of 30 to 90 ° vertically to maximize the heat flow of the earth according to the depth, pipe length and diameter of the borehole.

2) Pēc urbuma izveidošanas no tā zem spiediena tiek izskalotas izurbto iežu un urbšanas tehnoloģisko šķidrumu paliekas. Vienlaicīgi tiek izskaloti sadrupušie apkārtējo iežu slāņi ap urbumu, kuru vietā izveidojušies tukšumi tiks aizpildīti ar materiālu, kam piemīt paaugstināta siltuma vadītspēja.2) After the borehole has been formed, the remains of drilled rocks and drilling fluids are washed off under pressure. At the same time, crumbling layers of surrounding rock are washed out around the borehole, and the voids formed will be filled with a material with increased thermal conductivity.

3) Ārējā caurule (2), kuras ārējā virsma ir sildvirsma, tiek ievietota urbumā (1) un savienota ar karsto iezi (17), zem spiediena caur noslēgbloku (18) iepildot paaugstinātas siltuma vadītspējas materiālu (6), (piemēram, cementa javu ar alumīnija skaidiņu, krama putekļu vai oglekļa šķiedru piejaukumu), kurš aizpilda visas dabīgās plaisas un urbuma kanālu (1), nodrošinot maksimālu siltuma kontaktu starp ārējās caurules (2) virsmu un karsto iezi (17). Paaugstinātās siltuma vadītspējas materiāls (6) iespiežas dziļi karstajos iežos (17), savācot siltumu no plaša apgabala un vienmērīgi sadalot to pa visu caurules (2) sildvirsmu.3) An outer tube (2) having an outer surface of a heating surface is inserted into a borehole (1) and connected to a hot rock (17) by filling a heat-conductive material (6) under pressure through a sealing block (18) (eg cement mortar) with a mixture of aluminum chips, flint dust or carbon fiber) that fills all natural cracks and borehole (1), providing maximum thermal contact between the surface of the outer tube (2) and the hot rock (17). The material of increased thermal conductivity (6) penetrates deep into the hot rocks (17), collecting heat from a wide area and distributing it evenly over the entire heating surface of the pipe (2).

4) Pēc tam ārējās caurules (2) gals tiek aizvērts ar noslēgbloku (18), izveidojot slēgtu sistēmu. Ārējā caurulē (2) tiek ievadīta iekšējā caurule (4), brīvā vai koncentriski fiksētā stāvoklī, veidojot turp- un atpakaļgaitas cilpu siltumnesēja šķidruma plūsmai (7, 8). Iekšējās caurules (4) gals tiek pietuvināts ārējās caurules (2) noslēgblokam (18).4) The end of the outer tube (2) is then closed with a locking block (18) to form a closed system. The inner tube (4) is introduced into the outer tube (2) in a free or concentric position, forming a loop for reverse and reverse flow of the heat carrier fluid (7, 8). The end of the inner tube (4) is brought closer to the closure block (18) of the outer tube (2).

Siltumapmaiņas šķidrums (7) tiek sūknēts no virszemes caur ārējo cauruli (2), uzsilst siltumapmaiņas rezultātā un caur atveri (9) ieplūst atpakaļgaitas iekšējā caurulē (4). Siltumenerģija tiek pacelta virszemē ar uzsilušā šķidruma atpakaļgaitas plūsmu (8). Šķidrums plūst uz siltumapmaiņas rezervuāru (10), atdod iegūto siltumu patērētājam un tad caur savienojošo cauruli (11) un sūkni (12) atkārtoti tiek iesūknēts uzsildīšanai ārējā caurulē (2). Izolācijas slānis (5) nodrošina siltuma izolāciju starp turpgaitas un atpakaļgaitas caurulēm (2 un 4), bet slānis (3) nodrošina izolāciju starp ārējo (turpgaitas) cauruli (2) un aukstajiem zemes slāņiem (16).The heat exchange fluid (7) is pumped from the surface through the outer tube (2), warmed as a result of the heat exchange, and flushed through the opening (9) into the internal return tube (4). The thermal energy is raised above the surface by the flow of warmed-up liquid (8). The fluid flows to the heat exchange reservoir (10), returns the resulting heat to the consumer, and is then pumped through the connecting pipe (11) and the pump (12) for heating to the outer pipe (2). The insulation layer (5) provides thermal insulation between the flow and return pipes (2 and 4), while the layer (3) provides insulation between the outer (flow) pipe (2) and the cold earth layers (16).

Claims (3)

PretenzijasClaims 1. Ģeotermālā dziļurbuma, kurā siltumnesēja šķidrums cirkulē slēgtā koncentriski izvietotu cauruļu sistēmā, aizpildīšanas un izveidošanas metode, kas raksturīga ar to, ka telpa starp ārējās caurules virsmu un karstajiem pazemes iežiem tiek aizpildīta ar materiālu, kura siltumvadītspēja ir paaugstināta, salīdzinot ar pamatieža siltumvadītspēju, pie kam urbums, kurā izvietota cauruļu sistēma, augšējos aukstajos zemes slāņos tiek izveidots perpendikulāri zemes virsmai, bet dziļākajos karstajos zemes slāņos novirzīts leņķī pret vertikāli.1. A method of filling and forming a geothermal borehole in which a heat carrier fluid circulates in a closed system of concentric pipes, characterized in that the space between the surface of the outer pipe and the hot underground rocks is filled with a material having a higher thermal conductivity whereby the bore of the pipe system is formed perpendicular to the earth surface in the upper cold layers of the earth, but at an angle to the vertical in the deeper layers of the earth. 2. Metode saskaņā ar 1. pretenziju, kura tiek izmantota, izpildot sekojošas darbības:The method of claim 1, which is carried out by performing the following steps: a) urbums tiek izveidots perpendikulāri pret zemes virsmu aukstajos zemes slāņos un novirzīts 30 līdz 90° leņķī pret vertikāli karstajos zemes slāņos;(a) the borehole is formed perpendicular to the surface of the earth in the cold layers of the earth and is inclined at an angle of 30 to 90 ° to the vertically hot layers of the earth; b) ārējā cirkulācijas caurule tiek ievietota urbumā;b) inserting the external circulation pipe into the well; c) no urbuma tiek izskalotas sadrupušo iežu un urbšanas tehnoloģisko šķidrumu paliekas;(c) debris from the borehole is flushed out of rocks and drilling fluids; d) ārējā cirkulācijas caurule tiek savienota ar iezi, caur noslēgbloku zem spiediena ievadot materiālu ar paaugstinātu siltuma vadītspēju, kurš aizpilda dabīgās plaisas un urbuma kanālu ap ārējo cauruli;d) the outer circulation pipe is connected to the rock by introducing, under pressure, a material with increased thermal conductivity, which fills the natural cracks and bore channel around the outer pipe; e) iekšējā caurule tiek ievietota ārējā caurulē brīvā vai koncentriski fiksētā veidā;e) inserting the inner tube into the outer tube in a free or concentric manner; f) pa ārējo cauruli tiek palaista turpgaitas siltumnesēja plūsma;(f) the flow of heat transfer medium through the outer pipe is started; g) pa iekšējo cauruli tiek palaista atpakaļgaitas siltumnesēja plūsma.(g) a reverse flow of heat transfer medium through the inner tube. 3. Metode saskaņā ar 1. vai 2. pretenziju, kurā kā paaugstinātas siltuma vadītspējas materiāls urbuma aizpildīšanai tiek izmantota cementa java ar sekojošām piedevām:Method according to claim 1 or 2, in which cement mortar with the following additives is used as filler material for high thermal conductivity: a) vara, alumīnija vai cita metāla skaidiņas,(a) Copper, aluminum or other metal shavings; b) krama putekļi,(b) flint dust, c) oglekļa šķiedras.(c) carbon fibers.
LVP-14-31A 2014-04-14 2014-04-14 Method for arrangement and sealing of borehole for production of geothermal heat LV14875B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
LVP-14-31A LV14875B (en) 2014-04-14 2014-04-14 Method for arrangement and sealing of borehole for production of geothermal heat
PCT/IB2015/052580 WO2015159188A2 (en) 2014-04-14 2015-04-09 A method of borehole arrangement for extraction of geothermal energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LVP-14-31A LV14875B (en) 2014-04-14 2014-04-14 Method for arrangement and sealing of borehole for production of geothermal heat

Publications (2)

Publication Number Publication Date
LV14875A LV14875A (en) 2014-06-20
LV14875B true LV14875B (en) 2014-10-20

Family

ID=50941952

Family Applications (1)

Application Number Title Priority Date Filing Date
LVP-14-31A LV14875B (en) 2014-04-14 2014-04-14 Method for arrangement and sealing of borehole for production of geothermal heat

Country Status (2)

Country Link
LV (1) LV14875B (en)
WO (1) WO2015159188A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107525292A (en) * 2017-09-29 2017-12-29 上海中金能源投资有限公司 Regenerative heat exchanger in mid-deep strata geothermal well
CN107676996A (en) * 2017-09-29 2018-02-09 上海中金能源投资有限公司 Underground heat bore hole heat exchanger and geothermal well well shaft fixing technology
CN107477895A (en) * 2017-09-29 2017-12-15 上海中金能源投资有限公司 Mid-deep strata underground heat bore hole heat exchanger
CN110360761A (en) * 2018-01-03 2019-10-22 西南石油大学 A kind of tree-shaped hot dry rock well construction and recovery method
CN108590580A (en) * 2018-04-16 2018-09-28 中国石油大学(华东) A kind of hot dry rock production practice and its horizontal wellbore for strengthening horizontal wellbore heat transfer efficiency
EP4022230A1 (en) * 2019-08-27 2022-07-06 Jörgen BARTZ Geothermal device and method
DE102020132176A1 (en) * 2020-12-03 2022-06-09 Christian-Albrechts-Universität zu Kiel - Körperschaft des öffentlichen Rechts Underground ice storage system in aquifers and aquifers for heat supply

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452349A (en) 1977-09-30 1979-04-24 Ushio Nagase Natural steam power application system
NL7905625A (en) * 1979-07-19 1981-01-21 Gils Adrianus Van Geothermal energy utilisation method - involves sinking bore hole and injecting granulated metal to form heat conducting lateral fins at different levels
HU193647B (en) * 1983-02-14 1987-11-30 Melyepitesi Tervezo Vallalat Method and apparatus for utilizing geothermic energy
CH677698A5 (en) * 1987-07-22 1991-06-14 Hans Ferdinand Buechi
CH689402A5 (en) * 1992-10-13 1999-03-31 Foralith Ag Method of inserting an earth probe and earth probe.
DE19919555C1 (en) * 1999-04-29 2000-06-15 Flowtex Technologie Gmbh & Co Extraction of geothermal energy from blind bores involves closed circuit feed of heat transmission medium with first chamber in heat exchanger tube for feed of cold fluid
DE19958765A1 (en) * 1999-06-29 2001-06-13 Zae Bayern Backfill material containing graphite for geothermal heat exchangers and earth power cables
JP2003302108A (en) * 2002-04-12 2003-10-24 Misawa Kankyo Gijutsu Kk U-tube type geothermal heat exchanger
RU2288413C1 (en) 2005-04-29 2006-11-27 Государственное образовательное учреждение высшего профессионального образования "Северо-Кавказский государственный технический университет" Method of using geothermal heat
GB2434200A (en) 2006-01-14 2007-07-18 Roxbury Ltd Heat exchanger component for a geothermal system
KR20130059828A (en) * 2011-11-29 2013-06-07 김형남 Heating exchange system using the geothermal

Also Published As

Publication number Publication date
WO2015159188A3 (en) 2015-12-30
WO2015159188A2 (en) 2015-10-22
LV14875A (en) 2014-06-20

Similar Documents

Publication Publication Date Title
LV14875B (en) Method for arrangement and sealing of borehole for production of geothermal heat
CN102105755B (en) System and method of capturing geothermal heat from within a drilled well to generate electricity
US10527026B2 (en) Geothermal heat recovery from high-temperature, low-permeability geologic formations for power generation using closed loop systems
JP2022539108A (en) An operating protocol for acquiring thermoproductive formations
CN106194122B (en) A kind of method that oil field abandoned well transform geothermal well or sub-salt well as
CN211177029U (en) Heating system with mode of taking heat and not taking water by using geothermal energy in middle and deep layers
US20150101779A1 (en) System and Method of Maximizing Performance of a Solid-State Closed Loop Well Heat Exchanger
CN113224979B (en) Geothermal/seawater semiconductor temperature difference power generation system and method
CN112856562A (en) Heating system with mode of taking heat and not taking water by using geothermal energy in middle and deep layers
Zhang et al. Evaluation of developing an enhanced geothermal heating system in northeast China: Field hydraulic stimulation and heat production forecast
Banks et al. An overview of the results of 61 in situ thermal response tests in the UK
CN106839478A (en) A kind of method of construction of deep geothermal heat heat transfer root system
Ashena Analysis of some case studies and a recommended idea for geothermal energy production from retrofitted abandoned oil and gas wells
Hemmingway et al. Energy piles: site investigation and analysis
CN110863800A (en) Single-well closed development method for hot dry rock
Vangkilde-Pedersen et al. Shallow geothermal energy in Denmark
US11732929B2 (en) Optimized CO2 sequestration and enhanced geothermal system
KR101403687B1 (en) Geothermal heating and cooling system for heat exchanger
FR3056288A3 (en) GEOTHERMAL POWER PLANT USING A HOT AND DRY ROCK FOLDED AREA
Maurel et al. Inventory and First Assessment of Oil and Gas Wells Conversion for Geothermal Heat Recovery in France
CN117267963B (en) Wind-solar energy storage-based water-bearing hard rock shallow geothermal energy enhancement development method
Altseimer Geothermal well technology and potential applications of Subterrene devices: a status review
Banks et al. An overview of the results of in-situ thermal response testing in the UK
Kozłowski Geothermic Power Plants of high capacity-how far
Otte Geothermal energy