KR890003348B1 - Making method of a glassy insulating coating for a silicon steel plate with a direction - Google Patents

Making method of a glassy insulating coating for a silicon steel plate with a direction Download PDF

Info

Publication number
KR890003348B1
KR890003348B1 KR1019850006299A KR850006299A KR890003348B1 KR 890003348 B1 KR890003348 B1 KR 890003348B1 KR 1019850006299 A KR1019850006299 A KR 1019850006299A KR 850006299 A KR850006299 A KR 850006299A KR 890003348 B1 KR890003348 B1 KR 890003348B1
Authority
KR
South Korea
Prior art keywords
steel sheet
grain
electrical steel
annealing
oriented electrical
Prior art date
Application number
KR1019850006299A
Other languages
Korean (ko)
Other versions
KR870002284A (en
Inventor
최규성
신정철
Original Assignee
포항종합제철 주식회사
정명식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 정명식 filed Critical 포항종합제철 주식회사
Priority to KR1019850006299A priority Critical patent/KR890003348B1/en
Publication of KR870002284A publication Critical patent/KR870002284A/en
Application granted granted Critical
Publication of KR890003348B1 publication Critical patent/KR890003348B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D5/00Coating with enamels or vitreous layers
    • C23D5/04Coating with enamels or vitreous layers by dry methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

The method for forming a glassy insulating layer on the directional silicon steel sheet comprises: (i) coating with anneal separating agent,; (ii) drying for adjusting a final volatile substance to 1% or less at 650-800 deg.C for above 10 sec.; (iii) holding under inert gas atmosphere or retaining heat atmosphere above 80 deg.C; and (iv) conventional high-temperature annealing.

Description

방향성 전기강판 유리질 절연피막 형성방법Method for forming oriented electrical steel sheet glass insulation film

제1도는 방향성 전기강판 고온소둔판에 형성된 유리질절연피막의 표면형상을 나타낸 사진(X2000).1 is a photograph (X2000) showing the surface shape of a glassy insulating film formed on a high-temperature annealed sheet of oriented electrical steel sheet.

제2도는 방향성 전기강판고온소둔판에 형성된 유리질절연피막의 단면부에 대한 원소분포를 타나내는 그래프.2 is a graph showing the element distribution of the cross-section of the glass insulating film formed on the oriented electrical steel sheet high temperature annealing plate.

제3도는 대기중 정치시 보열로의 온도별 소둔분리제의 잔류휘발분 증가를 나타내는 그래프.3 is a graph showing the increase in residual volatilization of the annealing separator by temperature in the heating furnace during standing in the air.

본 발명은 자성이 우수한 방향성전기강판을 제조하기 위하여 탈탄소둔판에 소둔분리제를 도포후 최종잔류휘발분을 조절하므로서 고온소둔시 최적유리질절연피막을 형성시키는 방법에 관한 것이다. 소둔분리제도포는 고온소둔시 코일간의 접착방지, 유리질의 절연피막 형성 및 소재의 불순물제거등의 목적으로 탈탄소둔후 도포한다. 이때 고온소둔시 형성된 유리질절연피막은 소지금속과의 사이에 불균일한 조도를 갖는 중간층을 이루어 자성에 큰 영향을 미치는 자구의 이동을 방해하므로 철손을 증가시킨다는 것은 공지의 사실이다. 이를 구체적으로 설명하면,소둔분리제의 도포공정은 혼합 및 도포, 건조, 대기중정치, 고온소둔의 과정을 거쳐서 유리질의 마그네슘실리 케이트피막이 형성되는데 이때의 각반응식은 다음과 같다.The present invention relates to a method for forming an optimum glassy insulating film during high temperature annealing by controlling the final residual volatilization after applying the annealing separator to the decarbonized annealing plate to produce a grain-oriented electrical steel sheet having excellent magnetic properties. Annealing separation coating is applied after decarbonization annealing for high temperature annealing to prevent adhesion between coils, to form an insulating film of glass, and to remove impurities from materials. At this time, it is known that the glass insulating film formed during the high temperature annealing forms an intermediate layer having non-uniform roughness between the base metals and thus increases the iron loss since it prevents the movement of magnetic domains which greatly affects the magnetic properties. Specifically, the application process of the annealing separator is formed through the process of mixing and coating, drying, atmospheric politics, high temperature annealing, glassy magnesium silicate film is formed, each reaction equation is as follows.

Figure kpo00002
Figure kpo00002

소둔분리제 도포는 물과 산화마그네슘을 중량비로 9:1 정도로 혼합하여 탈탄소둔판에 도포하며(1) 이것을 550℃의 건조로에서 10-30초 정도 건조하여 물 및 반응한 수분을 제거하여(2) 권치한 다음 작업속도의 조절을 위해 불가피하게 일정시간 대기중에 정치시킨후(3) 고온소둔을 실시하게 된다.The annealing separator is mixed with water and magnesium oxide in a weight ratio of about 9: 1 and applied to the decarbonized annealing plate. (1) It is dried for 10-30 seconds in a drying furnace at 550 ° C to remove water and reacted water (2 After unwinding, it is inevitably settled in the atmosphere for a certain period of time to control the working speed (3) and then subjected to high temperature annealing.

이 고온소둔 공정에서 산화 마그네슘은 소재표면 내부 산화물층인 산화 규소와 반응하여 유리질의 절연피막이 형성된다(6).In this high temperature annealing process, magnesium oxide reacts with silicon oxide, an oxide layer inside the material surface, to form a glassy insulating film (6).

이 반응시 종래까지는 산화마그네슘의 잔류휘발분은 통상 500-600℃의 건조로에서 건조시 미건조된 잔존 수분 5-8%와 이후 공정의 작업속도를 조절하기 위해 대기중에서 정치시 대기중 수분과 이산화탄소를 흡수하여 전체적으로 10% 이상, 보통은 10-12% 정도까지 증가하게 된다(3).In this reaction, the residual volatilization of magnesium oxide until now is usually 5-8% of undried residual moisture when dried in a drying furnace of 500-600 ° C. and atmospheric moisture and carbon dioxide when standing in the air to control the working speed of subsequent processes. Absorption results in an overall increase of more than 10%, usually 10-12% (3).

그리고 이때의 잔류휘발분중의 수분은 고온소둔시 휘발하여(4) 소재의 외층부에 철산화물을 형성하여(5) 내부산화물층인 산화규소와의 절연피막형성의 방해막으로 작용하므로서 표면품질 뿐만 아니라 철손을 악화시키는 요인으로 작용하고 있다.At this time, the moisture in the remaining volatilization volatilizes during high temperature annealing (4) to form iron oxide on the outer layer of the material (5) to act as a barrier for the formation of an insulating film with silicon oxide, an inner oxide layer, thereby providing only surface quality. But it is acting as a factor that worsens iron loss.

본 발명은 건조시 잔류휘발분 및 대기중에서 정치조건을 적절히 조정하므로서 표면품질 뿐만 아니라 철손을 향상시킬 수 있는 방향성전기 강판유리질절연피막형성방법을 제공하고자 하는 것이다.The present invention is to provide a method for forming a grain-oriented electrical steel sheet glass coating that can improve not only the surface quality but also the iron loss by appropriately adjusting the residual volatilization and the standing conditions in the air during drying.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 소둔분리제를 도포하고 건조한 다음 대기중에서 정치하여 고온소둔하는 방향성전기강판의 유리질피막을 형성하는 방법에 있어서, 산화마그네슘을 주성분으로 하는 소둔분리제를 사용하고 결정방위가 (100)[001]인 방향성 전기강판을 대상으로 하여 이것의 탈탄소둔판에 산화마그네슘의 분산액을 도포한 후, 건조로 에서 건조온도를 650-800℃로하고 건조시간을 10초 이상으로 하여 잔류휘발분을 1% 이하로 조절한 다음, 대기중에서 정치시 대기중의 분위가스에 위한 흡수가 전혀 없는 80℃ 이상의 보열로분위기 또는 불활성가스분위기에서 정치한 후 고온소둔하는 방향성전기강판유리질 절연피막형성 방법에 관한 것이다.The present invention provides a method for forming a glassy film of a grain-oriented electrical steel sheet which is coated, dried, and left to stand in the air at high temperature to form an annealing separator, wherein the crystal orientation is determined by using an annealing separator mainly composed of magnesium oxide. 001] is applied to the decarbonized annealing plate on the grain-oriented electrical steel sheet, and then, after drying, the drying temperature is 650-800 ° C. and the drying time is 10 seconds or more. After adjusting to below, the present invention relates to a method for forming a directional electrical steel sheet glass insulating film which is annealed in a heating furnace atmosphere or an inert gas atmosphere at 80 ° C. or higher having no absorption of atmospheric atmosphere gas at the time of standing in the atmosphere and then hot annealed.

이하, 수치한정 이유에 대하여 설명한다.The reason for numerical limitation will be described below.

상기 건조온도가 650℃ 이하인 경우에는 건조속도가 너무 늦고 800℃ 이상인 경우에는 급속휘발에 의해 표면이 검고 거칠어지며, 가열시간을 조절하여 휘발분을 조절하지만 최고온도 800℃ 에서도 10초 이하에서는 잔류휘발분의 적정관리가 어렵게 된다.If the drying temperature is 650 ℃ or less, the drying rate is too slow, if the 800 ℃ or more, the surface becomes black and rough by rapid volatilization, it controls the volatilization by adjusting the heating time, but the residual volatilization of less than 10 seconds at a maximum temperature of 800 ℃ Proper management becomes difficult.

상기 보열로분위기 또는 불활성가스분위기의 온도가 80℃ 이하인 경우에는 건조후 대기중에서 정치시 대기중의 수분의 흡수를 억제 및 차단하지 못하여 잔류휘발분 증가를 억제할 수 없으므로, 80℃ 이상이 바람직하다.When the temperature of the heating furnace atmosphere or the inert gas atmosphere is 80 ° C. or lower, 80 ° C. or higher is preferable because the increase in residual volatilization cannot be suppressed because the absorption of the moisture in the air cannot be suppressed and blocked when standing in the air after drying.

또한, 고온소둔직전의 최종잔류 휘발분이 1% 이하로 관리되어야 하는데, 이는 그 이상이되면 철손이 우수한 적정유리질절연피막 형성이 어렵기 때문이다.In addition, the final residual volatile matter immediately before the high temperature annealing should be managed to 1% or less, because it is difficult to form a proper glass insulation film having excellent iron loss.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

통상의 방향성탈탄소둔판에 산화마그네슘을 물에 분산도포한 다음 680℃ 의 건조로에서 건조시간을 변화시켜 잔류휘발분을 조정한 후 즉시 1200℃ 에서 고온소둔하여 건조시간에 따른 잔류휘발분 및 철손과의 관계를 측정하고 그 결과를 하기표 1에 나타내었다.Dispersion of magnesium oxide in water onto a conventional oriented decarbonized annealing plate, change the drying time in a drying furnace at 680 ℃, adjust the residual volatilization immediately, and then anneal immediately at high temperature at 1200 ℃ to relate the residual volatility and iron loss according to drying time. Was measured and the results are shown in Table 1 below.

[표 1]TABLE 1

Figure kpo00003
Figure kpo00003

Figure kpo00004
Figure kpo00004

* 1 : 잔류휘발분은 600℃ 에서 2시간 가열후 측정한 무게감량%임.* 1: Residual volatile content is the weight loss percentage measured after heating at 600 ℃ for 2 hours.

상기 표1에 나타남 바와같이, 잔류휘발분이 1% 이하인 발명예 1 및 2는 잔류휘발분이 1% 이상인 종래예 및 비교에 a 및 b에 비하여 매우 낮은 철손값을 나타내어 전류손실이 적은 우수한 제품을 얻을 수 있음을 알수 있다.As shown in Table 1, Inventive Examples 1 and 2 having a residual volatile content of 1% or less show very low iron loss values compared to a and b in the conventional example and the comparative example having a residual volatile content of 1% or more, thereby obtaining an excellent product having a low current loss. It can be seen that.

또한, 제1도는 최종잔류휘발분이 0%와 14.3% 시의 고온소둔후 유리질절연피막의 표면형상을 나타낸 것으로서 잔류휘발분이 0%인 제1(a)도의 경우 입자크기가 작고 균일하게 분포되어 있지만 잔류휘발분이 14.3%인 제1(b)도의 경우 입자크기가 불균일하고 검은색의 미형성부위가 관찰된다.In addition, FIG. 1 shows the surface shape of the glass insulation film after high temperature annealing at 0% and 14.3% of final residual volatilization. In FIG. 1 (a) with 0% residual volatilization, the particle size is small and uniformly distributed. In the case of FIG. 1 (b) with 14.3% of residual volatile matter, the particle size was uneven and black unformed sites were observed.

또한 제2도는 방향성 전기강판의 고온소둔판에 형성된 유리질절연피막의 단면부에 대한 원소분포를 나타낸 것으로서 잔류휘발분이 0%인 제2(a)도의 경우는 철화합물이 3% 이하로 적고 균일한 조성의 피막이 두껍게 형성되어 있으며 철손에 큰 영향을 미치는 복합조성의 중간 피막층은 얇은 반면, 잔류휘발분이 14.3%인 제2(b)도의 경우에는 피막층에 철화합물이 10% 정도로 많이 분포되어 있고 복합조성의 중간피막층이 길게 늘어나 있음을 알 수 있다.FIG. 2 shows the element distribution of the cross-section of the glass insulating film formed on the hot-annealed plate of the oriented electrical steel sheet. In the case of FIG. 2 (a) where the residual volatilization is 0%, the iron compound is less than 3% and uniform. In the case of the second layer (b), in which the composition of the composition is thick and has a large effect on the iron loss, the intermediate coating layer is thin, while in the case of the second (b) degree which has 14.3% residual volatilization, the iron layer is distributed in the coating layer as much as 10%. It can be seen that the interlayer of the film is elongated.

따라서 잔류 휘발분이 많은 경우 절연피막생성이전 온도인 1000℃ 까지 가열시 휘발분중의 대부분을 차지하는 수분이 소재표면과 반응 하여 외층부에 철산화물을 형성하여 유리질 절연피막층형성에 방해막으로 작용하고 이것이 피막층에 일부 분산하거나 중간층을 형성하여 불균일한 조도를 나타냄에 따라 철손을 좌우하는 자구의 이동이불안정하여 우수한 철손값을 얻을 수 없으므로 잔류휘발분을 낮추어야 한다.Therefore, when there is a large amount of residual volatile matter, when the insulation film is heated up to 1000 ℃, moisture, which occupies most of the volatile matter, reacts with the surface of the material to form iron oxide in the outer layer, which acts as a barrier to the formation of the glass insulation film layer. As some of the dispersion or intermediate layer is formed on the surface to show uneven roughness, the residual volatility should be lowered because it is not possible to obtain the excellent iron loss value because of unstable movement of magnetic domains that influence iron loss.

[실시예 2]Example 2

실시예 1과 동일한 탈탄소둔판에 산화마그네슘을 도포하여 680℃ 에서 30초간 건조한 다음 정치조건을 변화하여 잔류휘발분을 조정한후 1200℃ 에서 고온소둔하여 정치조건 변화에 따른 잔류휘발분 및 철손과의 관계를 하기 표 2에 나타내었다.Magnesium oxide was applied to the same decarbonized plate as in Example 1, dried at 680 ° C. for 30 seconds, and the remaining volatilities were adjusted by changing the stationary conditions. It is shown in Table 2 below.

[표 2]TABLE 2

Figure kpo00005
Figure kpo00005

상기 표 2에 나타난 바와 같이, 대기접촉을 1% 이하에서 차단한 경우(발명예 1,2 및 3), 휘발분 증가량이 낮아서 철손값이 우수하며 제3도에서도 대기중에서의 수분 및 이산화탄소의 흡수를 나타내고 있는데 온도가 높을수록 흡수가 적어져서 80℃ 이상에서는 전혀 흡수반응이 차단됨을 알 수 있다.As shown in Table 2, when the air contact is blocked at 1% or less (Inventive Examples 1, 2 and 3), the increase in volatile content is low, so the iron loss is excellent, and in FIG. The higher the temperature, the less the absorption, and it can be seen that the absorption reaction is blocked at all above 80 ° C.

이와 같이 본 발명은 탈탄소둔판에 소둔분리제의 잔류휘발분을 1% 이하로 관리하여 우수한 유리질절연피막을 형성할 수 있게 되는 효과가 있는 유용한 발명이다.As described above, the present invention is a useful invention in which the residual volatilization of the annealing separator is controlled to 1% or less on the decarbonized annealing plate to form an excellent glassy insulating film.

Claims (1)

소둔분리제를 도포하고 건조한 다음 대기중에서 정치하여 고온소둔하는 방향성전기강판의유리질 피막을 형성하는 방법에 있어서, 방향성전기강판에 산화마그네슘을 주성분으로 하는 소둔분리제를 도포한 후 건조시 650-800℃ 의 건조온도에에서 10초 이상 유지하여 최종휘발분을 1% 이하로 조정한 다음 대기분위기와의 접촉을 차단하기 위하여 80℃ 이상의 보열 분위기 또는 불활성가스분위기에서 정치시킨 후 통상의 방법으로 고온소둔하는 것을 특징으로 하는 방향성전기강판유리질 피막형성방법.A method of forming a glass coating of a grain-oriented electrical steel sheet which is applied by annealing separator, dried, and then left to stand in the air at high temperature, wherein the grain-oriented annealing separator containing magnesium oxide is applied to the grain-oriented electrical steel sheet and then dried. The final volatilization is adjusted to 1% or less by maintaining at least 10 seconds at the drying temperature of ℃, and then left to stand in a heat atmosphere or an inert gas atmosphere of 80 ℃ or more to block contact with the atmospheric atmosphere, and then hot annealed by a conventional method. A grain-oriented electrical steel sheet glass film forming method, characterized in that.
KR1019850006299A 1985-08-30 1985-08-30 Making method of a glassy insulating coating for a silicon steel plate with a direction KR890003348B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019850006299A KR890003348B1 (en) 1985-08-30 1985-08-30 Making method of a glassy insulating coating for a silicon steel plate with a direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019850006299A KR890003348B1 (en) 1985-08-30 1985-08-30 Making method of a glassy insulating coating for a silicon steel plate with a direction

Publications (2)

Publication Number Publication Date
KR870002284A KR870002284A (en) 1987-03-30
KR890003348B1 true KR890003348B1 (en) 1989-09-18

Family

ID=19242491

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019850006299A KR890003348B1 (en) 1985-08-30 1985-08-30 Making method of a glassy insulating coating for a silicon steel plate with a direction

Country Status (1)

Country Link
KR (1) KR890003348B1 (en)

Also Published As

Publication number Publication date
KR870002284A (en) 1987-03-30

Similar Documents

Publication Publication Date Title
US5089061A (en) Method for producing high silicon steel strip in a continuously treating line
US3873381A (en) High permeability cube-on-edge oriented silicon steel and method of making it
US10648083B2 (en) Pre-coating agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet comprising same, and manufacturing method therefor
US3676227A (en) Process for producing single oriented silicon steel plates low in the iron loss
US3941623A (en) Method for producing a grain-oriented electrical steel sheet using separators comprising metal nitrides
US4775430A (en) Process for producing grain-oriented electrical steel sheet having improved magnetic properties
KR890003348B1 (en) Making method of a glassy insulating coating for a silicon steel plate with a direction
US5840131A (en) Process for producing grain-oriented electrical steel sheet having excellent glass film and magnetic properties
RU2096516C1 (en) Silicon electric steel and method of treatment thereof
US3265528A (en) Method of forming metal carbide coating on carbon base
HU177279B (en) Process for producing boron-doped silicon steel having goss-texture
CN115679064A (en) Method for manufacturing oriented electrical steel with excellent surface
JPS5942750B2 (en) Method for producing electrically insulating glass film on silicon steel
US2050305A (en) Process of heat treating steel
JP3091096B2 (en) Annealing separator and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic properties
US3653984A (en) Method for annealing silicon steel strip for use as material of electric machinery
US2050408A (en) Process of treating magnetic material
JPH0643608B2 (en) Method for producing high silicon steel strip in continuous line
JPS62227035A (en) Manufacture of high silicon steel strip in continuous line
EP0345937B1 (en) Method of refining magnetic domains of electrical steels
JPH08239770A (en) Coating agent for forming insulating film on silicon steel sheet and grain-oriented silicon steel sheet
JPH0465901B2 (en)
JPH0465902B2 (en)
CN107630134B (en) Method for improving interlayer resistance of cold-rolled electrical steel product
Lorenz et al. Oxidation‐Resistant Silicide Coatings for Columbium and Tantalum Alloys by Vapor Phase Reaction

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19970806

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee