KR950001794B1 - Production of rutile single crystal - Google Patents

Production of rutile single crystal Download PDF

Info

Publication number
KR950001794B1
KR950001794B1 KR1019910006103A KR910006103A KR950001794B1 KR 950001794 B1 KR950001794 B1 KR 950001794B1 KR 1019910006103 A KR1019910006103 A KR 1019910006103A KR 910006103 A KR910006103 A KR 910006103A KR 950001794 B1 KR950001794 B1 KR 950001794B1
Authority
KR
South Korea
Prior art keywords
crystal
single crystal
rutile single
growth
rutile
Prior art date
Application number
KR1019910006103A
Other languages
Korean (ko)
Other versions
KR910018586A (en
Inventor
토시마사 아라히
히로유끼 호리노
히로꼬 깐노
타다토시 호소끼와
Original Assignee
치치부시멘트 가부시끼가이샤
노사까 까쥬히꼬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 치치부시멘트 가부시끼가이샤, 노사까 까쥬히꼬 filed Critical 치치부시멘트 가부시끼가이샤
Publication of KR910018586A publication Critical patent/KR910018586A/en
Application granted granted Critical
Publication of KR950001794B1 publication Critical patent/KR950001794B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/34Single-crystal growth by zone-melting; Refining by zone-melting characterised by the seed, e.g. by its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides

Abstract

내용 없음.No content.

Description

루틸(Rutile) 단결정의 제조방법Method for preparing rutile single crystal

제1도는 부유물 주변의 상세도.1 is a detail of the periphery of the float.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 보유로드 2 : 시이드(seed)결정1: Retention rod 2: Seed determination

3 : 원료 로드 4 : 부유물(Floating material)3: Raw material rod 4: Floating material

5 : 결정온도 유지장치5: crystal temperature holding device

루틸(Rutile)은 고정밀 광학물로 관심을 끌어 왔으며, 다양한 제조방법이 이미 알려졌다. 예를들면, 일본 특허공고 번호 평 2~5720호에서 고품질의 루틸결정제를 얻기 위해 용융액의 응고시에 단 하나의 결정상을 결정화할 필요가 있다가 기술하고 있다.Rutile has attracted attention as high precision optics, and a variety of methods have already been known. For example, Japanese Patent Publication Nos. Hei 2 to 5720 describe that it is necessary to crystallize only one crystal phase at the time of solidification of the melt in order to obtain a high quality rutile crystallization agent.

이러한 절차에 영향을 주기 위해 용융핵에서 결정을 성장시킬 때, 결정성장을 위한 분위기중의 산소분압을 3×10-2기압이하의 범위내로 유지할 것을 제안하고 있다.In order to influence this procedure, it is proposed to maintain the partial pressure of oxygen in the atmosphere for crystal growth within 3 x 10 -2 atmosphere when growing crystals in molten nuclei.

상기 종래 방법을 적용할 때, 예를 들면 프로팅법(Floating)을 사용하여 직경이 약 15mm이하인 루틸 단결정을 성장시키는 경우에는 종래기술의 방법으로 만으로도 대체로 문제점이 없다. 그러나 직경이 15mm이상인 루틸 단결정을 성정시킴에 있어서는 종래 방법에 의해서는 결정을 만들수가 없다. 즉, 프로팅법은 시이드 결정과 원료 로드사이에서 가열로써 부유물을 형성하는 것이다. 그러나, 결정의 직경이 증가함에 따라 부유물의 양이 증가한다. 이에 따라 부유물의 무게도 증가하게 되고 결국, 부유물이 표면장력에 의해서 보유되지 못하고 방울지어 떨어지게 된다.When the conventional method is applied, for example, when a rutile single crystal having a diameter of about 15 mm or less is grown by using a floating method, the method of the related art is generally not a problem. However, in the determination of rutile single crystals having a diameter of 15 mm or more, crystals cannot be formed by conventional methods. That is, the floating method is to form a float by heating between the seed crystal and the raw material rod. However, as the diameter of the crystal increases, the amount of suspended solids increases. As a result, the weight of the float is also increased, and eventually the float is not retained by the surface tension and drops.

본 발명은 상기 문제점을 해결하기 위한 것으로, 대형크기의 결정을 얻을 수 있는 루틸 단결정의 제조방법을 제공함을 그 목적으로 한다. 상기 목적을 위하여 본 발명은 프로팅법으로 루틸(TiO2) 단결정을 제조할 때 결정의 성장 축의 방향을 [001]축으로 하는 것으로 이루어진다.The present invention has been made to solve the above problems, and an object thereof is to provide a method for producing rutile single crystals capable of obtaining large-sized crystals. For this purpose, the present invention consists of making the direction of the growth axis of the crystal as the [001] axis when producing rutile (TiO 2 ) single crystal by the coating method.

제1도는 부유물 주변의 상세도로서, 시이드 결정(2)은 보유로드(1)에 연결되고, 시이드 결정(2)과 원료로드(3)사이에는 부유물(4)이 있어서 상기 물질들이 가열된 상태가 보여지는데, 그의 일부는 결정온도 유지 장치(5)로 덮혀있다. 점선인 화살표는 시이드 결정의 [001]축방향을 나타내고 실선인 화살표는 결정의 성장 방향을 나타내고 있다.FIG. 1 is a detailed view around the float, in which the seed crystal 2 is connected to the holding rod 1, and there is a float 4 between the seed crystal 2 and the raw material rod 3 to heat the materials. It is shown that the part is covered with the crystal temperature holding device 5. The dotted arrow indicates the [001] axis direction of the seed crystal and the solid arrow indicates the growth direction of the crystal.

결정성장 축방향과 시이드 결정의 [001]축방향사이의 각도는 15도 이내이며, 바람직하기는 3도 이내이다. 반대로 30도 이상일때는 상기 부유물을 보유하는 것이 아주 어렵게 된다.The angle between the crystal growth axis direction and the [001] axis direction of the seed crystal is within 15 degrees, preferably within 3 degrees. On the contrary, when it is 30 degree or more, it becomes very difficult to hold the said float.

여기서, 시이드 결정의 [001]축방향이 결정의 결정성장축으로 될 때는 부유물을 아주 용이하게 보유할 수 있다는 실험적 사실이 있으나, 왜 용이하게 보유할 수 있는지의 이유는 확실치 않다. 그러나, 루틸의 결정면중에서 용이하게 성장하는 면은 (110)면이라는 사실, 즉 성장이 느린 축방향은 [110]축방향이라는 사실에 연관된다고 생각되어 질수 있다. 즉 [001]축방향성장의 경우에 (110)면은 고체, 액체의 경계면에서 나타나지 않으나, 결정이 타축방향에서 성장할 때 (110)면이 고체, 액체의 경계면에서 형성되어 고체, 액체의 경계면이 부유물을 좀처럼 보유될 수 없는 형태가 된다.Here, there is an experimental fact that the suspended matter can be easily retained when the [001] axis direction of the seed crystal becomes the crystal growth axis of the crystal, but the reason why it can be easily retained is not clear. However, it can be considered that the surface that easily grows among rutile's crystal planes is the (110) plane, that is, the axial direction in which the growth is slow is the [110] axis direction. That is, in the case of [001] axial growth, the (110) plane does not appear at the interface between the solid and the liquid, but when the crystal grows in the other axis direction, the (110) plane is formed at the boundary between the solid and the liquid. Floats are rarely held.

이하, 본 발명의 실시예를 첨부도면에 의거하여 설명한다.Best Mode for Carrying Out the Invention Embodiments of the present invention will be described below with reference to the accompanying drawings.

상업상 구입 용이한 TiO2(99.98%) 파우더를 1톤/cm2의 정압으로 고무프레스 몰딩하여 로드 형식으로 만들어 1400℃ 공기중에서 소결하였다.Commercially available TiO 2 (99.98%) powder was rubber press-molded at a constant pressure of 1 ton / cm 2 to form a rod and sintered in 1400 ° C. air.

이것을 회전타원면 거울을 이용한 집광 프로팅법에 의하여 원료 로드로써 단결정체 제조장치에 장전하고, 시이드 결정의 축방향을 [001]방향으로 한다. 부유물주변에 결정온도 유지장치를 부착하였다. 그후, 분위기 중에 산소 분압을 제어하기 위하여 CO2를 결정실내로 유입하여 종료될 때까지 21/min의 유량으로 흘렸다. 프로팅법의 통상적인 방법으로 결정성장조직을 수행하여 청흑색의 결정을 얻었다. 이 경우에 성장조건은 원료 로드와 시이드 결정의 회전속도가 각각 반대방향으로 25Rev/min이었고 결정 성장속도는 3mm/hr이었다. 얻어진 결정을 대기중에서 48시간 동안 800℃로 소결하여 약간 노란색을 띠는 투명 결정체를 얻었다. 이 결정체에서 성장 방향 및 그의 수직 방향에 평행한 면을 샘플로써 절단하여 광학 연마하였다. 이 제품을 편광 현미경으로 조사했을 때, 본 제품은 왜곡(Strain), 기포(Blister)와 서브그레인(Sub-grain)조직등이 발견되지 않는 고품질의 루틸 단결정을 알 수 있다.This is loaded into a single crystal manufacturing apparatus as a raw material rod by a condensing coating method using a spheroidal mirror, and the axial direction of the seed crystal is set to the [001] direction. A crystal temperature maintaining device was attached around the float. Thereafter, in order to control the oxygen partial pressure in the atmosphere, CO 2 was introduced into the crystal chamber and flowed at a flow rate of 21 / min until it was completed. Crystal growth tissue was carried out by the usual method of the coating method to obtain a blue-black crystals. In this case, the growth conditions were 25 Rev / min in the opposite direction of the raw material rod and the seed crystal, and the crystal growth rate was 3 mm / hr. The obtained crystals were sintered at 800 ° C. for 48 hours in the air to obtain slightly yellow transparent crystals. In this crystal, a plane parallel to the growth direction and its vertical direction was cut as a sample and subjected to optical polishing. When examined with a polarizing microscope, the product reveals high quality rutile single crystals that are free from strain, blisters and sub-grain textures.

상기한 동일 작업을 각도가 각각 성장방향에 대하여 45도와 90도를 갖는 시이드 결정들을 사용하여 수행한 결과, 부유물이 보유되지 못하고 방울져서 떨어지게 되어 결정을 성장할 수가 없었다.The same operation was carried out using seed crystals having an angle of 45 degrees and 90 degrees with respect to the growth direction, respectively. As a result, the suspended solids were not retained and dropped, and the crystals could not be grown.

상기 설명한 바와같이, 본 발명에 따르면, 프로팅법에 의해 루틸 단결정을 제조할 때 결정의 결정성장 방향이 [001]축으로 되어 있어서, 직경 15mm이상의 대형 크기의 루틸 단결정을 얻을 수 있다.As described above, according to the present invention, when the rutile single crystal is produced by the coating method, the crystal growth direction of the crystal becomes the [001] axis, whereby a large size rutile single crystal having a diameter of 15 mm or more can be obtained.

Claims (2)

프로팅법(Floating)을 이용하여 루틸(Rutile : 金紅石) 단일 결정체를 제조하는 방법에 있어서, 결정성장 방향이 [001]축방향으로 이루어진 루틸 단일 결정체의 제조방법.A method for producing rutile single crystals by floating method, the method for producing rutile single crystals in which the crystal growth direction is in the [001] axis direction. 제1항에 있어서, 결정성장 방향과 [001]축방향 사이의 각도가 15도 이내인 루틸 단일 결정체의 제조방법.The method of claim 1 wherein the angle between the crystal growth direction and the [001] axis direction is within 15 degrees.
KR1019910006103A 1990-04-16 1991-04-16 Production of rutile single crystal KR950001794B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2099910A JPH042683A (en) 1990-04-16 1990-04-16 Production of rutile single crystal
JP?2-99910 1990-04-16
JP2-99910 1990-04-16

Publications (2)

Publication Number Publication Date
KR910018586A KR910018586A (en) 1991-11-30
KR950001794B1 true KR950001794B1 (en) 1995-03-02

Family

ID=14259937

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910006103A KR950001794B1 (en) 1990-04-16 1991-04-16 Production of rutile single crystal

Country Status (4)

Country Link
JP (1) JPH042683A (en)
KR (1) KR950001794B1 (en)
DE (1) DE4112298A1 (en)
FR (1) FR2660940A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346109A (en) 2002-05-22 2003-12-05 Toshiba Corp Ic card and semiconductor integrated circuit device package
JP4407188B2 (en) 2003-07-23 2010-02-03 信越半導体株式会社 Silicon wafer manufacturing method and silicon wafer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL104644C (en) * 1959-09-18
US3650703A (en) * 1967-09-08 1972-03-21 Tyco Laboratories Inc Method and apparatus for growing inorganic filaments, ribbon from the melt
US3642443A (en) * 1968-08-19 1972-02-15 Ibm Group iii{14 v semiconductor twinned crystals and their preparation by solution growth
JPS61101495A (en) * 1984-10-24 1986-05-20 Natl Inst For Res In Inorg Mater Preparation of rutile single crystal
JPS61111997A (en) * 1984-11-05 1986-05-30 Shinkosha:Kk Production of rutile single crystal
JPS62292699A (en) * 1986-06-11 1987-12-19 Seiko Epson Corp Method for synthesizing rutile single crystal

Also Published As

Publication number Publication date
JPH042683A (en) 1992-01-07
FR2660940A1 (en) 1991-10-18
KR910018586A (en) 1991-11-30
DE4112298A1 (en) 1991-10-17

Similar Documents

Publication Publication Date Title
US2634554A (en) Synthetic gem production
Miyazawa et al. Single crystal growth of paratellurite TeO2
US3194691A (en) Method of manufacturing rod-shaped crystals of semi-conductor material
KR950001794B1 (en) Production of rutile single crystal
US4944925A (en) Apparatus for producing single crystals
US4762588A (en) Method of manufacturing calcium carbonate single crystal
US4685995A (en) Process for manufacturing calcium carbonate single crystal
US4961823A (en) Method of manufacturing calcium carbonate single crystal
Prokofiev et al. Growth and characterization of photorefractive Bi12TiO20 single crystals
KR100232537B1 (en) Rutile single crystals and their growth processes
Fullmer et al. Crystal growth of the solid electrolyte RbAg4I5
Wilde et al. Growth of Sr0. 61Ba0. 39Nb2O6 fibers: New results regarding orientation
US4302280A (en) Growing gadolinium gallium garnet with calcium ions
JP2612456B2 (en) Method for producing calcium carbonate single crystal
Goodrum Solution top-seeding: Growth of GeO2 polymorphs
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JP2001181091A (en) Method for growing rutile single crystal
JP3021935B2 (en) Method for producing cadmium manganese tellurium single crystal
Jones Gold containers for single crystal growth: Production of lead germanate for infra-red detectors
JPH0920596A (en) Device for producing lithium tetraborate single crystal
RU2067626C1 (en) Method of growing of monocrystals
JPH0631200B2 (en) Single crystal growth method
JPS63230593A (en) Production of calcium carbonate single crystal
Inoue et al. Growth of CuCl single crystals by the top seeded solution growth method
Biderman et al. Crystal Growth of Optical Materials by the Gradient Solidification Method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee