KR940006666B1 - Manufactruing method for polysilicon film - Google Patents

Manufactruing method for polysilicon film Download PDF

Info

Publication number
KR940006666B1
KR940006666B1 KR1019910000465A KR910000465A KR940006666B1 KR 940006666 B1 KR940006666 B1 KR 940006666B1 KR 1019910000465 A KR1019910000465 A KR 1019910000465A KR 910000465 A KR910000465 A KR 910000465A KR 940006666 B1 KR940006666 B1 KR 940006666B1
Authority
KR
South Korea
Prior art keywords
thin film
polycrystalline silicon
nucleus
silicon thin
crystal
Prior art date
Application number
KR1019910000465A
Other languages
Korean (ko)
Other versions
KR920015429A (en
Inventor
최종문
Original Assignee
금성일렉트론 주식회사
문정환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금성일렉트론 주식회사, 문정환 filed Critical 금성일렉트론 주식회사
Priority to KR1019910000465A priority Critical patent/KR940006666B1/en
Publication of KR920015429A publication Critical patent/KR920015429A/en
Application granted granted Critical
Publication of KR940006666B1 publication Critical patent/KR940006666B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

The method is for manufacturing a polycrystal silicon thin layer having large grains. The method comprises the steps of: (A) forming a polycrystal silicon on a substrates; (B) etching a polycrystal silicon layer to form seeds; (C) forming amorphous silicon on a substrate and seeds; and (D) growing seeds to form polycrystal silicon.

Description

다결정 실리콘 박막 제조방법Polycrystalline Silicon Thin Film Manufacturing Method

제1도는 종래의 실리콘 박막 제조방법.1 is a conventional silicon thin film manufacturing method.

제2도는 종래의 핵의 크기와 자유에너지와의 관계도.2 is a relationship between the size of a conventional nucleus and free energy.

제3도는 본 발명에 따른 다결정 실리콘 박막 제조공정 단면도.3 is a cross-sectional view of a polycrystalline silicon thin film manufacturing process according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

30 : 게이트 40 : 실리콘 기판30 gate 40 silicon substrate

51 : 절연층 20 : 게이트 산화막51 insulating layer 20 gate oxide film

10, 52 : 다결정 실리콘 박막 53 : 습식식각후 남는 실리콘 단결정10, 52: polycrystalline silicon thin film 53: remaining silicon single crystal after wet etching

54 : 적층 결합기에 의한 경계 55 : 결정입계54: boundary by a laminated coupler 55: grain boundary

a, b : 핵의 방향 c, d : 결정성장 방향a, b: direction of nucleus c, d: direction of crystal growth

ro : 임계크기 OGr : 핵생성에 필요한 자유에너지ro: critical size OGr: free energy required for nucleation

r : 표면에너지 ORv : 체적에너지r: surface energy ORv: volume energy

111, 110, 100 : 결정학적 면지수111, 110, 100: crystallographic index

본 발명은 절연체 위에 다결정 실리콘을 성장시키는 방법에 관한 것으로, 특히 절연층을 가진 기판위에 박막 트랜지스터의 제조에 적당한 결정입이 큰 다결정 실리콘 박막을 형성하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of growing polycrystalline silicon on an insulator, and more particularly to a method of forming a polycrystalline silicon thin film having a large grain size suitable for the manufacture of a thin film transistor on a substrate having an insulating layer.

종래의 실리콘 박막 제조방법은 제1도에 도시한 바와같이 실리콘기판(40) 절연층(LPCVD Oxide)위에 실리콘을 LPCVD 즉 580℃이하에서 Si2H4가스를 분해, 증착하여 실리콘 박막(10)을 형성하고 이때 실리콘 박막의 결정 형태는 비정질이며, 증착된 비정질 실리콘 박막(10)을 600-800℃의 온도에서 결정성장을 일으키면 결정크기가 매우 큰 실리콘 박막을 얻도록 하며, 게이트 산화막(20)과 게이트(30)를 형성한 구조이다.In the conventional silicon thin film manufacturing method, as shown in FIG. 1, the silicon thin film 10 is formed by dissolving and depositing silicon on an LPCVD oxide layer (LPCVD oxide), that is, Si 2 H 4 gas below 580 ° C. In this case, the crystal form of the silicon thin film is amorphous, and when the deposited amorphous silicon thin film 10 causes crystal growth at a temperature of 600-800 ° C., a silicon thin film having a very large crystal size is obtained, and the gate oxide film 20 is formed. And the gate 30 are formed.

이같은 구성의 실리콘 박막 제조방법은 비정실 실리콘에서 결정핵이 발생할 때 핵의 크기와 자유에너지와의 관계가 제2도에 도시한 바와같이 나타나며, 핵의 크기가 임계크기 r0보다 클 때는 반응의 방향이 a방향으로 되어 자유에너지가 감소하므로 핵이 성장되며, 핵의 크기가 임계크기 r0보다 작으면 반응의 방향이 b가 되어 핵이 소멸된다.The method of manufacturing a silicon thin film having such a configuration shows that when crystal nuclei occur in amorphous silicon, the relationship between the nucleus size and free energy is shown in FIG. 2, and when the nucleus size is larger than the critical size r 0 , As the direction becomes a and free energy decreases, the nucleus grows. If the size of the nucleus is smaller than the critical size r 0 , the direction of the reaction becomes b and the nucleus disappears.

따라서 핵이 성장될 수 있는 임계크기를 증가시키면 성장할 수 있는 핵의 수가 작아져 거대한 결정립을 얻을 수 있다.Therefore, increasing the critical size at which the nucleus can be grown can reduce the number of nuclei that can be grown to obtain huge grains.

즉, 임계크기 r0를 증가시키기 위해 저온에서 장시간 열처리 하므로써 핵생성에 필요한 구동력을 작게 하여 임계크기 r0가 크게 하고, 트랜지스터의 실리콘 박막은 결정립의 크기가 200-300μm정도밖에 되지 않고 또한 박막의 두께가 두꺼우면 채널부의 결정입계가 형성되어 트랜지스터의 재연성이 문제가 되는 단점이 있다. 본 발명은 이와 같은 문제점을 해결하기 위하여 안출한 것으로서 결정입이 큰 다결정 박막 트랜지스터를 형성하여 반도체 소자의 특성을 향상시킬 수 있도록 하는데 그 목적이 있다.In other words, by increasing heat treatment at low temperature for a long time at low temperature to increase the critical size r 0 , the driving force required for nucleation is reduced and the critical size r 0 is increased. If the thickness is thick, grain boundaries are formed in the channel part, which causes a problem of reproducibility of the transistor. SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object thereof is to form a polycrystalline thin film transistor having a large grain size and to improve characteristics of a semiconductor device.

이와같은 목적을 달성하기 위한 본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.DETAILED DESCRIPTION OF THE INVENTION The present invention for achieving such an object will be described in detail with reference to the accompanying drawings.

제3도는 본 발명의 다결정 실리콘 박막 제조공정 단면도로써, 제3도(a)와 같이 절연층(51)이 형성된 실리콘 기판(40)위에 580℃이하의 온도에서 LPCVD법으로 비정질 실리콘 박막을 증착시키고 600-800℃온도에서 결정성장을 일으켜(제1) 다결정 실리콘(52)을 형성한다.FIG. 3 is a cross-sectional view of the polycrystalline silicon thin film manufacturing process of the present invention, as shown in FIG. 3 (a), by depositing an amorphous silicon thin film on the silicon substrate 40 on which the insulating layer 51 is formed at a temperature of 580 ° C. or below by LPCVD. Crystal growth occurs at a temperature of 600-800 ° C. (first) to form polycrystalline silicon 52.

그리고 제3도(b)와 같이 (제1) 다결정 실리콘(52)을 습식식각하여 제1다결정 실리콘(52)이 완전히 식각되기전의 약 1-10A정도의 두께를 갖는 단결정핵(53)을 잔류시킨다.Then, as shown in FIG. 3 (b), the first polycrystalline silicon 52 is wet etched to retain the single crystal nucleus 53 having a thickness of about 1-10 A before the first polycrystalline silicon 52 is completely etched. Let's do it.

이때 제3도(a)와 같이 재결정화된 다결정 실리콘(52)의 습식식각시 결정입계(55)(grain bounday)의 식각율이 결정(grain) 내부에서 보다 크게 되므로 제3도(b)와 같이 결정립(grain)의 일부에만 잔류하게 되고(결정립(grain)의 사이즈가 작을 경우에는 완전히 제거되며 사이즈가 큰 경우 결정립(grain)의 일부는 남는다) 잔류된 결정립(graim)은 단결정의 핵(Seed)으로 이용하게 된다(이때 형성된 단결정의 핵(seed)의 수는 최초 형성된 결정립(graim)의 수보다 작게 된다).At this time, since the etching rate of the grain bounday 55 in the wet etching of the recrystallized polycrystalline silicon 52 as shown in FIG. Similarly, only a part of the grain remains (when the grain is small in size, it is completely removed; a part of the grain remains when the grain is large) and the remaining grain is a seed of a single crystal. (The number of seeds of the single crystal formed at this time is smaller than the number of grains originally formed).

그리고 제3도(c)와 같이 절연층(51)과 단결정핵(53) 위에 비정질 실리콘을 증착시키고, 결정을 성장시킨다. 그러면 비정절 실리콘 내부에서는 임계크기 이상의 단결정 핵만이 결정성장을 일으키게 되므로, 이미 존재하고 있는 잔류된 결정립(grain)의 단결정 핵(seed)이 먼저 성장하게 되며 따라서 결정성장 방향(d)를 갖게 되고 단결정 핵(53)의 면지수와 같은 경우 적층결합에 의한 경계면(54)만 남게 되어 각각의 단결정핵(seed)에 의해서 성장된 결정립(grain)의 결정입계만 갖게 되므로 더욱 큰 결정립(grain)을 갖게 된다.As shown in FIG. 3C, amorphous silicon is deposited on the insulating layer 51 and the single crystal nucleus 53 to grow a crystal. Since only single crystal nuclei larger than the critical size cause crystal growth inside the amorphous silicon, the existing single crystal nuclei of the remaining grains grow first and thus have a direction of crystal growth (d). In the case of the surface index of the nucleus 53, only the boundary surface 54 due to the lamination bonding remains, so that only the grain boundaries of grains grown by each single crystal seed have larger grains. do.

이상에서 설명한 바와같은 본 발명의 다결정 실리콘 박막 제조방법에 있어서는 다결정 실리콘 박막의 결정립(grain)의 크기를 크게 하여 박막 트랜지스터의 채널(channel) 내부에 실리콘 결정입계가 거의 존재하지 않도록 하여 트랜지스터의 특성을 향상시킬 수 있는 효과가 있다.As described above, in the method of manufacturing the polycrystalline silicon thin film of the present invention, the grain size of the polycrystalline silicon thin film is increased so that the silicon grain boundaries rarely exist in the channel of the thin film transistor, thereby improving the characteristics of the transistor. There is an effect that can be improved.

Claims (1)

절연층이 형성된 기판위에 다결정 실리콘을 형성하는 공정과, 상기 다결정 실리콘층의 결정립과 결정입계의 식각 차이를 이용하여 다결정 실리콘을 식각함으로써 결정핵을 형성하는 공정과, 상기 결정핵과 기판위에 비정실 실리콘을 형성하는 공정과, 상기 결정핵에 의한 결정성장에 의해 비정절 실리콘층을 다결정화하는 공정을 포함하여 이루어짐을 특징으로 하는 다결정 실리콘 박막 제조방법.Forming polycrystalline silicon on a substrate having an insulating layer, forming a crystal nucleus by etching polycrystalline silicon using an etching difference between grains and grain boundaries of the polycrystalline silicon layer, and amorphous silicon on the crystal nucleus and the substrate And a step of polycrystallizing the amorphous silicon layer by crystal growth by the crystal nuclei.
KR1019910000465A 1991-01-14 1991-01-14 Manufactruing method for polysilicon film KR940006666B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019910000465A KR940006666B1 (en) 1991-01-14 1991-01-14 Manufactruing method for polysilicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019910000465A KR940006666B1 (en) 1991-01-14 1991-01-14 Manufactruing method for polysilicon film

Publications (2)

Publication Number Publication Date
KR920015429A KR920015429A (en) 1992-08-26
KR940006666B1 true KR940006666B1 (en) 1994-07-25

Family

ID=19309744

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910000465A KR940006666B1 (en) 1991-01-14 1991-01-14 Manufactruing method for polysilicon film

Country Status (1)

Country Link
KR (1) KR940006666B1 (en)

Also Published As

Publication number Publication date
KR920015429A (en) 1992-08-26

Similar Documents

Publication Publication Date Title
US20020017642A1 (en) Semiconductor substrate, field effect transistor, method of forming SiGe layer and method of forming strained Si layer using same, and method of manufacturing field effect transistor
KR970006723B1 (en) Formation of polycrystalline silicon thin films with large grain
US5433168A (en) Method of producing semiconductor substrate
US4868140A (en) Semiconductor device and method of manufacturing the same
JPH02103925A (en) Manufacture of semiconductor device
JPH02191320A (en) Crystal product and its manufacture
KR940006666B1 (en) Manufactruing method for polysilicon film
JPS6158879A (en) Preparation of silicon thin film crystal
JPS61194826A (en) Manufacture of semiconductor
KR100695144B1 (en) Single crystal substrate and fabrication method thereof
JPH11233440A (en) Semiconductor device
KR960004902B1 (en) Preparation of polycrystalline silicon thin film
JPH0324719A (en) Forming method of single crystal film and crystal products
JPH05335234A (en) Manufacture of semiconductor substrate
JPH01214013A (en) Manufacture of soi substrate
JPH05121440A (en) Manufacture of thin film transistor
KR940008013B1 (en) Manufacturing method of silicon thin film
JPH0547660A (en) Solid growth method for semiconductor thin film
JPH0195513A (en) Manufacture of semiconductor crystal film
JPH06244275A (en) Manufacture of semiconductor element substrate, field effect transistor, and crystal
JPH0272614A (en) Manufacture of semiconductor device
JPH03257818A (en) Manufacture of semiconductor device
CA2071192C (en) Method for forming a seed and a semiconductor film using said seed
JPH0547661A (en) Manufacture of semiconductor device
JP2000306915A (en) Manufacture of silicon wafer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090624

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee