KR930003182B1 - Optical recording material and manufcturing method - Google Patents

Optical recording material and manufcturing method Download PDF

Info

Publication number
KR930003182B1
KR930003182B1 KR1019900001509A KR900001509A KR930003182B1 KR 930003182 B1 KR930003182 B1 KR 930003182B1 KR 1019900001509 A KR1019900001509 A KR 1019900001509A KR 900001509 A KR900001509 A KR 900001509A KR 930003182 B1 KR930003182 B1 KR 930003182B1
Authority
KR
South Korea
Prior art keywords
torr
recording layer
magneto
rare earth
optical recording
Prior art date
Application number
KR1019900001509A
Other languages
Korean (ko)
Other versions
KR910015977A (en
Inventor
조융국
이호찬
양창선
Original Assignee
주식회사 에스케이씨
최준식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스케이씨, 최준식 filed Critical 주식회사 에스케이씨
Priority to KR1019900001509A priority Critical patent/KR930003182B1/en
Priority to JP3037919A priority patent/JPH04213809A/en
Publication of KR910015977A publication Critical patent/KR910015977A/en
Application granted granted Critical
Publication of KR930003182B1 publication Critical patent/KR930003182B1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

The photomagnetic recording medium is mfd. by installing a transparent polycarbonate circular substrate in the sputtering appts., drawing out through the outlet to be 2 x 10-7 torr inner pressure of the vacuum tank, inflowing an argon gas through the inlet to be 5 x 10-3 torr inner pressure, supplying 1 kw electric power to the Si3N4 target, and then sputtering it to form a first protecting film of 800 angstroms Si3N4, inflowing the argon gas to be 9 x 10-3 torr inner pressure, supplying 1 kw electric power to the target composed of TbFeCo alloy to form a recording layer of 800 angstroms having a perpendicular magnetic anisotropy, and forming a second protecting film.

Description

광자기 기록매체 제조방법Method of manufacturing magneto-optical recording media

제1도는 본 발명의 광자기 기록매체를 제조하는 스퍼터링 장치의 개도.1 is an opening diagram of a sputtering apparatus for manufacturing the magneto-optical recording medium of the present invention.

제2a도는 본 발명의 광자기 기록매체에 있어서, 기록층의 희토류 금속조성 대 스퍼터링 시간(또는 기록층 깊이)의 관계를 표시한 그래프.FIG. 2A is a graph showing the relationship of rare earth metal composition to sputtering time (or recording layer depth) of a recording layer in the magneto-optical recording medium of the present invention. FIG.

제2b도는 종래의 광자기 기록매체에 있어서, 기록층의 희토류금속조성 대 스퍼터링 시간(또는 기록층 깊이)의 관계를 표시한 그래프.FIG. 2B is a graph showing the relationship of rare earth metal composition to sputtering time (or recording layer depth) of a recording layer in a conventional magneto-optical recording medium. FIG.

제3도는 본 발명의 광자기 기록매체의 기록층 성막시, 아르곤 가스 압력(토르)에 따른 기록층내 희토류 금속의 조성 변화를 나타내는 그래프.3 is a graph showing the change of the composition of the rare earth metal in the recording layer according to the argon gas pressure (tor) during the film formation of the magneto-optical recording medium of the present invention.

제4도는 실시예 및 비교예에서 제조된 광자가 기록매체에 대한 방치시간(hr) 대 Kerr 회전각변화율(θk(t)/θk(o))의 관계를 나타내는 그래프.4 is a graph showing the relation between the leaving time (hr) and the Kerr rotation angle change rate (θk (t) / θk (o)) of the photons manufactured in Examples and Comparative Examples.

제5도는 실시예 및 비교예에서 제조된 광자기 기록매체에 대한 방치 시간(hr) 대 포화자화량변화율(Ms(t)/Ms(o))의 관계를 나타내는 그래프.FIG. 5 is a graph showing the relationship between the leaving time (hr) and the saturation magnetization change rate (Ms (t) / Ms (o)) for the magneto-optical recording media prepared in Examples and Comparative Examples.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : TbFeCo 타켓 2 : Si3N4타켓1: TbFeCo Target 2: Si 3 N 4 Target

3 : 투명기판 4 : 기판고정장치3: transparent substrate 4: substrate fixing device

5 : 외부교류전원 6 : 외부직류전원5: External AC Power 6: External DC Power

7 : 진공조 8 : 격리판7: vacuum chamber 8: separator

9 : 배기구 10 : 진공밸브9: exhaust port 10: vacuum valve

11 : 아르곤가스 유입구 12 : 가스밸브11 argon gas inlet 12 gas valve

13, 14 : 기록층 두께13, 14: recording layer thickness

본 발명은 광을 이용하여 정보를 기록, 재생 및 소거하는 광자기 기록매체의 제조방법에 관한 것으로, 특히 내환경성이 향상된 광자기 기록매체의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a magneto-optical recording medium for recording, reproducing and erasing information by using light, and more particularly, to a method of manufacturing a magneto-optical recording medium having improved environmental resistance.

일반적으로 광자기 기록매체의 기록층은 희토류-천이금속계 비정질자성체(예를들면 Tb-Fe합금)로 박막을 형성한 것이 있다.In general, a recording layer of a magneto-optical recording medium has a thin film formed of a rare earth-transition metal-based amorphous magnetic material (for example, a Tb-Fe alloy).

이와같은 희토류-천이금속 비정질박막은 쉽게 산화되는 희토류금속의 성질로 인하여 안정한 광자기 특성을 유지할 수가 없다.Such rare earth-transition metal amorphous thin films cannot maintain stable magneto-optical properties due to the properties of rare earth metals that are easily oxidized.

즉 Kerr 회전각, Faraday 회전각, 항자력, 투과율, 반사율 등의 변화가 격심하고 Kerr 히스테리시스 곡선(Hysteresis loop) 및 Faraday 히스테리시스 곡선의 각형성이 나빠지는 관계로 기록매체의 내환경성이 감속되어 기록된 데이타를 장시간 보관할 수 없게 되므로 기록매체의 실용화에 큰 문제가 되었다.In other words, the change in Kerr rotation angle, Faraday rotation angle, coercive force, transmittance, reflectance, etc. is severe and the angular shape of Kerr hysteresis loop and Faraday hysteresis curve is deteriorated. It is not possible to store the product for a long time, which is a great problem for the practical use of the recording medium.

종래에는 상기에 언급된 내환경성의 감소를 해결하기 위해 기록층을 구성하는 물질에 Pt, Ti, Al, Cr 등의 원소를 첨가 하거나 또는 기록층의 양면에 Si3N4, AlN등의 질화물, SiO2, Al2O3등의 산화물 및 ZnS등의 황 화물을 사용하여 진공조내에서 연속 스퍼터링 또는 증착 방법으로 보호층을 형성시키는 방법이 있었으나 본 발명은 상기와 같은 문제점 해결을 위해 광자기 기록 매체의 기록층으로 Gd, Tb, Dy, Nd등이 포함된 희토류금속 및 Fe, Co등이 포함된 천이금속의 합금으로 구성된 자성박막을 사용함에 있어서, 각 구성원소별 조성을 기록층 깊이에 따라 차이를 주어 내환경성을 향상시킨 광자기 기록매체를 제공하는데 그 목적이 있다.Conventionally, in order to solve the above-mentioned reduction in environmental resistance, an element such as Pt, Ti, Al, Cr, or the like is added to a material constituting the recording layer or nitrides such as Si 3 N 4 , AlN, etc. Although there was a method of forming a protective layer by continuous sputtering or deposition in a vacuum chamber using oxides such as SiO 2 , Al 2 O 3 , and sulfides such as ZnS, the present invention provides a magneto-optical recording medium for solving the above problems. In the use of a magnetic thin film composed of an alloy of rare earth metals containing Gd, Tb, Dy, Nd, and transition metals containing Fe, Co, etc., the composition of each element varies depending on the recording layer depth. The purpose is to provide a magneto-optical recording medium having improved environmental resistance.

본 발명에서는 알루미늄의 표면에 인위적으로 산화알루미늄을 형성시켜 더 이상의 산화반응이 알루미늄 표면에서 일어나지 않도록 하면 내환 경성이 향상된다는 원리에 따른다.According to the present invention, if the aluminum oxide is artificially formed on the surface of aluminum so that no further oxidation reaction occurs on the surface of aluminum, environmental resistance is improved.

즉, 산소와 반응성이 극히 좋은 희토류금속의 농도를 광자기 기록매체의 양표면이 기록층 중심보다 0.2at%-10at% 정도 인위적으로 증가시켜 외부에서 침입한 산소와 희토류 금속의 반응이 기록층 양단 표층에 집중되도록 하여 산화반응이 기록층 양표면에서의 중심부로 확산되는 것을 억제시킴으로써 광자기 기록매체의 내환경성을 향상시킬 수가 있다.That is, the concentration of the rare earth metal that is extremely reactive with oxygen is artificially increased by about 0.2at% -10at% on both surfaces of the magneto-optical recording medium, so that the reaction between oxygen and rare earth metal invading from outside is recorded at both ends of the recording layer. It is possible to improve the environmental resistance of the magneto-optical recording medium by concentrating on the surface layer and suppressing the diffusion of the oxidation reaction from both surfaces of the recording layer.

또한 기록층 양단에서의 희토류금속의 조성이 광자기 기록매체의 기록층 구성에 필요한 표준조성 보다 높기 때문에 표층이 산화될 경우에도 희토류금속의 조성을 표준조성 근방에서 유지할 수 있으므로 자기광학효과의 손실은 없게 되어 광자기 기록매체를 실용화시킬 수 있다.In addition, since the composition of the rare earth metal at both ends of the recording layer is higher than the standard composition necessary for the composition of the recording layer of the magneto-optical recording medium, even if the surface layer is oxidized, the composition of the rare earth metal can be maintained near the standard composition so that there is no loss of magneto-optical effect. Thus, the magneto-optical recording medium can be put to practical use.

하기에서는 본 발명에 따른 광자기 기록 매체의 제조방법을 첨부도면에 따라 상세히 설명한다.Hereinafter, a method of manufacturing a magneto-optical recording medium according to the present invention will be described in detail with reference to the accompanying drawings.

제1도에 도시한 스퍼터링장치를 이용하여 광자기 기록 매체를 제조함에 있어서, 먼저 진공조(7) 내부의 압력을 10-7토르(Torr)수준까지 배기시킨후 진공조(7) 내부로 아르곤 가스를 유입하여 내부 압력을 10-2-10-3토르 수준으로 유지시킨다.In manufacturing a magneto-optical recording medium using the sputtering apparatus shown in FIG. 1, first, the pressure inside the vacuum chamber 7 is exhausted to a level of 10 -7 Torr, and then argon is introduced into the vacuum chamber 7. The gas is introduced to maintain the internal pressure at 10 -2 -10 -3 Torr.

Si3N4타켓(target)(2)에 연결된 외부교류전원(5)를 가동시켜 Si3N4타켓(2)를 스퍼터링하여 1차 보호층이 형성되면 외부교류전원(5)를 차단한 후, 유입된 아르곤가스량을 조절하여 내부압력을 9×10-3토르로 맞추고 희토류-천이금속 합금으로 구성된 타켓(1)에 연결된 외부직류전원(6)을 가동시켜 기록층을 스퍼터링 한다.Si 3 N 4 target (target) (2) to activate the external AC power source 5 is connected to the Si 3 N 4 to a target (2) sputtering when the first protective layer is formed after block external AC power source 5 By adjusting the amount of argon gas introduced, the internal pressure is adjusted to 9 × 10 −3 Torr and the external DC power source 6 connected to the target 1 composed of a rare earth-transition metal alloy is operated to sputter the recording layer.

성막하고자하는 기록층의 두께가 800A°이고, 성막속도가 100A°x/min 이라면 스퍼터링에 소요되는 총시간은 8분이 필요하다.If the thickness of the recording layer to be formed is 800 A ° and the film formation speed is 100 A ° x / min, the total time required for sputtering is 8 minutes.

이때 초기 1분 동안은 아르곤가스압력을 9×10-3토르에서 1×10토르까지 서서히 낮추면서 스퍼터링하고, 그후 6분간은 아르곤가스압력을 1×10-3토르로 유지하면서 스퍼터링하고, 마지막 1분 동안 아르곤가스압력을 1×10-3토르에서 9×10-3토르까지 서서히 증가시키면서 스퍼터링한다.At this time, sputtering while gradually reducing the argon gas pressure from 9 × 10 -3 Torr to 1 × 10 Torr for the first 1 minute, and then sputtering while maintaining the argon gas pressure at 1 × 10 -3 Torr for 6 minutes. min, while the argon sputtering gas pressure at 1 × 10 -3 Torr 9 × 10 -3 Torr while gradually increased up.

상기와 같은 방법에 의해 희토류금속의 조성이 기록층 양단부로 갈수록 증가되도록 성막할 수 있다(제2a도). 이때 희토류 금속의 농도가 높은 양단 표층의 각 두께는 전체 기록층두께의 0.02-0.5배의 범위가 되도록 한다.By the above method, the composition of the rare earth metal can be formed to increase toward both ends of the recording layer (FIG. 2A). At this time, each thickness of the both ends of the surface layer having a high concentration of rare earth metal is in the range of 0.02-0.5 times the total recording layer thickness.

기존의 광자기 기록 매체의 기록층은 제2b도에 도시된 바대로 기록층깊이 전범위에 걸쳐 희토류금속의 조성 분포가 균일하게 되어 있다.The recording layer of the existing magneto-optical recording medium has a uniform distribution of the rare earth metal over the entire recording layer depth as shown in FIG. 2B.

상기 기록층 성막이 끝나면 다시 최초의 방법대로 Si3N4타켓(2)를 이용해 2차 보호막을 형성함으로써 본 발명의 광자기 기록 매체가 완성된다.After the formation of the recording layer, the magneto-optical recording medium of the present invention is completed by forming a secondary protective film by using the Si 3 N 4 target 2 as the first method.

한편 희토류금속 및 천이금속의 합금으로 구성된 타켓(1)에서 떨어져나온 각각의 희토류금속원자 및 천이금속원자는 타켓으로부터 모든 방향으로 움직인다.On the other hand, each of the rare earth metal atoms and the transition metal atoms which are separated from the target 1 composed of the rare earth metal and the transition metal alloy move in all directions from the target.

이때 각각의 원자는 타켓 상부에 위치한 기판(3)에 도달할때까지 아르곤 가스와 충돌하여 산란하게 된다.At this time, each atom collides and scatters with argon gas until it reaches the substrate 3 located above the target.

다음 관계식(1)로 산란각도(θ)는 충돌원자의 원자량(M1, M2)에 반비례함을 알 수 있다.The following relation (1) shows that the scattering angle θ is inversely proportional to the atomic weights M1 and M2 of the collision atoms.

Figure kpo00001
Figure kpo00001

Ar(M1=39.9g/mol)에 Tb(M2=158.9g/mol)가 충돌하면 상기식(1)에서 산란각도(θ)는 14.1°가 되고, M2가 Fe(55.8g/mol인 경우에 θ는 35.6°가 된다.When Tb (M2 = 158.9 g / mol) collides with Ar (M1 = 39.9 g / mol), the scattering angle θ becomes 14.1 ° in Equation (1), and when M2 is Fe (55.8 g / mol) θ becomes 35.6 °.

또한 진공조(7)내에 아르곤 가스량이 증가할수록 타켓에서 방출되는 각각의 원자들과 아르곤가스가 충돌할 확률이 커진다.Also, as the amount of argon gas in the vacuum chamber 7 increases, the probability that argon gas collides with each of the atoms released from the target increases.

따라서 가벼운 금속일수록 기판(3)에 도달할 확률이 적어진다.Therefore, the lighter the metal, the lower the probability of reaching the substrate 3.

그 구체적인 결과는 제3도에 도시되었다.The specific result is shown in FIG.

제3도에서 아르곤가스압력을 1×10-3토르로 스퍼터링한 박막내의 희토류금속(예 : Tb) 조성은 20.5at%인데 반해, 아르곤 가스압력을 9×10-3토르로 높이면, 희토류금속의 조성은 23at%가 되었다.In FIG. 3, the composition of the rare earth metal (e.g., Tb) in the thin film sputtered with argon gas pressure at 1 × 10 -3 Torr is 20.5 at%, whereas when the argon gas pressure is increased to 9 × 10 -3 Torr, The composition became 23 at%.

그러므로 아르곤가스압력을 조절하여 기록층내의 희토류 금속 조성을 약 2.5at%정도 증가시킬수 있음이 확인된다.Therefore, it is confirmed that by adjusting the argon gas pressure, the rare earth metal composition in the recording layer can be increased by about 2.5 at%.

이하 구체적인 실시예를 통해 본 발명에서 제조된 광자기 기록 매체의 특징을 설명할 수 있다.Hereinafter, the characteristics of the magneto-optical recording medium manufactured in the present invention will be described through specific examples.

[실시예 1]Example 1

투명한 폴리카보네이트 원형기판(3)을 스퍼터링 장치네에 장착하고 진공조(7) 내부의 압력이 2×10-7토르가 될때까지 (9)를 통해 배기시킨후, 내부압력이 5×10-3토르를 유지할 수 있도록(11)을 통해 아르곤가스를 유입한다.A transparent polycarbonate circular substrate (3) was mounted on the sputtering apparatus and evacuated through (9) until the pressure inside the vacuum chamber (7) became 2 × 10 -7 Torr, and the internal pressure was 5 × 10 -3 Torr. In order to maintain the (11) inflow argon gas.

외부교류전원(5)로부터 1KW의 전력을 Si3N4타켓(2)애 공급하여 스퍼터링하면 Si3N4로 구성되는 두께 800A°의 1차 보호막이 형성된다.When supplying 1KW of electric power from the external AC power supply 5 to the Si 3 N 4 target 2 and sputtering, a primary protective film having a thickness of 800 A ° composed of Si 3 N 4 is formed.

1차 보호막이 형성되면 외부교류전원(5)를 차단하고 내부압력이 9×10-3토르를 유지하도록 아르곤가스의 유입량을 증가시킨후, TbFeCo 합금으로 구성된 타켓(1)에 연결된 외부 직류전원(6)으로부터 1KW의 전력을 타켓(1)에 공급하여 두께 800A°의 수직자기 이방성을 갖는 기록층을 형성한다.When the primary protective film is formed, the external alternating current power source (5) is shut off, and the inflow of argon gas is increased to maintain the internal pressure of 9 × 10 -3 Torr, and then the external DC power source connected to the target (1) made of TbFeCo alloy ( 6KW is supplied from 6) to the target 1 to form a recording layer having vertical magnetic anisotropy with a thickness of 800A.

이 기록층 형성시 아르곤가스 유입량을 서서히 감소시켜 내부압력이 1×10-3토르가 되도록 하면서 200A°은 도포하고, 내부압력이 1×10-3토르로 일정하게 유지시킨 상태에서 400A°을 도포하고, 나머지 200A°의 도포시에는 아르곤가스량을 서서히 증가시키면서 내부압력이 9×10 토르가 되도록 조절한다.By gradually decreasing the argon gas flow rate in forming the recording layer and so that the internal pressure is 1 × 10 -3 Torr 200A ° is applied, and the internal pressure of 1 × 10 -3 applied to 400A °, while it is kept constant at Thor At the time of application of the remaining 200A, the internal pressure is adjusted to 9 × 10 Torr while gradually increasing the amount of argon gas.

이때 희토류금속의 농도가 더 높은 기록층 양단표층 각각의 두께는 전체 기록층두께의 0.25배가 된다.At this time, the thickness of each of both ends of the recording layer having a higher concentration of rare earth metal is 0.25 times the total recording layer thickness.

기록층이 형성된 후 1차 보호막 형성시와 동일한 방법으로 2차 보호막을 형성하면 광자기 기록 매체가 제조된다.After the recording layer is formed, the secondary protective film is formed in the same manner as in the formation of the primary protective film to produce a magneto-optical recording medium.

[실시예 2]Example 2

실시예 1과 동일방법으로 1,2차 보호막을 형성한다.The first and second protective films are formed in the same manner as in Example 1.

기록층 형성에 있어서는 실시예 1과 동일방법으로 아르곤 가스 유입량을 변화시키는데 형성되는 기록층의 두께는 각각 100A°이 되도록 한다.In the formation of the recording layer, the thickness of the recording layers formed to change the amount of argon gas inflow in the same manner as in Example 1 was set to 100A.

이때 희토류금속의 농도가 더 높은 기록층 양단표층 각각의 두께는 전체 기록층 두께의 0.125배가 된다.At this time, the thickness of each of both ends of the recording layer having a higher concentration of rare earth metal is 0.125 times the thickness of the entire recording layer.

[실시예 3]Example 3

실시예 1과 동일방법으로 1,2차 보호막을 형성한다.The first and second protective films are formed in the same manner as in Example 1.

기록층형성에 있어서는 실시예 1과 동일방법으로 아르곤 가스 유입량을 변화시키는데 형성되는 기록층의 두께는 각각 50A°이 되도록 한다.In forming the recording layer, the thicknesses of the recording layers formed to change the argon gas inflow amount in the same manner as in Example 1 were 50A ° each.

이때 희토류 금속의 농도가 더 높은 기록층 양단표층 각각의 두께는 전체 기록층 두께의 0.625배가 된다.At this time, the thickness of each of the both ends of the recording layer having a higher concentration of the rare earth metal is 0.625 times the thickness of the entire recording layer.

[실시예 4]Example 4

실시예 1과 동일방법으로 기록층을 형성한다.A recording layer is formed in the same manner as in Example 1.

[비교예 1]Comparative Example 1

실시예 1과 동일방법으로 1,2차 보호막을 형성한다.The first and second protective films are formed in the same manner as in Example 1.

기록층형성에 있어서는 아르곤가스 압력을 1×10-3토르로 일정하게 유지시키면서 두께 800A°의 기록층을 형성하여 통상의 광자기 기록매체를 제조한다.In the formation of the recording layer, a recording layer having a thickness of 800 A ° is formed while maintaining the argon gas pressure at 1 × 10 −3 Torr to produce a conventional magneto-optical recording medium.

[비교예 2]Comparative Example 2

비교예 1과 동일방법으로 기록층만을 형성한다.Only the recording layer is formed in the same manner as in Comparative Example 1.

상기 실시예(1-4) 및 비교예(1, 2)에 따라 제조된 광자기 기록매체의 내환경성 측정을 위해 온도 80℃, 상대습도 85% 조건의 항온 항습조에 광자기 기록 매체를 일정시간 방치한 다음 자기 광학 측정 장치 및 진동식 자력측정장치를 이용하여 방치시간 경과에 따른 Kerr 회전각 및 포화 자화량의 변화율 값을 측정하였다.In order to measure the environmental resistance of the magneto-optical recording media prepared according to Examples (1-4) and Comparative Examples (1, 2), the magneto-optical recording medium was placed in a constant temperature and humidity chamber at a temperature of 80 ° C. and a relative humidity of 85% for a predetermined time. After leaving, the magneto-optical measuring device and the vibratory magnetic measuring device were used to measure the value of the Kerr rotation angle and the saturation magnetization change over time.

그 결과는 제4도 및 제5도에 도시하였다.The results are shown in FIGS. 4 and 5.

이때 변화율값은[방치후의 물성측정값/초기물성측정값]의 비로써 정의된다.At this time, the change rate value is defined as the ratio of the measured property value / initial property value after standing.

상기 실험결과 실시예 1-3에서 제조된 광자기 기록매체의 Kerr회전각 변화율(θk(t)/θk(o)) 및 포화자화량 변화율(Ms(t)/Ms(o))은 방치시간 경과에 거의 일정함을 확인할 수 있다.As a result of the experiment, Kerr rotation angle change rate (θk (t) / θk (o)) and saturation magnetization change rate (Ms (t) / Ms (o)) of the magneto-optical recording medium prepared in Example 1-3 were left to stand. You can see that it is almost constant over time.

반면 통상의 광자기 기록 매체(비교예1)에서는 방치시간에 따른 변화율이 격심하였다. 따라서 본 발명의 광자기 기록 매체의 내환경성이 향상되었음이 확인된다.On the other hand, in the conventional magneto-optical recording medium (Comparative Example 1), the rate of change with the leaving time was severe. Therefore, it is confirmed that the environmental resistance of the magneto-optical recording medium of the present invention is improved.

Claims (1)

광자기 기록 매체의 기록층을 Gd, Tb, Dy, Nd등이 포함된 희토류금속 및 Fe, Co등이 포함된 천이 금속의 합금으로 스퍼터링하여, 기록층의 두께를 800A°으로 하고, 성막속도를 100A°/min으로 하는 경우에 있어서, 진공조(7) 내부의 압력을 9×10-3토르로 맞추고, 희토류-천이금속 합금 타켓(1)에 직류전원(6)을 가동하여, 초기 1분 동안은 내부압력을 9×10-3토르에서 1×10토르까지 서서히 낮추고, 그후 6분간은 내부압력을 1×10-3토르로 유지하면서 스퍼터링하고, 마지막 1분 동안은 아르곤 가스압력을 1×10-3토르에서 9×10-3토르까지 서서히 증가 시키면서 스퍼터링하여, 기록층의 양단 표층의 희토류 금속농도가 중심부의 희토류 금속농도 보다 0.2-10at% 높게 형성되고, 양단 표층의 각 두께가 전체 기록층 두께의 0.02-0.5배의 범위에 있도록 한 광자기 기록 매체를 제조하는 방법.The recording layer of the magneto-optical recording medium was sputtered with an alloy of a rare earth metal containing Gd, Tb, Dy, Nd, and a transition metal containing Fe, Co, and the like, and the thickness of the recording layer was 800 A °. In the case of 100 A ° / min, the pressure inside the vacuum chamber 7 is set to 9 × 10 -3 Torr, and the DC power supply 6 is operated on the rare earth-transition metal alloy target 1, and the initial stage is 1 minute. While the internal pressure is gradually lowered from 9 × 10 -3 Torr to 1 × 10 Torr, then sputtering while maintaining the internal pressure at 1 × 10 -3 Torr for 6 minutes, and the argon gas pressure is 1 × for the last 1 minute. 10-3 by sputtering while gradually increasing from Torr to 9 × 10 -3 Torr, and forming the rare earth metal concentration across the surface of the recording layer 0.2-10at% higher than the concentration of the rare earth metal in the center, the thickness of each of both ends of the entire recording surface Remove the magneto-optical recording medium in the range of 0.02-0.5 times the layer thickness How to.
KR1019900001509A 1990-02-08 1990-02-08 Optical recording material and manufcturing method KR930003182B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019900001509A KR930003182B1 (en) 1990-02-08 1990-02-08 Optical recording material and manufcturing method
JP3037919A JPH04213809A (en) 1990-02-08 1991-02-07 Optical magnetic recording medium and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900001509A KR930003182B1 (en) 1990-02-08 1990-02-08 Optical recording material and manufcturing method

Publications (2)

Publication Number Publication Date
KR910015977A KR910015977A (en) 1991-09-30
KR930003182B1 true KR930003182B1 (en) 1993-04-23

Family

ID=19295900

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900001509A KR930003182B1 (en) 1990-02-08 1990-02-08 Optical recording material and manufcturing method

Country Status (2)

Country Link
JP (1) JPH04213809A (en)
KR (1) KR930003182B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502160B2 (en) * 2000-09-27 2010-07-14 キヤノンアネルバ株式会社 Magnetic film forming method, magnetic film forming apparatus, and magnetic recording disk manufacturing method

Also Published As

Publication number Publication date
JPH04213809A (en) 1992-08-04
KR910015977A (en) 1991-09-30

Similar Documents

Publication Publication Date Title
JP2561646B2 (en) Method for manufacturing magneto-optical recording medium
EP0606498B1 (en) Magneto-optic recording medium and method of its manufacture
US5577020A (en) Magneto-optical disc with intermediate film layer between a recording film and a dielectric film
US4995024A (en) Magneto-optical recording element
EP0135322B1 (en) An optical magnetic recording member
KR930003182B1 (en) Optical recording material and manufcturing method
US4710434A (en) Optomagnetic recording medium
JP2577344B2 (en) Magneto-optical disk and method of manufacturing the same
JPS61258353A (en) Photomagnetic recording medium
Marinero et al. Oxidation induced magnetic and structural changes in magneto-optical alloys
US5193085A (en) Magneto-optical recording medium with exchange-coupled reproducing layer containing platinum
JP2620088B2 (en) Magneto-optical recording element and manufacturing method thereof
KR940008648B1 (en) Optical-magnetic disk medium & producting method thereof
Coulman et al. AES and XPS Studies of the Chemical Effects at the Magneto-Optic/Dielectric Interface
JP2729308B2 (en) Magneto-optical recording element and manufacturing method thereof
JPH03228239A (en) Magneto-optical recording medium
JPS6252743A (en) Optical recording medium
KR940008646B1 (en) Optical-magnetic recording medium
JP2829321B2 (en) Magneto-optical recording medium
JPH064919A (en) Production of magneto-optical medium
JP2932687B2 (en) Magneto-optical recording medium
JPH027250A (en) Formation of thin oxide film
JPH02156609A (en) Magnetic film
JPH03222132A (en) Magneto-optical recording medium and its production
JPH03216832A (en) Magneto-optical recording medium and production thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19960302

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee