KR940010494B1 - Curing and passivation of sog by a plasma process - Google Patents

Curing and passivation of sog by a plasma process Download PDF

Info

Publication number
KR940010494B1
KR940010494B1 KR1019900005541A KR900005541A KR940010494B1 KR 940010494 B1 KR940010494 B1 KR 940010494B1 KR 1019900005541 A KR1019900005541 A KR 1019900005541A KR 900005541 A KR900005541 A KR 900005541A KR 940010494 B1 KR940010494 B1 KR 940010494B1
Authority
KR
South Korea
Prior art keywords
sog
film
plasma
layer
oxide
Prior art date
Application number
KR1019900005541A
Other languages
Korean (ko)
Other versions
KR900019271A (en
Inventor
엠. 외이예 룩
Original Assignee
미텔 코포레이션
제임스 데스몬드 버언
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미텔 코포레이션, 제임스 데스몬드 버언 filed Critical 미텔 코포레이션
Publication of KR900019271A publication Critical patent/KR900019271A/en
Application granted granted Critical
Publication of KR940010494B1 publication Critical patent/KR940010494B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

내용 없음.No content.

Description

플라즈마법에 의한 스핀-온-글래스의 경화 및 표면 안정화법 및 이러한 방법으로 제조한 제품Hardening and Surface Stabilization of Spin-on-Glass by Plasma Method and Products Made by the Method

본 발명은 스핀-온-글래스(spin-on-glass)로 형성된 표면안정화(passivating) 또는 절연층, 이러한 절연층을 제조하는 방법 및 한 개 이상의 이러한 절연층을 갖는 제품에 관한 것으로서, 상기 절연층은 반도체 집적회로, 액정, 일렉트로크로믹 또는 일렉트로루미네센트 디스플레이(electrochromic or electroluminescent displays)에서 반사방지 피복물, 부식 또는 화학작용 보호용 피복물로서 유용하게 사용 된다.The present invention relates to a surface passivating or insulating layer formed of spin-on-glass, a method of making such an insulating layer, and a product having at least one such insulating layer, said insulating layer Is usefully used as an antireflective coating, a corrosion or chemical protective coating in semiconductor integrated circuits, liquid crystals, electrochromic or electroluminescent displays.

스핀-온-글래스(SOG)는 집적회로를 편평화할 목적으로 사용될 수 있는 것으로 기술되어 있다. SOG의 고유한 충진(filling) 및 편평화(planarizing) 특성 때문에, SOG는 반도체 집적회로의 크기가 축소됨에 따라서, 그리고 다층 배선 공정(multiple level metallization)이 요구될 때 특히 유용하다.Spin-on-glass (SOG) is described as being usable for the purpose of flattening integrated circuits. Because of the inherent filling and planarizing nature of SOG, SOG is particularly useful as semiconductor integrated circuits shrink in size and when multiple level metallization is required.

불행하게도, 경화 SOG는 습윤공기 및 수중에서 불안정하여 물을 흡수하고 실란올 그룹(SiOH)을 형성하는 경향이 있는 것으로 밝혀졌다.Unfortunately, cured SOG has been found to be unstable in wet air and water, absorbing water and tending to form silanol groups (SiOH).

SOG 및 이의 경화법은 문헌에 기술되어 있다[참조 : A. Schiltz, ADVANTAGES OF USING SPIN-ON-GLASS LAYER IN INTERCONNECTION DIELECTRIC PLANARIZATION, "Microelectronic Engineering" 5(1986) pp. 413-421, Elsevier Science Publishers BV(North Holland) : O2PLASMA-CONVERTED SPIN-ON-GLASS FOR PLANARIZATION, A.D. Butherus et al., September/October 1985, J. Vac. Sci, Technol. B3(5) pp. 1352-1356].SOG and its curing method are described in the literature. See A. Schiltz, ADVANTAGES OF USING SPIN-ON-GLASS LAYER IN INTERCONNECTION DIELECTRIC PLANARIZATION, "Microelectronic Engineering" 5 (1986) pp. 413-421, North Holland, Elsevier Science Publishers BV: O 2 PLASMA-CONVERTED SPIN-ON-GLASS FOR PLANARIZATION, AD Butherus et al., September / October 1985, J. Vac. Sci, Technol. B3 (5) pp. 1352-1356.

문헌[참조 : COMPARISON OF PROPERTIES OF DIELECTRIC FILMS DEPOSITED BY VARIOUS METHODS, W.A. Pliskin, J. Vac. Sci. Technol. Vol. 14 No. 5, Sept./Oct. 1977, pp. 1065-1081]에는 다양한 절연 박막 중의 SiOH 및 H2O 함량이 기술되어 있다. 문헌[참조 : EVALUATIONS OF PLASMA SILICON-OXIDE FILM(P-SiO) BY INFRARED ABSORPTION, A.Takamatsu et al., J. Electro. Chem. Soc. : Solid-State Science & Technology, Feb. 1986, pp. 443-445]에는 SiOH의 존재와 반도체 디바이스 불량간의 상호 관련성에 대하여 기술되어 있다.See COMPARISON OF PROPERTIES OF DIELECTRIC FILMS DEPOSITED BY VARIOUS METHODS, WA Pliskin, J. Vac. Sci. Technol. Vol. 14 No. 5, Sept./Oct. 1977, pp. 1065-1081 describe the SiOH and H 2 O contents in various insulating thin films. See EVALUATIONS OF PLASMA SILICON-OXIDE FILM (P-SiO) BY INFRARED ABSORPTION, A. Takamatsu et al., J. Electro. Chem. Soc. : Solid-State Science & Technology, Feb. 1986, pp. 443-445 describe the interrelationship between the presence of SiOH and defects in semiconductor devices.

SOG를 제조하는 공지된 방법에 의해서는, SiOH, 유기 휘발물질 및 용매, 알콜, 거대 유기 금속분자 및 거대 유기분자를 함유한 H2O가 생성되며, 이러한 현상은, SOG와 접촉하는 배선공정 라인의 부식, 접촉홀-오염현상("via-poisoning")을 일으키는 배선공정도중 기체의 발생, 기체의 발생 및 다른 H2O, 유기 휘발물질 및 SiOH의 영향으로 인한 불량한 접착성, 압력 증가와 관련된 기체 발생으로 인한 SOG 위에 증착된 막의 크래킹(cracking), 박리 및 박편화, SOG와 절연결합의 낮은 항복전압, SOG와 손실있는 절연 결합, SOG중의 H2O 및 SiOH의 존재로 인한 저밀도 절연체, H2O, 유기 휘발물질 및 SiOH의 존재로 인한 가속된 수명시험 스트레싱(stressing)에서 평균 고장간격의 감소, SOG가 에치 백(etch back) 공정으로 처리되는 조건 및 그 결과 SOG가 요구되는 고품질의 절연체 성분으로서 사용될 수 없는 것과 관련이 있음이 명백하다.By known methods of producing SOG, H 2 O containing SiOH, organic volatiles and solvents, alcohols, macromolecular metal molecules and macromolecular molecules is produced, which is the wiring process line in contact with the SOG. Corrosive, poor adhesion due to the generation of gases during the wiring process, gas generation and the effects of other H 2 O, organic volatiles and SiOH during the wiring process causing "via-poisoning" Cracking, exfoliation and flaking of films deposited on SOG due to gas evolution, low breakdown voltages of SOG and dielectric bonds, lossy dielectric bonds with SOG, low density insulators due to the presence of H 2 O and SiOH in SOG, H Accelerated life test due to the presence of 2 O, organic volatiles and SiOH Reduced mean failure intervals in stressing, conditions under which SOG is subjected to an etch back process and consequently high quality Insulator component This involves that can not be used stand is clear.

반도체 표면을 편평화시키기 위해 SOG를 증착시킨 후, 다층(multilevel) 편평화에 에치백 기법을 이용하여 제 1 층의 배선에 걸쳐 있는 모든 SOG를 제거하는 것이 필요한데, 이것은 오복무(recesses)에 최소량의 SOG만이 남게하기 위해서이다. 이로 인하여, 공정 호환성 불량, 공정 상용성 불량, 고가의 에치백 장치의 필요성 및 증착과 에치백에 대한 상세한 내역의 필요성이 발생한다.After depositing the SOG to flatten the semiconductor surface, it is necessary to remove all the SOG across the wiring of the first layer using an etchback technique for multilevel flattening, which is the least amount of recesses. Is to leave only SOG. This results in poor process compatibility, poor process compatibility, the need for expensive etch back devices, and the need for details of deposition and etch back.

물과의 접촉을 피한다. 습윤공기와의 접촉은 동일계내에서의 경화 및/또는 공기 접촉 후 오랜 기체발생 사이클을 이용하여 최소화시키는 것이 필요하다. 이것은, 매우 긴 기체발생 사이클 후에도 약간의 잔여량이 남기 때문에, SiOH, 유기 휘발물질 및 H2O의층을 제거하는 데에 실제로 적합하지 않은 것으로 밝혀졌다.Avoid contact with water. Contact with wet air needs to be minimized using long gas evolution cycles after in-situ curing and / or air contact. This has been found to be practically inadequate for removing layers of SiOH, organic volatiles and H 2 O since some residual amount remains even after very long gas evolution cycles.

남아 있는 잔유물 SiOH, 유기 휘발물질 및 H2O는 접촉홀의 오염("via-poisoning" : 배선공정도중 SOG에 의해 발생되는 기체가 금속화된 전도체 주위의 절연층을 오염시킴으로써, 절연층이 전도성 혹은 반전도성으로 되어 결국 장치의 신뢰성 내지 집적회로의 작동을 감소시키는 현상)을 일으킨다. 이것은 상기 기법을 큰 금속 접촉홀 간격으로 한정함으로써, 접촉홀에 인접한 SOG의 용도는 작은 형태에 대해서는 실제로 실용적이지 않다. 매우 긴 백 스피터(back sputter) 및 기체 발생단계가 흡수된 물을 기체로 방출시키는데 필요하다.The remaining residues SiOH, organic volatiles and H 2 O are contaminated by contact holes ("via-poisoning"), which causes the gas generated by SOG during the wiring process to contaminate the insulating layer around the metalized conductor, making the insulating layer conductive or Semiconductivity, which in turn results in device reliability or reduced operation of the integrated circuit. This limits the technique to large metal contact hole spacing, so the use of SOG adjacent to the contact hole is not practical for small shapes. Very long back sputters and gas evolution stages are needed to release the absorbed water into the gas.

실제로, 군수용과 같이 장치의 신뢰성이 특히 중요한 응용에 있어서는, 반도체 집적회로에 대한 SOG 기술의 사용은 금지되어 왔다.Indeed, in applications where device reliability is particularly important, such as for military applications, the use of SOG technology for semiconductor integrated circuits has been prohibited.

다층배선에 대해 접촉홀 이외의 위치에서 SOG와 금속이 접촉하는 것을 피하기 위해, SOG층을 2개의 절연층 사이에 끼워서 목적하는 두께의 완성된 절연체 조합을 형성하는 것이 필요하다.In order to avoid contact between the SOG and the metal at positions other than the contact holes with respect to the multilayer wiring, it is necessary to sandwich the SOG layer between the two insulating layers to form a completed insulator combination having a desired thickness.

사용되는 SOG의 양을 최소로 할 것이 요구되며, 종횡비를 조절하여 어느 곳에서나 절연층과 SOG의 양호한 조합을 얻는다.It is required to minimize the amount of SOG used, and the aspect ratio is adjusted to obtain a good combination of insulating layer and SOG anywhere.

SOG는 정상적으로는 300oC 내지 450oC에서 30분 내지 2시간 동안 지속시켜서 질소, 아르곤, 산소 또는 형성 기체중에서 열경화시킨다. 건조 단열 상황에서 공정에 대한 웨이퍼(wafer), 저장, 로우딩 및 언로우딩(unloading)을 수행하는 것이 요구된다.SOG is typically continued for 30 minutes to 2 hours at 300 ° C. to 450 ° C. to thermally cure in nitrogen, argon, oxygen or forming gas. It is required to perform wafer, storage, loading and unloading of the process in a dry adiabatic situation.

쉴쯔와 부테루스의 문헌에는, 바렐 반응기 중의 산소 플라즈마를 사용하여 유기 SOG를 경화시키는 시도가 기술되어 있다. 불행하게도, 부테루스 문헌의 제 3 도의 적외선 흡수 스펙트럼에서 알 수 있는 바와 같이, 부테루스 문헌의 제1354페이지, 좌측 컬럼의 마지막 다섯 라인에 기술되어 있는 바와 같이, 및 쉴쯔 문헌의 제 6 도에서 보여지는 바와 같이, 활성 산소 원자/분자에 의한 메틸-CH3결합의 산화의 결과로서 처리방법을 사용하여 상당량의 SiOH 및 H2O를 얻는다. 또한, 증발하게 될, 휘발성 일산화탄소 화합물의 생성에 기인하여 SOG의 밀집화가 발생한다. 그러나, 부산물로서 물도 형성되는데, 이것은 SOG중에 보유된 채로 발견된다.Schultz and Buterus describe an attempt to cure organic SOG using an oxygen plasma in a barrel reactor. Unfortunately, as can be seen in the infrared absorption spectrum of FIG. 3 of the Buterus literature, as described on page 1354 of the Buterus literature, the last five lines of the left column, and FIG. As can be seen, significant amounts of SiOH and H 2 O are obtained using the treatment method as a result of oxidation of the methyl-CH 3 bond by active oxygen atoms / molecules. In addition, densification of SOG occurs due to the production of volatile carbon monoxide compounds that will evaporate. However, water is also formed as a by-product, which is found retained in the SOG.

본 발명에 따라서, 처리 후에 실질적으로 SiOH, 유기 휘발물질 및 H2O가 없는 SOG막이 생성된다. 막은 처리후에 습윤 공기 및/또는 수중에서 매우 안정한 것으로 밝혀졌다. 따라서 이후의 공정은 간단하다.According to the present invention, an SOG film substantially free of SiOH, organic volatiles and H 2 O is produced after the treatment. The membrane was found to be very stable in wet air and / or water after treatment. Therefore, the subsequent process is simple.

안정성 및 SiOH, 유기 휘발물질 및 H2O의 명백한 형성이 발견되지 않기 때문에, 일단 막이 플라즈마경화되면, O2플라즈마 중의 건식 감광막(photoresist) 스트립(strip)이 가능하다. SiOH, 유기 휘발물질 H2O에 의한 접촉홀-오염 현상은, 본 발명에 따라 형성된 SOG가 접촉홀과 접촉하는 곳에서는 제거된다.Since no stability and no apparent formation of SiOH, organic volatiles and H 2 O are found, once the film is plasma-cured, a dry photoresist strip in the O 2 plasma is possible. The contact hole-pollution phenomenon by SiOH and organic volatile H 2 O is eliminated where the SOG formed according to the present invention comes into contact with the contact hole.

본 발명의 방법에 따라 형성된 SOG막은 처리후에 막에 영향을 끼치지 않고 상당히 오랜 기간 동안 습윤공기 중에 저장될 수 있다. 이것은 선행 기술에 따라 형성된 SOG에 대하여 엄격한 통제가 필요한 것과는 대조적이다.SOG films formed in accordance with the method of the present invention can be stored in wet air for a fairly long time without affecting the film after treatment. This is in contrast to the need for tight control over SOGs formed according to the prior art.

처리될 웨이퍼 표면 부근에서 발생하는 RF 방전 중의 DC 자기-바이어스(self-bias)에 의해 발생될 수 있는, SOG막 중에서 전기장을 일으키는 플라즈마에서 경화된 SOG는, 실질적으로 SiOH, 유기 휘발물질 및 H2O를 함유하지 않을 것이며, 실제로 SOG층을 통해서 경화된다. 또한, 이러한 방법으로 경화되기 전에 H2O에 노출됨으로써 약간의 H2O를 흡수한 SOG층은, 본 발명의 방법을 사용한 연속적인 경화 이후에 실질적으로 물을 함유하고 있지 않은 것으로 밝혀졌다. SOG 내에서 전기장을 일으키는 전기효과는 SOG경화 및 표면 안정화 처리에 있어서 매우 중요하다.SOG cured in a plasma generating an electric field in an SOG film, which may be generated by DC self-bias during RF discharge occurring near the wafer surface to be treated, is substantially SiOH, organic volatiles and H 2. It will not contain O and will actually cure through the SOG layer. It was also found that the SOG layer which absorbed some H 2 O by being exposed to H 2 O before curing by this method was substantially free of water after successive curing using the method of the present invention. The electrical effect of generating an electric field in SOG is very important for SOG hardening and surface stabilization treatment.

선행 기술에서 사용된 바렐 플라즈마 반응기는 처리된 SOG 내에서 요구되는 충분한 전기장을 일으키지 못하는 것으로 밝혀졌다. 반면에, 평행 판 반응기는 생산하는데 요구되는 전기장을 발생시킨다(플라즈마는 매우 양성이며 SOG를 운반하는 기판은 일반적인 플라즈마 처리에서와 같이 전극과 전기적 접촉상태에 있다.Barrel plasma reactors used in the prior art have been found not to produce sufficient electric fields required in the treated SOG. On the other hand, parallel plate reactors generate the electric field required to produce (plasma is very positive and the substrate carrying the SOG is in electrical contact with the electrode as in normal plasma processing).

실제로, 외부 AC 또는 DC 분극장을 SOG(기판포함)에 적용함으로써 전기장을 발생시켜 이의 내부 전기장을 증가시킬 수 있다.Indeed, by applying an external AC or DC polarization field to the SOG (including the substrate) it is possible to generate an electric field and increase its internal electric field.

사용한 기체의 성질은 본 발명에서 필수적이지는 않고, 많은 기체를 사용하여 좋은 결과를 얻을 수 있는 것으로 밝혀졌다. 주어진 실시예에 참고로 기술한 이유로 인해, 산소 플라즈마 기체는 바람직한 기체는 아니지만 사용될 수는 있다.The nature of the gas used is not essential to the present invention, and it has been found that many gases can be used to achieve good results. For the reasons described by reference to a given embodiment, oxygen plasma gas is not a preferred gas but may be used.

크래킹 또는 접착 손실없이 크고 만족스러운 SOG 두께를 얻으므로써, 경화된 SOG를 단지 편평화 매체로서가 아니라, 절연층 자체(즉, 반도체 표면 및/또는 상부 금속층과 접촉하여)로서 사용할 수 있다. 본 발명에 따라 처리된 SOG의 절연특성은 물, 유기 휘발물질 및 SiOH 감소 때문에, 선행기술에서 언급된 SOG층보다 우수하다. 또한, 물, 유기 휘발물질 및 SiOH로 인한, 본 발명에 따라 형성된 SOG와의 접촉으로 인한 금속선 및 다른 막들의 부식이 실질적으로 감소되거나 제거된다.By obtaining a large and satisfactory SOG thickness without cracking or adhesion loss, the cured SOG can be used not just as a flattening medium, but as the insulating layer itself (ie in contact with the semiconductor surface and / or the upper metal layer). The insulation properties of the SOG treated according to the invention are superior to the SOG layers mentioned in the prior art because of the reduction of water, organic volatiles and SiOH. In addition, corrosion of metal wires and other films due to contact with SOG formed according to the invention, due to water, organic volatiles and SiOH, is substantially reduced or eliminated.

물, 유기 휘발물질 및 SiOH 감소 때문에 접촉홀-오염 현상은 감소하고, 물, 유기 휘발물질 및 SiOH의 감소 또는 제거로 인한 개선된 기체발생 작용으로 인해, SOG에 대한 막의 접착도 향상된다. 본 발명에 따라 제조된 SOG에 대한 막 크래킹은 물, 유기 휘발물질 및 SiOH 감소로 인한 개선된 기체발생 작용 때문에 최소화되거나 제거된다. 이러한 이유 때문에 장치의 신뢰도 또한 증진된다.The contact hole-pollution phenomenon is reduced due to the reduction of water, organic volatiles and SiOH, and the adhesion of the film to SOG is also improved due to the improved gas evolution action resulting from the reduction or removal of water, organic volatiles and SiOH. Membrane cracking for SOGs prepared according to the present invention is minimized or eliminated due to improved gas evolution due to water, organic volatiles and SiOH reduction. For this reason, the reliability of the device is also enhanced.

본 발명에서 기술한 플라즈마 처리법은 여러 형태의 SOG[예 : 실록산, 실리케이트, 도핑된 실리케이트 및 다른 스핀-온 재료]에 효과적이다.The plasma treatment described in the present invention is effective for many types of SOGs such as siloxanes, silicates, doped silicates and other spin-on materials.

본 발명의 양태는, 스핀-온 글래스(SOG)막을 실리콘 웨이퍼상에 스피닝하는 단계, 대부분의 SOG 용매를 제거하기에 충분하도록 상승시킨 온도에서 SOG막을 예비경화시키는 단계, 및 대부분의 SiOH, 유기 휘발물질 및 H2O를 SOG층으로부터 제거하기에 충분한 시간 동안 SOG에 인접한 자기-바이어스된 RF 방전을 나타내는 반응기내 플라즈마 중에서 SOG막을 경화시키는 단계를 포하함을 특징으로 하여, 기판상에 절연층을 제조하는 방법에 관한 것이다.Aspects of the invention include spinning a spin-on glass (SOG) film onto a silicon wafer, precuring the SOG film at a temperature elevated to sufficient to remove most of the SOG solvent, and most SiOH, organic volatilization. Fabricating an insulating layer on the substrate, comprising curing the SOG film in a plasma in a reactor exhibiting a self-biased RF discharge adjacent to the SOG for a time sufficient to remove the material and H 2 O from the SOG layer. It is about how to.

본 발명에 따라서, 반응기는 작동하는 동안 SOG중에서 전기장을 생성해야만 한다.According to the invention, the reactor must generate an electric field in SOG during operation.

상기의 효과를 얻을 수 있는 반응기는 평행 판 플라즈마 반응기[예 : Applied Materials Inc.에서 제조한 AM-3300]이다.A reactor capable of achieving the above effect is a parallel plate plasma reactor (eg, AM-3300 manufactured by Applied Materials Inc.).

본 발명의 다른 양태는, 스핀-온-글래스(SOG)막을 기판상에 스피닝하는 단계, 대부분의 용매를 제거 하기에 충분하도록 상승된 온도에서 SOG막을 예비경화시키는 단계, 스피닝 및 예비경화를 반복하여 미리 정한 전체 막 두께를 갖는 SOG막을 형성하는 단계, 및 작동 도중에 SOG중에 전기장을 생성시키는 플라즈마 반응기내 플라즈마 중에서 대부분의 SiOH, 유기 휘발물질 및 H2O를 SOG층으로부터 제거하기에 충분한 시간 동안 SOG층을 경화시키는 단계를 포함함을 특징으로 하여, 기판상에 절연층을 제조하는 방법에 관한 것이다.Another aspect of the invention provides a method of spinning a spin-on-glass (SOG) film on a substrate, precuring the SOG film at elevated temperatures sufficient to remove most solvent, repeating spinning and precure. Forming an SOG film having a predetermined overall film thickness, and for a time sufficient to remove most of SiOH, organic volatiles and H 2 O from the SOG layer in the plasma in a plasma reactor that generates an electric field in the SOG during operation. It characterized in that it comprises a step of curing, to a method for producing an insulating layer on a substrate.

본 발명의 또다른 양태는, 스핀-온-글래스(SOG)막을 편평화될 웨이퍼의 표면 상에 스피닝하는 단계, SOG막을 대부분의 용매를 제거하기에 충분하도록 상승된 온도에서 예비경화시키는 단계, 작동하는 동안 SOG중에 전기장을 생성시키는 플라즈마 반응기내 플라즈마 중에서 대부분의 SiOH, 유기 휘발물질 및 SiOH를 SOG층으로부터 제거하기에 충분한 시간 동안 SOG막을 경화시키는 단계, SOG 표면에 감광막을 도포한 후 패턴(pattern)하여 목적하지 않는 이외의 감광막을 제거하고, 이러한 제거하고 남은 감광막을 통하여 집적회로를 에칭시키거나 달리 처리하는 단계, O2플라즈마 중에서 남은 감광막을 건식 제거하는 단계 및 금속 전도층을 감광막이 제거된 SOG 표면에 적용시키는 단계를 포함함을 특징으로 하여 집적회로를 제조하는 방법에 관한 것이다.Another aspect of the invention provides a method of spinning a spin-on-glass (SOG) film on a surface of a wafer to be flattened, precuring the SOG film at an elevated temperature sufficient to remove most solvent. Curing the SOG film for a time sufficient to remove most of the SiOH, organic volatiles and SiOH from the SOG layer in the plasma in the plasma reactor which generates the electric field in the SOG, and then applying a photoresist to the surface of the SOG. Removing other unwanted photoresist, and etching or otherwise processing the integrated circuit through the remaining photoresist, dry removing the remaining photoresist in the O 2 plasma, and removing the photoconductive film from the metal conductive layer. A method of manufacturing an integrated circuit, the method comprising applying to a surface.

본 발명의 추가의 또 다른 양태는, 스핀-온-글래스(SOG)막을 절연될 전도성 재료의 표면상에 직접 스피닝하는 단계, 대부분의 용매를 제거하기에 충분하도록 상승된 온도에서 SOG막을 예비경화시키는 단계, 작동하는 동안 SOG중에 전기장을 생성시키는 플라즈마 반응기내 플라즈마 중에서 대부분의 SiOH, 유기 휘발물질 및 H2O를 SOG층으로부터 제거하기에 충분한 시간 동안 SOG막을 경화시키는 단계 및 전도성 층을 경화된 SOG층의 표면에 직접 적용시키는 단계를 포함함을 특징으로 하여, 집적회로를 제조하는 방법에 관한 것이다. 사용된 전도성 층은 금속 전도체일 수 있으며, 금속 전도체 표면에 감광막을 도포하고, 마스크를 통해서 빛에 노출시킴으로서 감광막을 패턴하고, 목적하지 않은 영역상의 감광막을 없애고, 노출된 금속 전도체를 에칭시키고, 남아 있는 감광막을 제거하고, 회로의 표면을 세정하며 회로의 절연층 오버톱(overtop)을 SOG층과 직접 접촉시키는 다른 공정 단계를 이용할 수 있다.Yet another aspect of the present invention is a method of spinning a spin-on-glass (SOG) film directly on the surface of a conductive material to be insulated, precuring the SOG film at an elevated temperature sufficient to remove most solvent. Curing the SOG film for a time sufficient to remove most SiOH, organic volatiles and H 2 O from the SOG layer in the plasma in a plasma reactor that generates an electric field in the SOG during operation, and the conductive layer cures the SOG layer. A method of manufacturing an integrated circuit, comprising the step of applying directly to the surface of the. The conductive layer used may be a metal conductor, patterning the photoresist by applying a photoresist to the surface of the metal conductor and exposing the light through a mask, removing the photoresist on undesired areas, etching the exposed metal conductor, and remaining Other process steps may be used to remove the photoresist film, to clean the surface of the circuit and to directly contact the insulating layer top of the circuit with the SOG layer.

본 발명의 추가의 다른 양태는, 스핀-온-글래스(SOG)막을 절연될 하부 전도체 재료 표면에 직접 스피닝하는 단계, 대부분의 용매를 제거하기에 충분하도록 상승된 온도에서 SOG막을 예비경화시키는 단계, 작동하는 동안에 SOG중에 전기장을 생성시키는 플라즈마 반응기내 플라즈마 중에서 온도를 200℃ 내지 400℃로 하여 대부분의 SiOH, 유기 휘발물질 및 H2O를 SOG층으로부터 제거하기에 충분한 시간 동안 SOG막을 경화시키는 단계, 경화된 SOG층 표면에 감광막 층을 도포하는 단계, 마스크를 통해 표면을 빛에 노출시킴으로써 감광막을 패턴하는 단계, 전도체가 위치할 영역상의 감광막을 제거하는 단계, 감광막 및 노출된 SOG층 상에 상부 전도체 재료의 층을 증착시키는 단계, 전도체를 형성하고, 그에 의해 경화된 SOG층이 하부 전도체 재료와 상부 전도체 재료 사이에 절연층을 형성하도록, 남아 있는 감광막 및 상부의 금속층을 제거하는 단계를 포함함을 특징으로 하여, 집적회로를 제조하는 방법에 관한 것이다.A further alternative aspect of the invention is a method of spinning a spin-on-glass (SOG) film directly to the surface of the underlying conductor material to be insulated, precuring the SOG film at an elevated temperature sufficient to remove most of the solvent, Curing the SOG film for a time sufficient to remove most SiOH, organic volatiles and H 2 O from the SOG layer at a temperature between 200 ° C. and 400 ° C. in a plasma in a plasma reactor that generates an electric field in the SOG during operation, Applying a photoresist layer to the cured SOG layer surface, patterning the photoresist by exposing the surface to light through a mask, removing the photoresist on the area where the conductor is to be placed, and the top conductor on the photoresist and the exposed SOG layer Depositing a layer of material, forming a conductor, whereby the cured SOG layer comprises a bottom conductor material and a top conductor material. And removing the remaining photoresist film and the upper metal layer so as to form an insulating layer therebetween.

본 발명의 또다른 양태는 실질적으로 SiOH, 유기 휘발물질 및 H2O가 없는 스핀-온-글래스 층 및 SOG층과 직접 접촉하는 회로에 대한 금속 전도성 층을 갖는 반도체 집적회로에 관한 것이다. 또다른 양태에 있어서, 스핀-온-글래스 층은 표면 안정화막, 편평화막, 또는 완충막이다.Another aspect of the invention relates to a semiconductor integrated circuit having a metal conductive layer for a circuit in direct contact with the SOG layer and a spin-on-glass layer substantially free of SiOH, organic volatiles and H 2 O. In another embodiment, the spin-on-glass layer is a surface stabilization film, a flattening film, or a buffer film.

또다른 양태에 따라서, 본 발명은 실질적으로 SiOH, 유기 휘발물질 및 H2O가 없는 스핀-온-글래스 층에 의해 보호적으로 피복된 앞면을 갖는 액정, 일렉트로크로믹 또는 일렉트로루미네센트 디스플레이에 관한 것이다. 경화된 SOG층은 알칼리 금속의 용해에 의한 오염으로부터 디스플레이를 보호한다.According to another aspect, the present invention is directed to a liquid crystal, electrochromic or electroluminescent display having a front surface substantially covered by a spin-on-glass layer substantially free of SiOH, organic volatiles and H 2 O. It is about. The cured SOG layer protects the display from contamination by the dissolution of alkali metals.

또다른 양태에 따라서, SiOH, 유기 휘발물질 및 H2O가 없는 플라즈마 경화된 SOG는 투명 매체상에서 반사방지 피복물이다. 본 발명의 또다른 양태는 SiOH, 유기 휘발물질 및 H2O가 없는 플라즈마 경화된 스핀-온 글래스 층을 포함하는, 물체에 대한 부식 또는 화학적 보호 피복물에 관한 것이다.According to another embodiment, the plasma cured SOG free of SiOH, organic volatiles and H 2 O is an antireflective coating on a transparent medium. Another aspect of the invention relates to a corrosion or chemical protective coating on an object comprising SiOH, organic volatiles and a H 2 O free plasma cured spin-on glass layer.

[실시예 1]Example 1

얼라이드 케미칼 코포레이션(Allied Chemical Corporation)으로부터 구입한 P-5인을 도핑한 실리케이트 SOG를 다층 피복을 사용하여 실리콘 반도체 웨이퍼 표면상에 피복시켜서 전체 두께가 약 500nm가 되도록 한다. 상기 SOG막을 상대습도가 40%인 습윤공기 중에서 125℃로 60초 동안 예비경화시킨 다음, 40% 상대습도의 습윤공기 중의 가열판 위에서 200℃에서 60초 동안 예비경화시켜서 각 피복물 사이의 막으로부터 SOG를 함유한 용매의 대부분을 제거한다.P-5 phosphorus doped silicate SOG purchased from Allied Chemical Corporation is coated on the silicon semiconductor wafer surface using a multi-layer coating so that the total thickness is about 500 nm. The SOG membrane was pre-cured at 125 ° C. for 60 seconds in wet air at 40% relative humidity and then precured at 200 ° C. for 60 seconds on a heating plate in 40% relative humidity wet air to remove SOG from the membrane between the coatings. Most of the solvent contained is removed.

최종 피복 시험, 및 이의 적절한 예비경화 후에, 웨이퍼를 650W 및 115KHz로 작동되는, AM-3300 평행 판 플라즈마 반응기내 산소 플라즈마중에서 400℃ 및 0.25Torr에서 60분 동안 경화시킨다.After the final coating test, and its proper precure, the wafer is cured for 60 minutes at 400 ° C. and 0.25 Torr in oxygen plasma in an AM-3300 parallel plate plasma reactor operated at 650 W and 115 KHz.

평행 판 플라즈마 반응기는 SOG 내부 및 인접부근에 전기장을 발생시킨다. 처리 후에 웨이퍼를 습윤 단열 공기와 접촉하도록 위치시키고, 적외선 스펙트럼을 기록한다.Parallel plate plasma reactors generate an electric field in and near the SOG. After processing, the wafer is placed in contact with wet adiabatic air and the infrared spectrum is recorded.

유기물과 SiOH 함량 뿐만 아니라 물의 함량도 실질적으로 감소되고, 400℃ 내지 450℃에서 질소 열처리하고 플라즈마 처리되지 않은 막의 대조 세트보다 실질적으로 작다는 것을 알 수 있다.It can be seen that the content of organics and SiOH as well as water is substantially reduced and is substantially smaller than the control set of the film heat treated with nitrogen at 400 ° C. to 450 ° C. and not plasma treated.

산소 플라즈마 처리의 경우에는, SiOH 결합 위치에서 SiH 결합이 검출된다(이러한 SiH 결합의 형성은 비-산화 플라즈마 처리의 경우에는 발견되지 않는다).In the case of oxygen plasma treatment, SiH bonds are detected at the SiOH bond sites (the formation of such SiH bonds is not found in the case of non-oxidative plasma treatment).

처리에 의해 필름 두께가 약 15% 수축되지만(부테루스와 쉴쯔가 보고한 바와 같이), 부테루스와 쉴쯔의 방법과 대비하여, 개시 스핀-온 글래스, P-5는 무기 형태이며 메틸 결합 Si-CH₃의 산화는 수축을 설명할 수 없다는 것이 또한 밝혀졌다.The film shrinks about 15% by treatment (as reported by Buterus and Schiltz), but in contrast to Buterus and Schiltz's method, the starting spin-on glass, P-5 is in inorganic form and methyl-bonded Si- It was also found that the oxidation of CH3 could not explain the shrinkage.

본 발명에 따른 플라즈마 처리는, SiOH와 H2O의 실질적인 잔류를 보여주는 부테루스와 쉴쯔가 기술한 방법과 대비하여, 강한 결합, SiOH, 유기 휘발물질 및 H2O의 제거에 매우 효과적인 것으로 결론지어진다.Plasma treatment according to the invention, in comparison with part Teruel Su method swiljjeu technical showing a substantial residual of SiOH and H 2 O, was concluded to be very effective in a strong bond, SiOH, removal of organic volatiles, and H 2 O Lose.

처리된 막을 플라즈마 처리후에 1시간동안 탈이온수와 접촉시킨다. 다소 플라즈마 처리된 SOG는 대조 질소 열경화된 막보다 더욱 더 안정한 SOG막을 생산하는데, 공정은 물에 대하여 SOG막을 안정화시킬 수 없다. 그러나, 산소 플라즈마 처리된 막에서 몇몇의 SiH 결합은 약간의 SiOH 및 H2O를 얻는데 소비되는 것으로 밝혀졌다. 따라서, SiOH 및 H2O를 거의 함유하지 않거나 전혀 함유하지 않는 막을 제공하는 산소 플라즈마 처리는 물에 대하여 안정한 표면 안정화를 제공하지 않는 것으로 관찰되며, 따라서, 바람직한 플라즈마 기체가 아니다.The treated film is contacted with deionized water for 1 hour after plasma treatment. The somewhat plasma treated SOG produces a more stable SOG film than the control nitrogen thermoset film, and the process cannot stabilize the SOG film against water. However, some SiH bonds in oxygen plasma treated films have been found to be consumed to obtain some SiOH and H 2 O. Thus, oxygen plasma treatment that provides a film containing little or no SiOH and H 2 O is observed not to provide stable surface stabilization with respect to water and thus is not a preferred plasma gas.

[실시예 2]Example 2

실리콘 웨이퍼를 얼라이드 케미칼 코포레이션으로부터 구입한, 두께 600 내지 675nm의 106 메틸 실록산 SOG(유기 SOG)로 피복시킨다. 웨이퍼를 습윤공기 및 40% 상대습도하의 125℃에서 60초 동안 예비경화시킨 다음 가열판 위에서 40% 상대습도의 습윤공기하의 200℃에서 60초 동안 예비경화시켜서 SOG를 운반하는 용매의 대부분을 제거한다.The silicon wafer is coated with 106 methyl siloxane SOG (organic SOG) 600 to 675 nm thick, purchased from Allied Chemical Corporation. The wafer is precured at 125 ° C. under wet air and 40% relative humidity for 60 seconds and then precured on a heating plate at 200 ° C. for 60 seconds under 40% relative humidity wet air to remove most of the solvent carrying the SOG.

웨이퍼를 평행 판 반응기내의 질소 플라즈마중에서 400℃로 경화시키는데, 이것은 RF 방전 중에 SOG인접 전기장을 생성하고 이에 따라서 650W 및 115kHz하의 0.25Torr에서 60분 동안 작동시켜서 SOG 내부에서 전기장을 생성함으로써 자기-바이어스 효과를 일으킨다.The wafer is cured at 400 ° C. in a nitrogen plasma in a parallel plate reactor, which generates a SOG adjacent electric field during RF discharge and is thus operated for 60 minutes at 0.25 Torr under 650 W and 115 kHz to produce an electric field inside the SOG. Causes

SOG중의 수분함량은 0인 것으로 밝혀졌다. Si-CH3형태의 탄소가 검출된다. 질소 플라즈마 처리된 막은 열경화된 대조 웨이퍼보다 약간 더 조밀한 것으로 결정된다.The moisture content in SOG was found to be zero. Carbon in the form of Si—CH 3 is detected. The nitrogen plasma treated film was determined to be slightly denser than the thermoset control wafer.

웨이퍼상의 필름을 약 1시간 동안 끓는 탈이온수와 접촉 상태에 두고, 다른 적외선 스팩트럼을 촬영한다.The film on the wafer is placed in contact with boiling deionized water for about 1 hour, and another infrared spectrum is taken.

물이 전혀 검출되지 않고, SiOH도 전혀 검출되지 않는다. 바람직하지 않은 SiH 결합은 산소 플라즈마 처리 중에는 생성되지만 질소 플라즈마 처리시에는 생성되지 않는다. 막은 끓는 상태의 탈이온스와 1시간 동안 접촉(이것은 40% 상대습도하의 21℃에서 5일 동안 접촉하는 것과 효과적으로 거의 동일하다)하여 실질적으로 영향을 받지 않는다.No water is detected at all, and no SiOH is detected at all. Undesirable SiH bonds are produced during the oxygen plasma treatment but not during the nitrogen plasma treatment. The membrane is substantially unaffected by contact with boiling deionization for 1 hour (which is effectively the same as contacting for 5 days at 21 ° C. under 40% relative humidity).

질소 플라즈마 중에서의 플라즈마 경화는 실제로 이상적인 것으로 보인다.Plasma curing in nitrogen plasma appears to be ideal in practice.

[실시예 3]Example 3

다층 피복을 사용하여 얼라이드 케미칼 코포레이션으로부터 구입한 매우 두꺼운(1.2μ이상)106 메틸 실록산 SOG를 실리콘 웨이퍼상에 막으로서 피복시킨다. 이러한 두께는 중간금속 절연체에 대해 충분한 것 이상이다.A multilayer coating is used to coat a very thick (more than 1.2 micron) 106 methyl siloxane SOG purchased from Allied Chemical Corporation as a film on a silicon wafer. This thickness is more than sufficient for intermediate metal insulators.

막을, 가열판 위에서, 40% 상대습도의 습윤공기 중에서 125℃로 60초 동안 예비경화시킨 다음, 40%상대습도의 습윤공기 중에서 200℃로 60초 동안 예비경화시킨다. 기판상에서 예비경화된 막을 60분 동안 끓는 상태의 탈이온수와 접촉시켜서 물의 함량을 증가시킨다.The membrane is precured on a heating plate at 125 ° C. for 60 seconds in 40% relative humidity wet air and then precured at 200 ° C. for 60 seconds in 40% relative humidity wet air. The precured film on the substrate is contacted with boiling deionized water for 60 minutes to increase the water content.

이후에 막을 앞서의 실시예에서와 마찬가지로, 평행 판 플라즈마 반응기내 질소 플라즈마중에서 경화시키지만, 400℃에서 650W 및 115kHz로 30분 동안만 작동시킨다.The film is then cured in nitrogen plasma in a parallel plate plasma reactor as in the previous embodiment, but only operated for 30 minutes at 400 ° C. at 650 W and 115 kHz.

예비경화단계 후 플라즈마 경화단계 전에 탈이온수와의 접촉에 의해 흡수된 물은 플라즈마 경화단계 도중에 역류하는 것으로 밝혀졌다. 경화 후에는 물이 보이지 않는다.The water absorbed by contact with deionized water after the precure step and before the plasma cure step was found to flow back during the plasma cure step. No water is visible after curing.

질소 플라즈마 경화는 SOG막을 안정화시키고, 플라즈마 경화 및 얻어진 표면안정화 이후에는, 습윤공기 및/ 또는 끓는 물과의 연속적인 접촉 후 부가적인 물의 흡수는 거의 발생하지 않는다. 이것은 SOG 열경화에서 보고된 결과와 대조적이다.Nitrogen plasma curing stabilizes the SOG film and after plasma curing and the resulting surface stabilization little absorption of additional water occurs after continuous contact with wet air and / or boiling water. This is in contrast to the results reported in SOG thermosetting.

감광막 건식 제거는 SOG막에 거의 영향을 끼치지 않는 것으로 보여진다. 이것은 당해 유기 SOG의 열경화에서 보고된 결과와 대조적이다.Photoresist dry removal seems to have little effect on the SOG film. This is in contrast to the results reported in the thermosetting of these organic SOGs.

매우 두꺼운 SOG막을, 경화 도중 크래킹 및 박리현상 없이, 피복시킬 수 있는데, 이것은 SOG 열경화에서 보고된 결과와 대조적이다. N2경화는 SOG막중에 물을 전혀 함유하지 않는다.Very thick SOG films can be coated without cracking and delamination during curing, which is in contrast to the results reported in SOG thermosetting. N 2 hardening does not contain any water in the SOG film.

따라서, 마지막 실시예의 필수적인 단계를 비-에치백, 높은 호환성, 고품질 SOG 기술에 사용할 수 있는데, 여기서 SOG는, 2개의 층 사이의 절연체로서, 반도체 표면, 접촉홀(vias)또는 다른 금속 전도체와 접촉하여 그 자체가 절연체로서 사용되어, 오염(poisoning) 작용 없이 이의 하부 및 상부층에 양호하게 부착 시킬 수 있다. 물론 이것을 다른 절연체와 조합하여 사용할 수도 있다. 선행기술에 따라 SOG를 사용하기 위해 요구되는 에치 백 및 샌드위치 기술은, 본 발명의 단계를 사용하여 제품을 생산하는 경우에는 필요치 않다. 따라서, 본 발명은 절연체 등으로 사용되는, SiOH, 유기 휘발물질 및 H2O가 없는 SOG층을 함유하는 구조를 포함한다.Thus, the essential steps of the last embodiment can be used for non-etch back, high compatibility, high quality SOG technology, where SOG is an insulator between two layers, in contact with a semiconductor surface, vias or other metal conductors. It can be used as an insulator by itself and adheres well to its lower and upper layers without a poisoning action. Of course, it can also be used in combination with other insulators. The etch back and sandwich techniques required for using SOG according to the prior art are not necessary when producing products using the steps of the present invention. Accordingly, the present invention includes a structure containing an SOG layer free of SiOH, organic volatiles, and H 2 O, used as an insulator or the like.

SOG막을 여러 가지 피복에 적용시켜서 편평화를 개선시킬 수 있음에 주목해야 한다. 이러한 경우에 있어서, 제 1차 피복을 기판상에 스피닝하여 예비경화시켜야 하고 ; 제 2차 피복을 하부 예비경화된 피복의 오버톱에 스피닝하여 예비경화시키며 ; 제 3차 피복을 하부 예비경화된 피복의 오버톱에 스피닝하여 예비경화시키며 ; 이런식으로 처리한 후에 전체의 예비경화된 다피복 층을 앞서 기술한 바와 같이 플라즈마 중에서 경화시킨다.It should be noted that the SOG film can be applied to various coatings to improve the flattening. In this case, the primary coating must be spun on the substrate to precure; Precuring the secondary sheath onto the over top of the lower precured sheath; Precure by terminating the third sheath over the top of the lower precured sheath; After treatment in this manner, the entire precured multicoat layer is cured in plasma as previously described.

플라즈마 경화시킬 수 있는 막의 형태는 SOG의 실리콘 산화물 형태에 제한되지 않는다. 예를들면 스핀-온 산화붕소, 산화인, 산화비소, 산화알루미늄, 산화아연, 산화금, 산화백금, 산화안티몬, 산화인듐, 산화탄탈륨, 산화세슘, 산화철, 또는 이의 조합에 기초한 스핀-온 피복의 형태를 본 발명을 사용하여 경화시킬 수 있다.The form of the film that can be plasma cured is not limited to the silicon oxide form of SOG. Spin-on coatings based on, for example, spin-on boron oxide, phosphorus oxide, arsenic oxide, aluminum oxide, zinc oxide, gold oxide, platinum oxide, antimony oxide, indium oxide, tantalum oxide, cesium oxide, iron oxide, or combinations thereof The form of can be hardened using this invention.

또한, 붕소, 인, 비소, 알루미늄, 아연, 금, 백금, 안티몬, 인듐, 탄탈륨, 세숨 및 철의 질화물 및 옥시질화물로 형성된 물질의 스핀-온 피복 형태를 유사하게 경화시켜서 사용할 수 있다.In addition, spin-on coating forms of materials formed of nitrides and oxynitrides of boron, phosphorus, arsenic, aluminum, zinc, gold, platinum, antimony, indium, tantalum, sesum and iron may be similarly cured.

스핀-온 글래스는 공지된 인, 비소, 알루미늄, 아연, 금, 백금, 안티몬, 인듐, 탄탈륨, 세슘 및 철중의 임의의 것으로 비도핑 또는 도핑된 실리케이트 또는 상기 원소로 비도핑 또는 도핑된 메틸실록산, 상기 원소로 비도핑 또는 도핑된 에틸실록산, 상기 원소로 비도핑 또는 도핑된 부틸실록산, 상기 원소로 비도핑된 페닐실록산, 또는 상기한 실록산 중의 임의의 것의 조합일 수 있다.Spin-on glass is a silicate undoped or doped with any of the known phosphorus, arsenic, aluminum, zinc, gold, platinum, antimony, indium, tantalum, cesium and iron or methylsiloxane undoped or doped with said element, Ethylsiloxane undoped or doped with the element, butylsiloxane undoped or doped with the element, phenylsiloxane undoped with the element, or a combination of any of the foregoing siloxanes.

본 발명에 따라 플라즈마 경화된 막은 중간 절연층에 제한될 필요는 없다. 이의 구조 및 약간의 응용은 기판의 도핑에 대한 확산원으로서, 표면 안정화 막으로서, 편평화 막으로서, 완충막으로서, 알칼리 금속의 용해에 대한 방지성 막으로서(즉, 액정, 일렉트로크로믹 또는 일렉트로루미네센트 화합물 등의 디스플레이에 대하여), 반사방지 피복물 및 선택적 광자 흡수, 화학적 저항성의 증가, 마찰 감소, 부식 방지, 부착 증가 등에 사용되는 다른 물질로서이다.The plasma cured film according to the present invention need not be limited to the intermediate insulating layer. Its structure and some applications are as diffusion sources for doping of substrates, as surface stabilization films, as flattening films, as buffer films, as preventive films against dissolution of alkali metals (i.e. liquid crystal, electrochromic or electrolytic) For displays such as luminescent compounds), and other materials used in antireflective coatings and selective photon absorption, increased chemical resistance, reduced friction, corrosion protection, increased adhesion, and the like.

다양한 응용에 있어서, 최적의 방법은 처리된 막과 플라즈마 방전(glow) 사이의 거리변경, SOG막중의 내부 전기장을 증가시킴으로써 방법을 향상시키기 위해 기판 또는 기판 지지대에 외부 분극장(DC 또는 AC일 수 있다)의 적용, 압력, 전압, 진동수, 기체, 기체 혼합물, 매스(mass) 유동, 막 온도 및 처리시간 등의 변화를 포함할 수 있다.For various applications, the optimal method can be an external polarization field (DC or AC) on the substrate or substrate support to improve the method by changing the distance between the treated film and the plasma glow, increasing the internal electric field in the SOG film. Change in pressure, voltage, frequency, gas, gas mixture, mass flow, membrane temperature, and treatment time.

본 발명에서 기술한 방법으로 제조된 막은 집적회로, 방출 다이오드 장치, 액정, 일렉트로크로믹 및 일렉트로루미네센트 디스플레이, 광자 검출기, 태양전지 등에 또는 그의 일부로서 사용될 수 있다. 기계분야 응용에 있어서, 이것을 보호될 물질의 표면 안정화 막으로서, 부식 방지층으로서, 부착 증진제로서, 마찰 감소제로서, 광학 필터, 반사 방지기에 적용할 수 있다.The film produced by the method described in the present invention can be used as an integrated circuit, an emitting diode device, a liquid crystal, an electrochromic and an electroluminescent display, a photon detector, a solar cell, or as part thereof. In mechanical applications, it can be applied to surface filters of materials to be protected, as corrosion protection layers, as adhesion promoters, as friction reducers, as optical filters, as antireflectors.

Claims (40)

(a) 스핀-온-글래스(SOG)막을 반도에 기판상에 스피닝(spinning)하는 단계, (b)대부분의 용매를 제거하기에 충분하도록 상승된 온도에서 SOG막을 예비경화시키는 단계, (c) SOG막으로부터 대부분의 SiOH, 유기 휘발물질 및 H2O를 제거하기에 충분한 시간 동안 SOG 부근에 자기-바이어스된(self-biased) RF 방전을 나타내는 플라즈마 반응기내 플라즈마 중에서 SOG막을 경화시키는 단계를 포함함을 특징으로 하여, 반도체 기판상에 절연층을 형성하는 방법.(a) spinning a spin-on-glass (SOG) film on a substrate on a peninsula, (b) precuring the SOG film at elevated temperature sufficient to remove most solvent, (c) Curing the SOG film in a plasma in a plasma reactor exhibiting a self-biased RF discharge near SOG for a time sufficient to remove most SiOH, organic volatiles and H 2 O from the SOG film. And forming an insulating layer on the semiconductor substrate. 제 1 항에 있어서, 반응기가 평행 판 플라즈마 반응기인 방법.The method of claim 1 wherein the reactor is a parallel plate plasma reactor. 제 1 항에 있어서, 플라즈마가 비-산화성 플라즈마인 방법.The method of claim 1, wherein the plasma is a non-oxidizing plasma. 제 1 항에 있어서, 플라즈마가 질소 플라즈마인 방법.The method of claim 1 wherein the plasma is nitrogen plasma. 제 4 항에 있어서, 약 115kHz의 플라즈마중의 RF장, 약 0.2W/㎠의 전력밀도, 약 0.25Torr의 아력, 750SCCM의 매스 유동속도, 반응기의 음극을 통과하는 약 0.4ma/㎠의 전류밀도 및 약 30 내지 60분의 경화기간을 사용함으로써 기판의 온도가 약 400℃에 도달하도록 하는 단계를 포함하는 방법.5. The current density of about 0.4 ma / cm 2 through an RF field in a plasma of about 115 kHz, a power density of about 0.2 W / cm 2, a gravitational force of about 0.25 Torr, a mass flow rate of 750 SCCM, and a cathode of the reactor. And allowing the temperature of the substrate to reach about 400 ° C. by using a curing period of about 30 to 60 minutes. 제 2 항에 있어서, 외부 분극장을 기판에 적용하여 SOG에 내부 전기장을 증가시키는 단계를 포함하는 방법.3. The method of claim 2 including applying an external polarization field to the substrate to increase the internal electric field in the SOG. 제 2 항 또는 제 6 항에 있어서, SOG가 이산화규소, 산화붕소, 산화인, 산화비소, 산화알루미늄, 산화아연, 산화금, 산화백금, 산화안티몬, 산화인듐, 산화탄탈륨, 산화세슘 및 산화철, 및 이의 조합으로 이루어진 그룹으로부터 선택되는 방법.The method according to claim 2 or 6, wherein the SOG is silicon dioxide, boron oxide, phosphorus oxide, arsenic oxide, aluminum oxide, zinc oxide, gold oxide, platinum oxide, antimony oxide, indium oxide, tantalum oxide, cesium oxide and iron oxide, And combinations thereof. 제 2 항 또는 제 6 항에 있어서, SOG가 붕소, 인, 비소, 알루미늄, 아연, 금, 백금, 안티몬, 인듐, 탄탈륨, 세슘 및 철의 산화물, 질화물 및 옥시질화물, 및 이의 조합으로 이루어진 그룹으로부터 선택되는 방법.7. The method of claim 2 or 6, wherein the SOG is from the group consisting of oxides, nitrides and oxynitrides of boron, phosphorus, arsenic, aluminum, zinc, gold, platinum, antimony, indium, tantalum, cesium and iron, and combinations thereof. The method chosen. 제 2 항 또는 제 6 항에 있어서, SOG가 유기 SOG용액 및 무기(실록산) SOG용액 중의 하나로부터 수득된 산화규소인 방법.The process according to claim 2 or 6, wherein the SOG is silicon oxide obtained from one of an organic SOG solution and an inorganic (siloxane) SOG solution. (a) 스핀-온-글래스(SOG)막을 기판상에 스피닝하는 단계, (b)대부분의 용매를 제거하기에 충분하도록 상승된 온도에서 SOG막을 예비경화시키는 단계, (c)단계 (a) 및 (b)를 반복하여 미리 결정된 전체막 두께를 갖는 SOG막을 형성하는 단계, (d)작동하는 동안 SOG에 전기장을 발생시키는 플라즈마 반응기내 플라즈마 중에서 SOG막으로부터 대부분의 SiOH, 유기 휘발물질 및 H2O를 제거하기에 충분한 시간 동안 SOG층을 경화시키는 단계를 포함함을 특징으로 하여, 기판상에 정연층을 형성하는 방법.(a) spinning a spin-on-glass (SOG) film on a substrate, (b) precuring the SOG film at an elevated temperature sufficient to remove most solvent, (c) step (a) and repeating (b) to form an SOG film having a predetermined overall film thickness; (d) forming most of the SiOH, organic volatiles and H 2 O from the SOG film in the plasma in a plasma reactor that generates an electric field in the SOG during operation. And hardening the SOG layer for a time sufficient to remove the step. 제 10 항에 있어서, SOG와 기판에 외부 분극장을 적용하여 이의 내부 전기장을 증가시키는 단계를 포함하는 방법.The method of claim 10 including applying an external polarization field to the SOG and the substrate to increase its internal electric field. 제 10 항에 있어서, 반응기가 평행 판 플라즈마 반응기인 방법.The method of claim 10, wherein the reactor is a parallel plate plasma reactor. 제 12 항에 있어서, 경화시키기 전에 SOG막의 표면을 습기 또는 물과 접촉시키는 단계를 포함하는 방법.13. The method of claim 12 including contacting the surface of the SOG film with moisture or water prior to curing. 제 10 항에 있어서, SOG가 도핑되거나 도핑되지 않은 실리케이트, 및 도핑되거나 도핑되지 않은 메틸, 에틸, 부틸 및 페닐 실록산으로 이루어진 그룹으로부터 선택되고, 도판트(dopant)는 붕소, 인, 비소, 알루미늄, 아연, 금, 백금, 안티몬, 인듐, 탄탈륨, 세슘 및 철로 이루어진 그룹으로부터 선택되는 방법.The method of claim 10 wherein the SOG is selected from the group consisting of doped or undoped silicates, and doped or undoped methyl, ethyl, butyl and phenyl siloxanes, wherein the dopant is boron, phosphorus, arsenic, aluminum, Zinc, gold, platinum, antimony, indium, tantalum, cesium and iron. 제 10 항에 있어서, SOG가 인으로 도핑된 실리케이트 또는 실록산 재료인 방법.The method of claim 10 wherein the SOG is a silicate or siloxane material doped with phosphorus. (a) 스핀-온-글래스(SOG)막을 편평화될 웨이퍼의 표면 상에 스피닝하는 단계, (b)대부분의 용매를 제거하기에 충분하도록 상승된 온도에서 SOG막을 예비경화시키는 단계, (c)작동하는 동안 SOG에 전기장을 발생시키는 플라즈마 반응기내 플라즈마 중에서 대부분의 SiOH, 유기 휘발물질 및 H2O를 SOG막으로부터 제거하는데 충분한 시간 동안, SOG막을 200℃ 내지 400℃에서 경화시키는 단계, (d)전도성 층이 경화된 SOG층과 직접 접촉하도록 전도성 층을 집적회로의 표면에 적용하는 단계를 포함함을 특징으로 하여, 집적회로를 제조하는 방법.(a) spinning a spin-on-glass (SOG) film on the surface of the wafer to be flattened, (b) precuring the SOG film at an elevated temperature sufficient to remove most solvent, (c) Curing the SOG film at 200 ° C. to 400 ° C. for a time sufficient to remove most SiOH, organic volatiles and H 2 O from the SOG film in a plasma in a plasma reactor that generates an electric field in the SOG during operation, (d) Applying the conductive layer to the surface of the integrated circuit such that the conductive layer is in direct contact with the cured SOG layer. 제 16 항에 있어서, 반응기가 평행 판 플라즈마 반응기인 방법.The method of claim 16, wherein the reactor is a parallel plate plasma reactor. 제 17 항에 있어서, SOG가 이산화규소, 산화붕소, 산화인, 산화비소, 산화알루미늄, 산화아연, 산화금, 산화백금, 산화안티몬, 산화인듐, 산화탄탈륨, 산화세슘 및 산화철, 및 이의 조합으로 이루어진 그룹으로부터 선택되는 방법.18. The process of claim 17 wherein SOG is silicon dioxide, boron oxide, phosphorus oxide, arsenic oxide, aluminum oxide, zinc oxide, gold oxide, platinum oxide, antimony oxide, indium oxide, tantalum oxide, cesium oxide and iron oxide, and combinations thereof. Method selected from the group consisting of: 제 17 항에 있어서, SOG가 붕소, 인, 비소, 알루미늄, 아연, 금, 백금, 안티몬, 인듐, 탄탈륨, 세슘 및 철의 산화물, 질화물 및 옥시질화물, 및 이의 조합으로 이루어진 그룹으로부터 선택되는 방법.18. The method of claim 17, wherein the SOG is selected from the group consisting of oxides, nitrides and oxynitrides of boron, phosphorus, arsenic, aluminum, zinc, gold, platinum, antimony, indium, tantalum, cesium and iron, and combinations thereof. (a)스핀-온-글래스(SOG)막을 편평화될 웨이퍼의 표면 상에 스피닝하는 단계, (b)대부분의 용매를 제거하기에 충분하도록 상승된 온도에서 SOG 막을 예비경화시키는 단계, (c) 작동하는 동안 SOG에 전기장을 발생시키는 플라즈마 반응기내 플라즈마 중에서, SOG막으로부터 대부분의 SiOH,유기 휘발물질 및 H2O를 제거하기에 충분한 시간 동안 SOG막을 경화시키는 단계, (d) SOG의 전체 표면에 감광막을 도포하여, 마스크를 그의 상부 표면에 적용하고, 빛을 가한 다음, 마스크에 의해 덮힌 감광막을 제거하는 단계, (e) 감광막이 제거된 직접회로를 에칭하거나 처리하는 단계, (f) 감광막을 O₂플라즈마 중에서 건식제거(dry stripping)하는 단계, (g) 감광막이 제거된 SOG의 표면에 금속 전도체 층을 적용하는 단계를 포함함을 특징으로 하여, 집적회로를 제조하는 방법.(a) spinning a spin-on-glass (SOG) film on the surface of the wafer to be flattened, (b) precuring the SOG film at an elevated temperature sufficient to remove most solvent, (c) Curing the SOG film for a time sufficient to remove most SiOH, organic volatiles and H 2 O from the SOG film, in a plasma in a plasma reactor that generates an electric field in the SOG during operation, (d) over the entire surface of the SOG Applying a photoresist film, applying a mask to its upper surface, applying light, and then removing the photoresist film covered by the mask, (e) etching or treating the integrated circuit from which the photoresist film has been removed, and (f) Dry stripping in O2 plasma, and (g) applying a metal conductor layer to the surface of the SOG from which the photoresist is removed. 제 20 항에 있어서, 경화단계 이후 및 감광막 층을 적용하기 전에, SOG의 경화된 막 상에 절연층을 증착시키는 단계를 추가로 포함하는 방법.21. The method of claim 20, further comprising depositing an insulating layer on the cured film of SOG after the curing step and before applying the photoresist layer. (a) 스핀-온-글래스(SOG)막을 절연될 전도성 재료의 표면에 직접 스피닝하는 단계, (b)대부분의 용매를 제거하기에 충분하도록 상승된 온도에서 SOG막을 예비경화시키는 단계, (c)작동하는 동안 SOG에 전기장을 발생시키는 플라즈마 반응기내 플라즈마 중에서 SOG막으로부터 대부분의 SiOH, 유기 휘발물질 및 H2O를 제거하기에 충분한 시간 동안 SOG막을 경화시키는 단계, (d) 경화된 SOG층의 표면에 전도성 층을 직접 적용하는 단계를 포함함을 특징으로 하여, 집적회로를 제조하는 방법.(a) directly spinning the spin-on-glass (SOG) film onto the surface of the conductive material to be insulated, (b) precuring the SOG film at an elevated temperature sufficient to remove most solvent, (c) Curing the SOG film for a time sufficient to remove most SiOH, organic volatiles and H 2 O from the SOG film in a plasma in a plasma reactor that generates an electric field in the SOG during operation, (d) the surface of the cured SOG layer Directly applying a conductive layer to the method of manufacturing an integrated circuit. 제 22 항에 있어서, 반응기가 평행 판 플라즈마 반응기인 방법.The method of claim 22, wherein the reactor is a parallel plate plasma reactor. 제 23 항에 있어서, SOG가 산화규소형인 방법.The method of claim 23, wherein the SOG is silicon oxide type. 제 22 항, 제 23 항 또는 제 24 항에 있어서, 단계(d)에서 적용된 전도성층이 금속 전도체이고, 감광막을 금속전도체의 표면에 도포하고, 마스크를 통해 감광막의 표면에 빛을 가한 다음, 목적하지 않은 영역상의 감광막을 제거하고, 노출된 금속 전도체를 에칭시켜, 남아 있는 감광막을 제거하고, 회로의 표면을 세정하여, SOG층과 직접 접촉하는 회로의 오버톱(overtop)에 절연층을 적용하는 단계를 추가로 포함하는 방법.The method according to claim 22, 23 or 24, wherein the conductive layer applied in step (d) is a metal conductor, the photoresist film is applied to the surface of the metal conductor, light is applied to the surface of the photoresist film through a mask, and then Removing the photoresist on the unoccupied area, etching the exposed metal conductors, removing the remaining photoresist, cleaning the surface of the circuit, and applying an insulating layer to the circuitry's top that is in direct contact with the SOG layer. The method further comprises a step. (a) 스핀-온-글래스(SOG)막을 절연될 하부 전도체 재료의 표면 상에 직접 스피닝하는 단계, (b)대부분의 용매를 제거하기에 충분하도록 상승된 온도에서 SOG막을 예비경화시키는 단계, (c)작동하는 동안 SOG에 전기장을 발생시키는 플라즈마 반응기내 플라즈마 중에서 SOG막으로부터 대부분의 SiOH, 유기 휘발물질 및 H2O를 제거하기에 충분한 시간 동안, 200℃ 내지 400℃에서 SOG막을 경화시키는 단계, (d) 경화된 SOG층의 표면에 감광막 층을 도포하는 단계, (e) 마스크를 통해 감광막의 표면에 빛을 가하고, 전도체를 위치시킬 영역상의 감광막을 제거하는 단계, (발명) 감광막과 노출된 SOG층 상에 상부 전도체 재료의 층을 증착시키는 단계, (g) 남아 있는 감광막을 제거하고 금속층을 입혀, 전도체를 형성함으로써, 경화된 SOG층이 하부의 전도체 재료와 상부의 전도체 재료 사이에 절연체를 형성하는 단계를 포함함을 특징으로 하여, 집적회로를 제조하는 방법.(a) directly spinning a spin-on-glass (SOG) film onto the surface of the underlying conductor material to be insulated, (b) precuring the SOG film at an elevated temperature sufficient to remove most solvent, ( c) curing the SOG film at 200 ° C. to 400 ° C. for a time sufficient to remove most SiOH, organic volatiles and H 2 O from the SOG film in a plasma in a plasma reactor that generates an electric field in the SOG during operation, (d) applying a photoresist layer to the surface of the cured SOG layer, (e) applying light to the surface of the photoresist film through a mask, and removing the photoresist film on the area where the conductor is to be placed, (invention) and the exposed photoresist film. Depositing a layer of upper conductor material on the SOG layer, (g) removing the remaining photoresist film and coating a metal layer to form a conductor, whereby the cured SOG layer has a lower conductive material and upper conductive Method characterized in that it comprises forming an insulator between the material, for producing an integrated circuit. 제 26 항에 있어서, 표면을 세정한 다음, 노출된 SOG 표면과 전도체상에 절연층을 증착시키는 단계를 추가로 포함하는 방법.27. The method of claim 26, further comprising cleaning the surface and then depositing an insulating layer on the exposed SOG surface and the conductor. 제 22 항에 청구된 방법에 의해 제조된, SiOH, 유기 휘발물질 및 H2O가 실질적으로 없는 플라즈마 경화된 스핀-온-글래스의 층 및 SOG층과 직접 접촉하는 회로용 금속 전도성 층을 갖는 반도체 집적회로.A semiconductor having a metal conductive layer for circuitry in direct contact with a layer of plasma-cured spin-on-glass substantially free of SiOH, organic volatiles and H 2 O, prepared by the method as claimed in claim 22. Integrated circuits. 제 28 항에 있어서, 표면안정화 막으로서, SiOH, 유기 휘발물질 및 H2O가 실질적으로 없는 플라즈마 경화된 스핀-온-글래스의 층을 갖는 집적회로.29. The integrated circuit of claim 28, wherein the surface stabilizer film has a layer of plasma cured spin-on-glass that is substantially free of SiOH, organic volatiles, and H 2 O. 제 28 항에 있어서, 편평화 막으로서, SiOH, 유기 휘발물질 및 H2O가 실질적으로 없는 플라즈마 경화된 스핀-온-글래스의 층을 갖는 집적회로.29. The integrated circuit of claim 28, wherein the flattening film has a layer of plasma cured spin-on-glass that is substantially free of SiOH, organic volatiles, and H 2 O. 제 28 항에 있어서, 완충막으로서, SiOH, 유기 휘발물질 및 H2O가 실질적으로 없는 플라즈마 경화된 스핀-온-글래스의 층을 갖는 집적회로.29. The integrated circuit of claim 28, wherein the buffer film has a layer of plasma cured spin-on-glass that is substantially free of SiOH, organic volatiles, and H 2 O. (a) 절연될 전도성 재료의 표면상에 스핀-온-글래스(SOG)막을 직접 스피닝하는 단계, (b)대부분의 용매를 제거하기에 충분하도록 상승된 온도에서 SOG막을 예비경화시키는 단계, (c)작동 도중 SOG에 전기장을 발생시키는 플라즈마 반응기내 플라즈마 중에서, SOG막으로부터 대부분의 SiOH, 유기 휘발물질 및 H2O를 제거하기에 충분한 시간 동안 SOG막을 경화시키는 단계를 포함하는 방법에 의해 제조되는, SiOH, 유기 휘발물질 및 H2O가 실질적으로 없는 플라즈마 경화된 스핀-온 글래스의 층에 의해 보호되어 덮혀 있는 앞면을 갖는 액정, 일렉트로크로믹 또는 일렉트로루미네센트 디스플레이.(a) directly spinning a spin-on-glass (SOG) film on the surface of the conductive material to be insulated, (b) precuring the SOG film at an elevated temperature sufficient to remove most solvent, (c Prepared in a plasma in a plasma reactor that generates an electric field in the SOG during operation, the method comprising curing the SOG film for a time sufficient to remove most SiOH, organic volatiles and H 2 O from the SOG film, A liquid crystal, electrochromic or electroluminescent display having a front surface covered and covered by a layer of plasma cured spin-on glass substantially free of SiOH, organic volatiles and H 2 O. (a) 절연될 전도성 재료의 표면상에 스핀-온-글래스(SOG)막을 직접 스피닝하는 단계, (b)대부분의 용매를 제거하기에 충분하도록 상승된 온도에서 SOG막을 예비경화시키는 단계, (c)작동 도중 SOG에 전기장을 발생시키는 플라즈마 반응기내 플라즈마 중에서, SOG막으로부터 대부분의 SiOH, 유기 휘발물질 및 H2O를 제거하기에 충분한 시간 동안 SOG막을 경화시키는 단계를 포함하는 방법에 의해 제조되는, SiOH, 유기 휘발물질 및 H2O가 실질적으로 없는 플라즈마 경화된 스핀-온 글래스의 층에 의해 보호되어 덮혀 있는 앞면을 갖는 투명 매체상의 반사방지 피복물.(a) directly spinning a spin-on-glass (SOG) film on the surface of the conductive material to be insulated, (b) precuring the SOG film at an elevated temperature sufficient to remove most solvent, (c Prepared in a plasma in a plasma reactor that generates an electric field in the SOG during operation, the method comprising curing the SOG film for a time sufficient to remove most SiOH, organic volatiles and H 2 O from the SOG film, An antireflective coating on a transparent medium having a front surface covered and covered by a layer of plasma cured spin-on glass that is substantially free of SiOH, organic volatiles, and H 2 O. (a) 절연될 전도성 재료의 표면상에 스핀-온-글래스(SOG)막을 직접 스피닝하는 단계, (b)대부분의 용매를 제거하기에 충분하도록 상승된 온도에서 SOG막을 예비경화시키는 단계, (c)작동 도중 SOG에 전기장을 발생시키는 플라즈마 반응기내 플라즈마 중에서, SOG막으로부터 대부분의 SiOH, 유기 휘발물질 및 H2O를 제거하기에 충분한 시간 동안 SOG막을 경화시키는 단계를 포함하는 방법에 의해 제조되는, iOH, 유기 휘발물질 및 H2O가 실질적으로 없는 플라즈마 경화된 스핀-온 글래스의 층에 의해 보호되어 덮혀 있는 앞면을 갖는, 물체용 부식 또는 화학적 보호 피복물.(a) directly spinning a spin-on-glass (SOG) film on the surface of the conductive material to be insulated, (b) precuring the SOG film at an elevated temperature sufficient to remove most solvent, (c Prepared in a plasma in a plasma reactor that generates an electric field in the SOG during operation, the method comprising curing the SOG film for a time sufficient to remove most SiOH, organic volatiles and H 2 O from the SOG film, A corrosion or chemical protective coating for an object having a front face covered and covered by a layer of plasma cured spin-on glass that is substantially free of iOH, organic volatiles, and H 2 O. 제 22 항에서 청구된 방법을 사용하여 형성된 스핀-온-글래스의 층을 갖는 집적회로.An integrated circuit having a layer of spin-on-glass formed using the method as claimed in claim 22. 제 22 항에서 청구된 방법을 사용하여 형성된 플라즈마 경화된 스핀-온-글래스의 층에 의해 보호되어 덮혀 있는 앞면을 갖는 액정, 일렉트로크로믹 또는 일렉트로루미네센트 디스플레이.A liquid crystal, electrochromic or electroluminescent display having a front face which is covered and covered by a layer of plasma cured spin-on-glass formed using the method as claimed in claim 22. 제 22 항에서 청구된 방법을 사용하여 형성된 스핀-온-글래스로 형성된, 물체상의 피복물.A coating on an object, formed from spin-on-glass formed using the method as claimed in claim 22. 제 17 항에 있어서, 플라즈마 반응기 중에서 사용한 기체가 비-산화성 기체인 방법.18. The method of claim 17, wherein the gas used in the plasma reactor is a non-oxidizing gas. 제 17 항에 있어서, 플라즈마 반응기 중에서 사용한 기체가 질소인 방법.18. The method of claim 17, wherein the gas used in the plasma reactor is nitrogen. 제 28 항에 있어서, SOG층의 두께가 적어도 0.5㎛인 집적회로.The integrated circuit of claim 28 wherein the thickness of the SOG layer is at least 0.5 μm.
KR1019900005541A 1989-05-31 1990-04-20 Curing and passivation of sog by a plasma process KR940010494B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA000601333A CA1339817C (en) 1989-05-31 1989-05-31 Curing and passivation of spin-on-glasses by a plasma process, and product produced thereby
CA601333 1989-05-31

Publications (2)

Publication Number Publication Date
KR900019271A KR900019271A (en) 1990-12-24
KR940010494B1 true KR940010494B1 (en) 1994-10-24

Family

ID=4140137

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900005541A KR940010494B1 (en) 1989-05-31 1990-04-20 Curing and passivation of sog by a plasma process

Country Status (5)

Country Link
JP (1) JPH0727896B2 (en)
KR (1) KR940010494B1 (en)
CA (1) CA1339817C (en)
DE (1) DE4013449C2 (en)
GB (1) GB2235444B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4140330C1 (en) * 1991-12-06 1993-03-18 Texas Instruments Deutschland Gmbh, 8050 Freising, De
DE19522004A1 (en) * 1995-06-21 1997-01-02 Inst Mikrotechnik Mainz Gmbh Method for producing partly movable micro structure(s)
KR970052338A (en) * 1995-12-23 1997-07-29 김주용 Manufacturing method of semiconductor device
GB2322734A (en) * 1997-02-27 1998-09-02 Nec Corp Semiconductor device and a method of manufacturing the same
GB9801655D0 (en) 1998-01-28 1998-03-25 Trikon Equip Ltd Method and apparatus for treating a substrate
US7727902B2 (en) 2003-12-26 2010-06-01 Nissan Chemical Industries, Ltd. Composition for forming nitride coating film for hard mask
JP2008224288A (en) 2007-03-09 2008-09-25 Mitsubishi Electric Corp Magnetoresistance sensor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN147572B (en) * 1977-02-24 1980-04-19 Rca Corp
JPS5927532A (en) * 1982-08-04 1984-02-14 Toshiba Corp Fabrication of semiconductor device
JPS60254621A (en) * 1984-05-31 1985-12-16 Matsushita Electric Ind Co Ltd Thin film forming method
FR2625839B1 (en) * 1988-01-13 1991-04-26 Sgs Thomson Microelectronics PROCESS FOR PASSIVATING AN INTEGRATED CIRCUIT

Also Published As

Publication number Publication date
KR900019271A (en) 1990-12-24
DE4013449C2 (en) 1996-04-18
JPH0727896B2 (en) 1995-03-29
GB9008943D0 (en) 1990-06-20
GB2235444A (en) 1991-03-06
DE4013449A1 (en) 1990-12-06
JPH0321023A (en) 1991-01-29
GB2235444B (en) 1992-12-16
CA1339817C (en) 1998-04-14

Similar Documents

Publication Publication Date Title
US5270267A (en) Curing and passivation of spin on glasses by a plasma process wherein an external polarization field is applied to the substrate
US7309514B2 (en) Electron beam modification of CVD deposited films, forming low dielectric constant materials
KR100454618B1 (en) Hardening Method of Hydrogen Silsesquioxane Resin by Electron Beam
TWI408251B (en) Method for removal of carbon from an organosilicate material
EP0826791B1 (en) Method of forming interlayer insulating film
US6214748B1 (en) Semiconductor device and method for the fabrication thereof
JP2008544484A (en) Ultraviolet curing process for spin-on dielectric materials used for premetal and / or shallow trench isolation
US5057336A (en) Method of forming high purity SiO2 thin film
KR940010494B1 (en) Curing and passivation of sog by a plasma process
US5567658A (en) Method for minimizing peeling at the surface of spin-on glasses
US8106385B2 (en) Organic siloxane film, semiconductor device using the same, flat panel display device, and raw material liquid
KR0138853B1 (en) Curing method of spin-on glass by plasma process
EP0794569A2 (en) Amorphous carbon film, formation process thereof, and semiconductor device making use of the film
JP2829301B2 (en) Method of forming insulating film
US20030087534A1 (en) Surface modification for barrier to ionic penetration
Loboda et al. Deposition of low-K dielectric films using trimethylsilane
JPH10209275A (en) Manufacture of semiconductor device
JP3210601B2 (en) Semiconductor device and manufacturing method thereof
US20050158666A1 (en) Lateral etch inhibited multiple etch method for etching material etchable with oxygen containing plasma
JPH0677208A (en) Manufacture of semiconductor device
KR101064336B1 (en) Repairing Damage To Low-K-Dielectric Materials Using Silylating Agents
JPH08213456A (en) Semiconductor device
EP0204631A2 (en) Semiconductor structures having polysiloxane leveling film
Adachi et al. Method of forming high purity SiO 2 thin film
KR20080058288A (en) Ultraviolet curing process for spin-on dielectric materials used in pre-metal and/or shallow trench isolation applications

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20011017

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee