KR20230064849A - 스토리지 장치 및 그 동작 방법 - Google Patents

스토리지 장치 및 그 동작 방법 Download PDF

Info

Publication number
KR20230064849A
KR20230064849A KR1020210150388A KR20210150388A KR20230064849A KR 20230064849 A KR20230064849 A KR 20230064849A KR 1020210150388 A KR1020210150388 A KR 1020210150388A KR 20210150388 A KR20210150388 A KR 20210150388A KR 20230064849 A KR20230064849 A KR 20230064849A
Authority
KR
South Korea
Prior art keywords
zns
block
controller
size
memory block
Prior art date
Application number
KR1020210150388A
Other languages
English (en)
Inventor
유기균
안영호
Original Assignee
에스케이하이닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이하이닉스 주식회사 filed Critical 에스케이하이닉스 주식회사
Priority to KR1020210150388A priority Critical patent/KR20230064849A/ko
Priority to US17/730,648 priority patent/US11966610B2/en
Priority to CN202210793617.8A priority patent/CN116069239A/zh
Priority to TW111131485A priority patent/TW202319915A/zh
Priority to DE102022210372.6A priority patent/DE102022210372A1/de
Publication of KR20230064849A publication Critical patent/KR20230064849A/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0604Improving or facilitating administration, e.g. storage management
    • G06F3/0605Improving or facilitating administration, e.g. storage management by facilitating the interaction with a user or administrator
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0638Organizing or formatting or addressing of data
    • G06F3/0644Management of space entities, e.g. partitions, extents, pools
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/067Distributed or networked storage systems, e.g. storage area networks [SAN], network attached storage [NAS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0223User address space allocation, e.g. contiguous or non contiguous base addressing
    • G06F12/0292User address space allocation, e.g. contiguous or non contiguous base addressing using tables or multilevel address translation means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • G06F13/1605Handling requests for interconnection or transfer for access to memory bus based on arbitration
    • G06F13/1652Handling requests for interconnection or transfer for access to memory bus based on arbitration in a multiprocessor architecture
    • G06F13/1663Access to shared memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0604Improving or facilitating administration, e.g. storage management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0629Configuration or reconfiguration of storage systems
    • G06F3/0631Configuration or reconfiguration of storage systems by allocating resources to storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0638Organizing or formatting or addressing of data
    • G06F3/064Management of blocks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0646Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
    • G06F3/0647Migration mechanisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0658Controller construction arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • G06F3/0679Non-volatile semiconductor memory device, e.g. flash memory, one time programmable memory [OTP]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0683Plurality of storage devices
    • G06F3/0688Non-volatile semiconductor memory arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Memory System (AREA)

Abstract

일 실시예에 의한 데이터 저장 장치는 각각 복수의 메모리 블록을 포함하는 복수의 다이로 구성되고, 기본 존 네임스페이스(ZNS) 사이즈를 호스트 장치로 제공하는 저장부 및, 호스트 장치가 요구 ZNS 사이즈를 포함하는 ZNS 생성 요청 신호를 전송함에 따라, 복수의 다이로부터 요구 ZNS 사이즈에 대응하는 적어도 하나의 메모리 블록을 선택하여 ZNS을 생성하도록 구성되는 컨트롤러를 포함할 수 있다.

Description

스토리지 장치 및 그 동작 방법{Storage Device and Operating Method Therefor}
본 기술은 반도체 집적 장치에 관한 것으로, 보다 구체적으로는 스토리지 장치 및 그 동작 방법에 관한 것이다.
스토리지 장치는 호스트 장치와 연결되어 호스트의 요청에 따라 데이터 입출력 동작을 수행한다.
인공지능 및 빅데이터 관련 산업의 발달에 따라 고성능의 데이터 센터나 개인용 컴퓨팅 장치에 대한 연구가 활발해지고 있다. 고성능 컴퓨팅 장치는 스토리지 장치로 대표되는 하드웨어 풀을 이용하여 다수의 운영 체제 및/또는 응용 프로그램이 구동되도록 구현할 수 있다.
다중 사용 환경(multi-tenant)의 컴퓨팅 장치에서 다수의 응용 프로그램 간에 간섭 없이 높은 성능을 제공할 수 있는 방안이 필요하다.
본 기술의 실시예는 다수의 응용프로그램 별로 논리적 및 물리적으로 구분된 데이터 저장 영역을 동적으로 할당할 수 있는 스토리지 장치 및 그 동작 방법을 제공할 수 있다.
본 기술의 일 실시예에 의한 스토리지 장치는 각각 복수의 메모리 블록을 포함하는 복수의 다이로 구성되고, 기본 존 네임스페이스(ZNS) 사이즈를 호스트 장치로 제공하는 저장부; 및 호스트 장치가 요구 ZNS 사이즈를 포함하는 ZNS 생성 요청 신호를 전송함에 따라, 상기 복수의 다이로부터 상기 요구 ZNS 사이즈에 대응하는 적어도 하나의 메모리 블록을 선택하여 ZNS을 생성하도록 구성되는 컨트롤러;를 포함할 수 있다.
본 기술의 일 실시예에 의한 스토리지 장치는 복수의 메모리 블록을 포함하는 저장부; 및 호스트 장치가 요구하는 사이즈의 ZNS를 생성하기 위하여 복수의 메모리 블록을 취합하고, 상기 호스트 장치가 제공하는 쓰기 데이터의 크기에 기초하여 상기 생성한 ZNS의 크기를 조정하는 컨트롤러;를 포함할 수 있다.
본 기술의 일 실시예에 의한 스토리지 장치의 동작 방법은 컨트롤러가, 호스트 장치로부터 요구 ZNS 사이즈를 포함하는 ZNS 생성 요청 신호를 수신하는 단계; 및 상기 컨트롤러가, 저장부를 구성하는 수의 다이 내에 포함된 복수의 메모리 블록으로부터 상기 요구 ZNS 사이즈에 대응하는 적어도 하나의 메모리 블록을 선택하여 ZNS을 생성하는 단계;를 포함할 수 있다.
본 기술에 의하면 호스트 장치가 요청한 크기에 적응적으로 존을 할당할 수 있어 스토리지 장치의 저장 공간을 효율적으로 이용할 수 있다.
도 1은 일 실시예에 의한 데이터 처리 시스템의 구성도이다.
도 2는 일 실시예에 의한 컨트롤러의 구성도이다.
도 3은 일 실시예에 의한 ZNS 관리부를 설명하기 위한 도면이다.
도 4는 일 실시예에 의한 저장부의 구성도이다.
도 5는 일 실시예에 의한 ZNS별 블록풀을 설명하기 위한 도면이다.
도 6은 일 실시예에 의한 비트맵 테이블을 나타낸다.
도 7은 일 실시예에 의한 스토리지 장치의 동작 방법을 설명하기 위한 도면이다.
도 8은 일 실시예에 의한 스토리지 장치의 동작 방법을 설명하기 위한 도면이다.
도 9는 일 실시예에 의한 스토리지 장치의 동작 방법을 설명하기 위한 도면이다.
도 10은 일 실시예에 의한 스토리지 시스템의 구성도이다.
도 11 및 도 12는 실시예들에 따른 데이터 처리 시스템의 구성도이다.
도 13은 일 실시예에 의한 메모리 시스템을 포함하는 네트워크 시스템의 구성도이다.
도 14는 일 실시 예에 따른 스토리지 장치에 포함된 비휘발성 메모리 장치의 구성도이다.
이하, 첨부된 도면을 참조하여 본 기술의 실시예를 보다 구체적으로 설명한다.
도 1은 일 실시예에 의한 데이터 처리 시스템의 구성도이다.
도 1을 참조하면, 데이터 처리 시스템(100)은 호스트 장치(110) 및 스토리지 장치(120)를 포함할 수 있다.
호스트 장치(110)는, 예를 들면, 휴대폰, MP3 플레이어 등과 같은 휴대용 전자 장치들, 또는 랩탑 컴퓨터, 데스크탑 컴퓨터, 게임기, TV, 빔 프로젝터 등과 같은 개인용 전자 장치들, 또는 워크스테이션이나 서버 등과 같은 대용량 데이터 처리를 위한 전자 장치들을 포함한다. 호스트 장치(110)는 스토리지 장치(120)에 대해 마스터 장치로 작용할 수 있다.
스토리지 장치(120)는 호스트 장치(110)의 요청에 응답하여 동작하도록 구성된다. 스토리지 장치(120)는 호스트 장치(110)에 의해서 액세스 되는 데이터를 저장하도록 구성된다. 즉, 스토리지 장치(120)는 호스트 장치(110)의 주 기억 장치 또는 보조 기억 장치 중 적어도 하나로 사용될 수 있다. 스토리지 장치(120)는 컨트롤러(130) 및 저장부(140)를 포함할 수 있다.
컨트롤러(130)는 저장부(140)에 대해 마스터 장치로 작용할 수 있다. 컨트롤러(130)와 저장부(140)는 다양한 인터페이스를 통해 호스트 장치(110)와 연결되는 메모리 카드 형태, 또는 솔리드 스테이트 드라이브(Solid State Drive: SSD) 형태로 집적될 수 있다.
컨트롤러(130)는 호스트 장치(110)로부터의 요청에 응답하여 저장부(140)를 제어하도록 구성된다. 예를 들면, 컨트롤러(130)는 저장부(140)로부터 읽은 데이터를 호스트 장치(110)로 제공하거나, 호스트 장치(110)로부터 제공된 데이터를 저장부(140)에 저장하도록 구성된다. 이러한 동작을 위해서, 컨트롤러(130)는 저장부(140)의 읽기, 프로그램(또는, 쓰기) 및 소거 동작을 제어하도록 구성된다.
저장부(140)는 적어도 하나의 채널(CH0~CHn)을 통해 컨트롤러(130)와 연결될 수 있고, 적어도 하나의 불휘발성 메모리 장치들(NVM00~NVM0k, NVMn0~NVMnk)을 포함할 수 있다. 일 실시예에서, 불휘발성 메모리 장치들(NVM00~NVM0k, NVMn0~NVMnk)은 낸드(NAND) 플래시 메모리 장치, 노어(NOR) 플래시 메모리 장치, 강유전체 커패시터를 이용한 강유전체 램(Ferroelectric RAM: FRAM), 티엠알(tunneling magneto-resistive: TMR) 막을 이용한 마그네틱 램(Magnetic RAM: MRAM), 칼코겐 화합물(chalcogenide alloys)을 이용한 상변화 메모리 장치(phase change memory device: PRAM), 전이 금속 산화물(transition metal oxide)을 이용한 저항 메모리 장치(resistive memory device: RERAM) 등과 같은 다양한 형태의 불휘발성 메모리 장치들 중 적어도 하나로 구성될 수 있다.
불휘발성 메모리 장치들(NVM00~NVM0k, NVMn0~NVMnk) 각각은 복수의 다이, 각각의 다이에 포함되는 적어도 하나의 플래인을 포함할 수 있다. 각 플레인은 복수의 메모리 블록을 포함할 수 있고, 각 메모리 블록은 복수의 페이지 또는 섹터의 집합일 수 있다. 이하에서는 메모리 블록을 "블록"이라 칭하기로 한다.
각 페이지를 구성하는 메모리 셀들은 1비트의 데이터를 저장할 수 있는 싱글 레벨 셀(single level cell: SLC), 또는 2비트 이상의 데이터를 저장할 수 있는 멀티 레벨 셀(multi-level cell: MLC)로 동작할 수 있다.
불휘발성 메모리 장치들(NVM00~NVM0k, NVMn0~NVMnk) 각각은 싱글 레벨 셀(SLC) 메모리 장치로 동작하도록 구성되거나 멀티레벨 셀(MLC) 메모리 장치로 동작하도록 구성될 수 있다. 또는 불휘발성 메모리 장치들(NVM00~NVM0k, NVMn0~NVMnk) 중에서 일부는 싱글 레벨 셀(SLC) 메모리 장치로, 일부는 멀티 레벨 셀(MLC) 메모리 장치로 동작하도록 구성될 수 있다.
일 실시예에서, 컨트롤러(130)는 호스트의 존 네임스페이스(Zoned NameSpace; ZNS) 또는 존(Zone) 할당 요청에 응답하여 복수의 블록을 그룹화하여 ZNS로 관리할 수 있다. ZNS는 응용 프로그램별로 논리적 및 물리적으로 구분되도록 할당될 수 있다.
ZNS는 논리적 및 물리적으로 구분된 데이터 저장 영역이며, 복수의 응용 프로그램 각각은 자신에게 할당된 ZNS에 순차적으로 데이터(파일)를 저장할 수 있다. 각각의 존에는 대응하는 응용 프로그램의 성격을 반영하는 종류의 데이터가 순차적으로 저장되고, ZNS는 구현하기에 따라 존과 같거나 다른 단위로 소거될 수 있다. 즉, ZNS는 ZNS 단위로 소거되거나 ZNS를 구성하는 블록 단위로 소거될 수 있다.
ZNS가 항상 동일한 사이즈로 할당되면, 저장할 데이터의 사이즈가 ZNS보다 큰 경우 둘 또는 그 이상의 ZNS를 할당하고 통합 관리할 필요가 있다.
하나의 ZNS에 사이즈가 같거나 다른 둘 이상의 파일을 저장한 상태에서, ZNS에 저장된 어느 하나의 파일을 삭제 또는 수정하고자 하는 경우를 가정할 수 있다. 데이터가 ZNS 단위로만 소거되도록 설정되어 있다면, 삭제 또는 수정 대상이 아닌 파일을 처리하기 위한 시간적/공간적 자원이 소비되게 된다.
호스트 장치(110)에서 관리하는 파일의 크기가 다양해질수록 파일의 크기와 ZNS 사이즈 간의 간극을 맞추기 위한 오버헤드와 공간 비효율성이 초래될 수 있다. 예를 들어, 파일의 크기가 ZNS 사이즈보다 큰 경우 파일을 ZNS 사이즈에 맞추어 분할 저장하는 과정과, 리드 또는 기타 동작시 이를 다시 병합하는 과정이 추가로 필요한 오버헤드가 발생한다. 파일의 크기가 ZNS 사이즈보다 작은 경우 ZNS 내 파일이 저장되고 남은 영역만큼의 공간 낭비가 생기고, 이를 방지하기 위해서는 호스트 장치(110)가 남은 영역의 사이즈에 맞춰 파일을 분할해야 한다. 이러한 추가 과정의 처리를 모두 호스트 장치(110)가 부담해야 하므로 ZNS를 지원하는 저장부(140)를 더욱 효율적으로 사용하여 오버헤드와 공간 낭비를 최소화하고자 한다.
일 실시예에 의한 컨트롤러(130)는 기본 ZNS 단위, 다른 관점에서는 기본 ZNS 사이즈를 블록, 또는 저장부(140)의 최소 소거 단위로 정의할 수 있다.
스토리지 장치(120)가 초기화될 때, 컨트롤러(130)는 호스트 장치(110)로 기본 ZNS 사이즈 및, 저장부(140)를 구성하는 블록 중 ZNS로 할당 가능한 프리 블록의 수 즉, 할당 최대값을 제공할 수 있다. 프리 블록이란 소거가 완료되어 바로 데이터를 저장하기 위해 할당 가능한 상태의 블록이며 빈 블록이라 칭할 수도 있다.
호스트 장치(110)는 ZNS 할당이 필요한 경우 컨트롤러(130)로 할당받고자 하는 ZNS의 사이즈, 예를 들어 할당 요청값을 전송할 수 있다. 저장부(140)를 구성하는 프리 블록의 개수 즉, 할당 최대값이 Q인 경우 호스트 장치(110)가 Q 이하의 자연수로 할당 요청값을 전송할 수 있음은 자명하다.
따라서 컨트롤러(130)는 호스트 장치(110)가 요청한 ZNS 사이즈에 적응적으로 ZNS를 할당할 수 있고, 결국 호스트 장치(110)는 저장하고자 하는 파일의 크기에 대응하는 ZNS를 할당받을 수 있다.
일 실시예에서, 하나의 ZNS에 포함되는 블록들은 다이 인터리빙 또는 채널 인터리빙 방식을 통해 동시에 접근될 수 있도록 할당될 수 있다. 컨트롤러(110)는 다이 인터리빙 방식으로 저장부(140)를 동작시키기 위해, 마지막에 할당된 블록이 속한 다이의 다음 다이부터 필요한 수만큼 라운드-로빈 방식으로 다이를 순회하며 블록을 할당할 수 있으나, 이에 한정되는 것은 아니다.
일 실시예에서, 컨트롤러(130)는 호스트 장치(110)가 쓰기 요청한 데이터의 크기가 이를 저장할 ZNS의 잔여(프리) 공간 사이즈보다 큰 경우, 잔여 ZNS 사이즈 및 쓰기 요청된 데이터의 크기에 기초하여 ZNS에 블록을 추가하여 ZNS를 확장할 수 있다.
저장부(140)의 수명이 증가하는 등의 문제로 ZNS를 구성하는 블록에 저장된 데이터가 열화되거나, 배드 블록이 발생할 수 있고, 이러한 블록의 유효 데이터는 정상 블록으로 이동하여 리프레쉬 또는 리클레임할 필요가 있다. 컨트롤러(130)는 교체가 필요한 블록이 포함된 ZNS를 ZNS 단위로 교체(Replacement)하지 않고 블록 단위로 교체하여 저장 공간의 낭비와 오버헤드를 줄일 수 있다.
블록 교체 후에도 다이 인터리빙 또는 채널 인터리빙 방식으로 ZNS에 접근될 수 있도록 교체 대상 블록을 선택하는 것이 바람직하다.
새로운 ZNS를 생성하거나, 이미 생성된 ZNS에 블록을 추가하거나, 블록을 교체하고자 하는 경우 프리 블록을 선택할 수 있다.
ZNS에 이미 할당된 블록 또는 사용 중인 블록과 프리 블록을 구분하기 위하여, 컨트롤러(130)는 호스트 장치(110)의 데이터 (유저 데이터) 저장 용도로 사용되는 모든 메모리 블록의 상태를 비트맵 테이블로 관리할 수 있다. 일 실시에에서, 컨트롤러(130)는 프리 블록에는 제 1 논리 레벨의 데이터(예를 들어, 0)를, 사용 중인 블록이나 배드 블록에는 제 2 논리 레벨의 데이터(예를 들어, 1)을 할당하여 프리 블록을 구분할 수 있다.
ZNS 방식의 스토리지 장치에서 호스트 장치(110)가 제공하는 데이터의 사이즈는 가변적일 수 있으므로, 데이터 사이즈에 유동적으로 ZNS를 쉽고 빠르게 할당함은 물론, 이미 생성된 ZNS의 사이즈를 가변시킬 수 있으므로 저장부(140)를 효율적으로 사용할 수 있다. 아울러, ZNS에 저장된 데이터는 ZNS 단위 또는 ZNS를 구성하는 블록 단위로 소거할 수 있다. 즉, ZNS 내 모든 데이터를 소거하고자 하는 경우에는 ZNS 단위로 일부 데이터를 소거하고자 하는 경우에는 블록 단위로 소거를 수행할 수 있다.
도 2는 일 실시예에 의한 컨트롤러의 구성도이다.
도 2를 참조하면, 일 실시예에 의한 컨트롤러(130)는 ZNS 관리부(210), 쓰기 제어부(220) 및 블록 교체부(230)를 포함할 수 있다.
ZNS 관리부(210)는 데이터 처리 시스템(100), 또는 스토리지 장치(120)가 기동되거나 초기화될 때, 저장부(140)를 구성하는 블록들을 차례로 스캔하여 유저 적어도 유저 데이터용 메모리 블록의 상태를 나타내는 비트맵 테이블을 생성할 수 있다. 예를 들어, 프리 블록에는 제 1 논리 레벨의 데이터(예를 들어, 0)를, 사용 중이거나 데이터가 점유된 블록, 배드 블록에는 제 2 논리 레벨의 데이터(예를 들어, 1)을 설정하여, 할당 가능한 블록과 그렇지 않은 블록을 구분할 수 있다. 그리고, 스토리지 장치(120)에서 지원하는 기본 ZNS 단위, 즉 단위 블록의 크기 및 저장부(140)에 포함된 프리 블록의 총 개수를 호스트 장치(110)로 제공할 수 있다. 프리 블록의 총 개수는 ZNS에 할당될 수 있는 할당 최대값이다.
ZNS 관리부(210)가 블록의 상태를 비트맵 테이블로 관리함에 따라 ZNS 생성에 필요한 프리 블록을 쉽고 빠르게 구분할 수 있다. ZNS가 생성 또는 변경될 때, 배드 블록이 발생할 때 ZNS 관리부(210)가 비트맵 테이블을 갱신함은 자명하다.
ZNS가 필요한 호스트 장치(110)는 컨트롤러(130)의 ZNS 관리부(210)로 시작 논리주소를 포함하는 ZNS 할당 요청을 전송할 수 있다. 구현하기에 따라 시작 논리주소가 해당 ZNS의 식별자(ID)로 사용될 수도 있고, 별도의 식별자(IS)가 ZNS마다 부여될 수도 있다.
ZNS 관리부(210)는 ZNS 할당 요청에 할당받고자 하는 ZNS의 사이즈, 예를 들어 할당 요청값이 포함되어 있다면, 시작 논리주소(LBA)에 시작 물리주소(PBA)를 맵핑하고, 시작 물리주소에 대응하는 위치의 비트맵 테이블에 접근하여 할당 요청값에 대응하는 개수의 프리 블록을 선택하여 ZNS를 구성할 수 있다. ZNS 할당 요청에 할당 받고자 하는 ZNS 사이즈가 포함되어 있지 않은 경우 디폴트 값으로 설정된 개수의 블록, 예를 들어 기본 ZNS 단위인 하나의 블록을 ZNS에 할당할 수 있으나, 이에 한정되는 것은 아니다.
일 실시예에서, ZNS 관리부(210)는 ZNS를 구성하는 물리 블록 정보를 ZNS별 블록 리스트로 생성 및 관리할 수 있다.
ZNS 할당 후, ZNS 관리부(210)는 ZNS 생성에 사용된 블록의 상태 정보가 반영되도록 비트맵 테이블을 갱신할 수 있다.
ZNS 할당을 위해 블록을 선택할 때, ZNS를 구성하는 블록들이 다이 인터리빙 또는 채널 인터리빙 방식을 통해 병렬로 접근될 수 있도록 선택하는 것이 바람직하다. 예를 들어, 마지막에 할당된 블록이 속한 다이의 다음 다이부터 필요한 수만큼 라운드-로빈 방식으로 다이를 순회하며 블록을 선택할 수 있으나, 이에 한정되는 것은 아니다.
일 실시예에서, ZNS 관리부(210)는 호스트 장치(110)가 쓰기 요청한 데이터의 크기가 이를 저장할 ZNS의 잔여(프리) 공간 사이즈보다 큰 경우, 잔여 ZNS 사이즈 및 쓰기 요청된 데이터의 크기에 기초하여 ZNS에 블록을 추가할 수 있다. ZNS 확장을 위해 블록을 선택할 때에도 병렬성을 고려할 수 있음은 물론이고, ZNS 확장 후에도 ZNS별 블록 리스트와 비트맵을 갱신함은 자명이다.
저장부(140)의 수명이 증가함에 따라 ZNS를 구성하는 블록에 저장된 데이터가 열화되거나, 배드 블록이 발생할 수 있다. 열화 또는 배드 처리된 블록은 정상 블록으로 교체되어야 데이터를 안전하게 유지할 수 있다.
컨트롤러(130)는 교체가 필요한 블록이 포함된 ZNS가 발생하는 경우, ZNS 단위로 교체(Replacement)를 수행하지 않고 블록 단위로 교체를 수행하여 저장 공간의 낭비와 오버헤드를 줄일 수 있다.
블록 교체 시에도 병렬성을 고려하여 교체 대상 블록을 선택할 수 있고, 블록 교체 후에도 ZNS별 블록 리스트와 비트맵을 갱신하여야 함은 자명하다. 배드 블록이 발생하여 블록 교체를 수행한 경우, 배드 블록 정보는 메타 정보로서 관리하여 적어도 ZNS 관련 동작시 블록 할당으로부터 배제되도록 한다.
본 기술에 의하면, 호스트 장치(110)의 가변적인 데이터 사이즈에 적응적으로 ZNS를 쉽고 빠르게 할당함은 물론, 이미 생성된 ZNS의 사이즈를 가변시킬 수 있다. 나아가 데이터를 리프레쉬 또는 리클레임 하여야 하는 경우 ZNS의 최소 단위로 데이터를 이동시킬 수 있으므로 저장부(140)를 효율적으로 사용할 수 있다.
쓰기 제어부(220)는 호스트 장치(110)의 쓰기 요청에 응답하여 저장부(140)로 프로그램 명령을 전송할 수 있다.
블록 교체부(230)는 컨트롤러(130), 실질적으로는 ZNS 관리부(210)의 요청에 응답하여, ZNS 내의 노화된 또는 배드 처리된 블록을 정상 블록으로 교체할 수 있다.
도 3은 일 실시예에 의한 ZNS 관리부를 설명하기 위한 도면이다.
도 3을 참조하면, ZNS 관리부(210)는 블록 상태 설정부(211), 메타정보 관리부(213), 블록 할당부(215), ZNS 정보 관리부(217) 및 이벤트 검출부(219)를 포함할 수 있다.
블록 상태 설정부(211)는 데이터 처리 시스템(100), 또는 스토리지 장치(120)가 기동되거나 초기화될 때, 저장부(140)를 구성하는 블록들을 차례로 스캔하여 저장부(140) 내 적어도 유저 데이터용 메모리 블록의 상태를 나타내는 비트맵 테이블(BTMT)을 생성하고 저장할 수 있다. 저장부(140)의 구성예는 도 4에 도시하였다.
도 4는 일 실시예에 의한 저장부의 구성도이다.
도 4를 참조하면, 복수의 다이(DIE1 ~ DIE3)를 포함할 수 있다. 각 다이(DIE1 ~ DIE3)는 각각 복수의 플래인(PLANE11/21, PLANE12/22, PLANE13/23)을 포함할 수 있다.
복수의 다이(DIE1 ~ DIE3)에 포함된 복수의 플래인(PLANE11/21, PLANE12/22, PLANE13/23)은 복수의 채널(CH1~CHy) 및 복수의 경로(WAY1~WAYm)를 통해 데이터를 입출력할 수 있다.
각각의 플래인(PLANE11/21, PLANE12/22, PLANE13/23)은 복수의 블록(BLK[])를 포함할 수 있고, 각 블록(BLK[])은 복수의 페이지의 집합일 수 있다.
블록 상태 설정부(211)는 도 4에 도시한 것과 같은 저장부(140)에 대하여 유저 데이터용 블록에 대한 비트맵 테이블(BTMT)을 구성한다.
비트맵 테이블(BTMT)에는 예를 들어, 프리 블록에는 제 1 논리 레벨의 데이터(예를 들어, 0)를 설정하고, 사용 중이거나 데이터가 점유된 블록, 배드 블록에는 제 2 논리 레벨의 데이터(예를 들어, 1)을 설정하여, 할당 가능한 블록과 그렇지 않은 블록을 구분할 수 있다. 이에 따라 획득된 유저 데이터용 프리 블록의 총 개수(No_FREE)는 메타정보 관리부(213)로 제공될 수 있다.
메타정보 관리부(213)는 스토리지 장치(120)에서 지원하는 기본 ZNS 단위(BASE_SIZE) 즉, 단위 블록의 크기를 저장할 수 있다. 메타정보 관리부(213)는 블록 상태 설정부(211)로부터 저장부(140)에 포함된 유저 데이터용 프리 블록의 총 개수(No_FREE)를 제공받아 ZNS에 할당할 수 있는 할당 최대값(ALLOC_MAX)으로 저장할 수 있다. 데이터 처리 시스템(110) 또는 스토리지 장치(120)의 초기화시 메타정보 관리부(211)는 기본 ZNS 단위(BASE_SIZE) 및 할당 최대값(ALLOC_MAX)을 호스트 장치(110)로 제공할 수 있다.
ZNS가 필요한 호스트 장치(110)는 ZNS 관리부(210)의 블록 할당부(215)로 시작 논리주소를 포함하는 ZNS 할당 요청(ALLOC_ZNS)을 전송할 수 있다.
블록 할당부(215)는 ZNS 할당 요청(ALLOC_ZNS)에 할당 요청값이 포함되어 있다면, 시작 논리주소(LBA)에 시작 물리주소(PBA)를 맵핑하고, 시작 물리주소에 대응하는 위치의 비트맵 테이블(BTTMT)에 접근하여 할당 요청값에 대응하는 개수의 프리 블록을 선택하여 ZNS를 구성할 수 있다. ZNS 할당 요청에 할당 받고자 하는 ZNS 사이즈가 포함되어 있지 않은 경우 디폴트 값으로 설정된 개수의 블록, 예를 들어 기본 ZNS 단위인 하나의 블록을 ZNS에 할당할 수 있으나, 이에 한정되는 것은 아니다.
블록 할당부(215)는 ZNS 할당을 위해 블록을 선택할 때, ZNS를 구성하는 블록들이 다이 인터리빙 또는 채널 인터리빙 방식을 통해 병렬로 접근될 수 있도록 선택할 수 있다.
블록 할당부(215)는 ZNS에 할당된 블록 정보(BLK_No)를 블록 상태 설정부(211) 및 ZNS 정보 관리부(217)로 전송할 수 있다.
블록 상태 설정부(211)는 할당된 블록 정보(BLK_No)에 기초하여 비트맵 테이블(BTMT)을 갱신할 수 있다.
ZNS 정보 관리부(217)는 각 ZNS별로 시작 논리주소, 포함된 블록의 물리주소, 블록별 데이터 저장 여부 및 이에 따른 잔여 공간 사이즈를 ZNS별 블록 리스트로 생성 및 관리할 수 있다. 블록 할당부(215)로부터 ZNS에 할당된 블록 정보(BLK_No)가 전송됨에 따라, ZNS 정보 관리부(217)는 ZNS별 블록 리스트를 생성할 수 있다.
도 5는 일 실시예에 의한 ZNS별 블록풀을 설명하기 위한 도면이고, 도 6은 일 실시예에 의한 비트맵 테이블을 나타낸다.
호스트 장치(110)의 ZNS 할당 요청에 따라 3개의 ZNS가 각각 X, Y, Z의 ID로 생성된 경우를 가정한다. ZNS의 ID는 시작 논리주소일 수 있으나 이에 한정되지 않는다.
도 4 내지 도 6을 참조하면, ZNS X에 물리 블록 {111, 121,112,122, 113}이 할당되었으므로, 도 6에 도시한 비트맵 테이블(BTMT)에는 해당 위치의 비트맵이 예를 들어 '1"로 세팅될 수 있다.
ZNS Y에는 물리블록 {311, 221, 212, 322}가 할당되었고 도 6의 비트맵 테이블(BTMT)에 이러한 상황이 반영되어 있다. ZNS Z에 대해서도 마찬가지이다.
호스트 장치(110)의 쓰기 요청(WT)에 응답하여, ZNS 정보 관리부(217)는 ZNS별 블록 리스트를 참조하여 쓰기 요청된 데이터의 크기가 이를 저장할 ZNS의 잔여(프리) 공간 사이즈보다 큰지 확인할 수 있다.
잔여 공간이 부족한 경우, ZNS 정보 관리부(217)는 블록 할당부(215)로 추가할 블록의 개수를 전송하여 ZNS 확장을 요청(ZNS_EXT)할 수 있다.
블록 할당부(215)는 상술한 바와 같이, 비트맵 테이블(BTMT)을 참조하여 해당 ZNS에 블록을 추가할 수 있다. 일 실시예에서, 블록 할당부(215)는 마지막에 할당된 블록이 속한 다이의 다음 다이부터 필요한 수만큼 라운드-로빈 방식으로 다이를 순회하며 블록을 할당할 수 있다. 블록 확장 후 추가된 블록 정보(EXTBLK_No)가 블록 상태 설정부(211) 및 ZNS 정보 관리부(217)로 제공되어, 비트맵 테이블(BTM) 및 ZNS별 블록 리스트가 갱신됨은 물론이다.
도 4 내지 도 6을 참조하여, ZNS X에 대한 쓰기 데이터의 크기가 ZNS X의 잔여 공간보다 큰 경우를 예시한다.
블록 할당부(215)는 ZNS X에 대해 추가로 물리블록 {123}을 할당하여 ZNS X를 확장할 수 있다. 또한, ZNS별 블록 리스트 및 비트맵 테이블(BTMT)에 이를 반영할 수 있다.
ZNS 확장이 완료되면, ZNS 정보 관리부(217)는 쓰기 제어부(220)로 ZNS를 구성하는 물리주소를 포함하는 쓰기 요청(WT)을 전송할 수 있다.
쓰기 제어부(220)는 쓰기 요청(WT)에 응답하여 저장부(140)로 프로그램 명령(PGM)을 전송할 수 있다.
ZNS를 구성하는 블록에 데이터가 저장되면, ZNS 정보 관리부(217)는 블록별 데이터 저장 여부 및 그에 따른 잔여 사이즈를 갱신할 수 있다.
이벤트 검출부(219)는 교체할 소스 블록 정보(SCBLK_No)를 포함하는 리플레이스 명령(REPLACE)에 응답하여, 블록 할당부(215)로 교체할 타겟 블록(TGBLK))을 할당할 것을 요청(ALLOC_TGBLK)할 수 있다.
블록 할당부(215)는 상술한 바와 같이, 비트맵 테이블(BTMT)을 참조하여 프리 블록 중 타겟 블록을 선택하고 타겟 블록 정보(TGBLK_No)를 이벤트 검출부(219)로 전송할 수 있다. 타겟 블록 정보(TGBLK_No)는 블록 상태 설정부(211) 및 ZNS 정보 관리부(217)로 제공되어, 비트맵 테이블(BTM) 및 ZNS별 블록 리스트가 갱신됨은 물론이다.
이벤트 검출부(219)는 소스 블록 정보(SCBLK_No) 및 타겟 블록 정보(TGBLK_No)를 포함하는 블록 교체 명령(REPLACE)을 블록 교체부(230)로 전송할 수 있다.
도 4 내지 도 6을 참조하여, ZNS Y에 포함된 블록 {322}가 교체할 소스 블록인 경우를 설명한다.
블록 할당부(215)는 소스 블록과 동일한 다이(DIE2)에 포함된 프리 블록 중 하나인 블록 {312}을 타겟 블록으로 선택할 수 있다. 블록 {322}의 유효 데이터는 블록 {312}로 복사되고, ZNS Y의 블록 리스트에서 블록 정보 {322}는 블록 정보{312}로 교체된다.
나아가, 비트맵 테이블(BTMT)에 이를 반영할 수 있다. 소스 블록{322}가 배드 블록인 이유로 블록 교체가 수행되었다면, 비트맵 테이블(BTMT)에서 소스 블록{322}의 비트 정보를 변경하지 않음으로써, 배드 블록{322}가 프리 블록으로 선택되는 것을 방지한다.
블록 교체부(230)는 블록 교체 명령(REPLACE)에 응답하여, 소스 블록(SCBLK)의 유효 데이터를 타겟 블록(TGBLK)으로 이동(복사)할 수 있다.
소스 블록(SCBLK)이 배드 블록화된 경우에는 메타정보 관리부(213)의 배드 블록 리스트에 소스 블록 정보(SCBLK_No)가 추가되어, 적어도 ZNS 관련 동작시 블록 할당으로부터 배제되도록 한다.
도 7은 일 실시예에 의한 스토리지 장치의 동작 방법을 설명하기 위한 도면으로, ZSN 생성 방법을 나타내는 흐름도이다.
스토리지 장치(120)의 컨트롤러(130)는 데이터 처리 시스템(100), 또는 스토리지 장치(120)가 기동되거나 초기화될 때, 저장부(140)를 구성하는 블록들을 차례로 스캔하여 저장부(140) 내 적어도 유저 데이터용 메모리 블록의 상태를 나타내는 비트맵 테이블(BTMT)을 생성하고 저장할 수 있다(S100).
비트맵 테이블(BTMT)에는 예를 들어, 프리 블록에는 제 1 논리 레벨의 데이터(예를 들어, 0)를 설정하고, 사용 중이거나 데이터가 점유된 블록, 배드 블록에는 제 2 논리 레벨의 데이터(예를 들어, 1)을 설정하여, 할당 가능한 블록과 그렇지 않은 블록을 구분할 수 있다. 이에 따라 유저 데이터용 프리 블록의 총 개수가 획득될 수 있다.
ZNS 관리부(210)는 단계 S100에서 획득한 유저 데이터용 프리 블록의 총 개수와, 스토리지 장치(120)에서 지원하는 기본 ZNS 단위 즉, 단위 블록의 크기를 포함하는 메타 정보를 호스트 장치(110)로 전송할 수 있다(S101).
호스트 장치(101)가 컨트롤러(130)로 시작 논리주소를 포함하는 ZNS 할당 요청을 전송함에 따라, 컨트롤러(130)는 시작 논리주소(LBA)에 시작 물리주소(PBA)를 맵핑할 수 있다(S105).
호스트 장치(110)의 ZNS 할당 요청(ALLOC_ZNS)에 할당 요청값이 포함되어 있다면, 컨트롤러(130)는 시작 물리주소에 대응하는 위치의 비트맵 테이블(BTTMT)에 접근하여 할당 요청값에 대응하는 개수의 프리 블록을 선택하여 ZNS를 구성할 수 있다(S107).
호스트 장치(130)의 ZNS 할당 요청에 할당 받고자 하는 ZNS 사이즈가 포함되어 있지 않은 경우 컨트롤러(130)는 디폴트 값으로 설정된 개수의 블록, 예를 들어 기본 ZNS 단위인 하나의 블록을 선택하여 ZNS를 구성(S107)할 수 있으나, 이에 한정되는 것은 아니다.
일 실시예에서, 컨트롤러(130)는 ZNS 할당을 위해 블록을 선택할 때, ZNS를 구성하는 블록들이 다이 인터리빙 또는 채널 인터리빙 방식을 통해 병렬로 접근될 수 있도록 선택할 수 있다.
ZNS가 생성되면, 컨트롤러(130)는 해당 ZNS의 시작 논리주소, 포함된 블록의 물리주소, 블록별 데이터 저장 여부 및 이에 따른 잔여 공간 사이즈를 포함하는 ZNS별 블록 리스트로 생성할 수 있다(S109).
또한, 컨트롤러(130)는 할당된 블록의 물리주소에 기초하여 비트맵 테이블(BTMT)을 갱신할 수 있다(S111).
도 8은 일 실시예에 의한 스토리지 장치의 동작 방법을 설명하기 위한 도면으로, ZNS 확장 방법을 나타내는 흐름도이다.
호스트 장치(110)는 데이터를 라이트할 시작 논리주소(LBA) 및 쓰기 데이터를 포함하는 쓰기 요청(WT)을 스토리지 장치(120)로 전송할 수 있다(S201).
스토리지 장치(120)의 컨트롤러(130)는 시작 논리주소(LBA)가 포함된 ZNS의 ZNS별 블록 리스트를 참조하여 쓰기 요청된 데이터의 크기가 이를 저장할 ZNS의 잔여(프리) 공간 사이즈보다 큰지 확인할 수 있다(S203).
잔여 공간이 부족한 경우(S203:Y), 컨트롤러(130)는 해당 ZNS의 용량을 확장할 수 있다(S205).
일 실시예에서, 컨트롤러(130)는 비트맵 테이블(BTMT)을 참조하여 해당 ZNS에 블록을 추가할 수 있다. 이 때, 마지막에 할당된 블록이 속한 다이의 다음 다이부터 필요한 수만큼 라운드-로빈 방식으로 다이를 순회하며 블록을 할당할 수 있다.
블록 확장 후 추가된 블록 정보에 따라 ZNS별 블록 리스트 및 비트맵 테이블(BTM)이 갱신된다(S207, S209).
데이터를 저장할 공간이 확보되었으므로, 호스트 장치(110)의 쓰기 요청이 정상적으로 수행될 수 있고(S211), 쓰기 요청이 완료되었음을 호스트 장치(110)로 보고할 수 있다(S213). 이에 호스트 장치(110)가 응답함에 따라(S215), 컨트롤러(130)는 해당 ZNS를 클로즈 상태로 전환할 수 있다(S217).
한편, 잔여 공간이 부족하지 않은 경우(S203:N), 컨트롤러(130)는 쓰기 요청을 수행하는 단계(S211)를 수행할 수 있다.
도 9는 일 실시예에 의한 스토리지 장치의 동작 방법을 설명하기 위한 도면으로, ZNS 내 블록 교체 방법을 나타내는 흐름도이다.
컨트롤러(130)는 예를 들어 대기 중에(S301) 블록 교체 이벤트가 발생하는지 모니터링할 수 있다(S303). 블록 교체 이벤트는 ZNS를 구성하는 블록이 열화되거나 배드 블록화 되는 경우 발생할 수 있다.
블록 교체 이벤트가 발생하지 않으면(S303: N) 모니터링을 계속한다.
블록 교체 이벤트가 발생하는 경우(S303: Y), 컨트롤러(130)는 교체할 소스 블록 정보를 포함하는 리플레이스 명령에 응답하여, 비트맵 테이블을 참조하여 프리 블록 중 타겟 블록을 선택할 수 있다(S305).
일 실시예에서, 타겟 블록은 가능한 한 소스 블록과 동일한 다이에 포함된 프리 블록 중에서 선택될 수 있다.
이에 따라, 소스 블록의 데이터가 타겟 블록으로 복사되는 블록 교체 과정이 수행될 수 있다(S307).
이후, 컨트롤러(130)는 소스 블록 정보 및 타겟 블록 정보에 기초하여 ZNS별 블록 리스트와 비트맵 테이블을 갱신할 수 있다(S309, S311).
비트맵 테이블을 갱신할 때(S311), 소스 블록이 배드 블록인 이유로 블록 교체가 수행되었다면, 비트맵 테이블에서 소스 블록의 비트 정보를 변경하지 않음으로써, 배드 블록이 프리 블록으로 선택되는 것을 방지한다.
컨트롤러(130)는 배드 블록 리스트에 소스 블록 정보를 추가하고(S313), 대기하거나 종료할 수 있다(S315).
이과 같이, 호스트 장치(110)의 가변적인 데이터 사이즈에 적응적으로 ZNS를 쉽고 빠르게 할당함은 물론, 이미 생성된 ZNS의 사이즈를 가변시킬 수 있다. 나아가 데이터를 리프레쉬 또는 리클레임 하여야 하는 경우 ZNS의 최소 단위로 유효 데이터를 이동시킬 수 있으므로 저장부(140)를 효율적으로 사용할 수 있다.
도 10은 일 실시예에 의한 스토리지 시스템의 구성도이다.
도 10을 참조하면, 스토리지 시스템(1000)은 호스트 장치(1100)와 스토리지 장치(1200)를 포함할 수 있다. 일 실시예에서, 스토리지 장치(1200)는 솔리드 스테이트 드라이브(solid state drive)(SSD)로 구성될 수 있다.
스토리지 장치(1200)는 컨트롤러(1210), 비휘발성 메모리 장치들(1220-0 ~ 1220-n), 버퍼 메모리 장치(1230), 전원 공급기(1240), 신호 커넥터(1101) 및 전원 커넥터(1103)를 포함할 수 있다.
컨트롤러(1210)는 스토리지 장치(1200)의 제반 동작을 제어할 수 있다. 컨트롤러(1210)는 호스트 인터페이스 유닛, 컨트롤 유닛, 동작 메모리로서의 랜덤 액세스 메모리, 에러 정정 코드(ECC) 유닛 및 메모리 인터페이스 유닛을 포함할 수 있다. 예를 들어, 컨트롤러(1210)는 도 1 내지 도 3에 도시한 것과 같은 컨트롤러(130)를 포함하도록 구성될 수 있다.
호스트 장치(1100)와 스토리지 장치(1200)는 신호 커넥터(1101)를 통해 신호를 송수신할 수 있다. 여기에서, 신호란 명령어, 어드레스, 데이터를 포함할 수 있다.
컨트롤러(1210)는 호스트 장치(1100)로부터 입력된 신호를 분석하고 처리할 수 있다. 컨트롤러(1210)는 스토리지 장치(1200)를 구동하기 위한 펌웨어 또는 소프트웨어에 따라서 백그라운드 기능 블록들의 동작을 제어할 수 있다
버퍼 메모리 장치(1230)는 비휘발성 메모리 장치들(1220-0 ~ 1220-n)에 저장될 데이터를 임시 저장할 수 있다. 또한, 버퍼 메모리 장치(1230)는 비휘발성 메모리 장치들(1220-0 ~ 1220-n)로부터 읽혀진 데이터를 임시 저장할 수 있다. 버퍼 메모리 장치(1230)에 임시 저장된 데이터는 컨트롤러(1210)의 제어에 따라 호스트 장치(1100) 또는 비휘발성 메모리 장치들(1220-0 ~ 1220-n)로 전송될 수 있다.
비휘발성 메모리 장치들(1220-0 ~ 1220-n)은 스토리지 장치(1200)의 저장 매체로 사용될 수 있다. 비휘발성 메모리 장치들(1220-0 ~ 1220-n) 각각은 복수의 채널들(CH0~CHn)을 통해 컨트롤러(1210)와 연결될 수 있다. 하나의 채널에는 하나 또는 그 이상의 비휘발성 메모리 장치가 연결될 수 있다. 하나의 채널에 연결되는 비휘발성 메모리 장치들은 동일한 신호 버스 및 데이터 버스에 연결될 수 있다.
전원 공급기(1240)는 전원 커넥터(1103)를 통해 입력된 전원을 스토리지 장치(1200)의 컨트롤러(1210), 비휘발성 메모리 장치들(1220-0 ~ 1220-n) 및 버퍼 메모리(1230)에 제공할 수 있다. 전원 공급기(1240)는 보조 전원 공급기(1241)를 포함할 수 있다. 보조 전원 공급기(1241)는 서든 파워 오프(sudden power off)가 발생되는 경우, 스토리지 장치(1200)가 정상적으로 종료될 수 있도록 전원을 공급할 수 있다. 보조 전원 공급기(1241)는 대용량 캐패시터들(capacitors)을 포함할 수 있으나 이에 한정되는 것은 아니다.
신호 커넥터(1101)는 호스트 장치(1100)와 스토리지 장치(1200)의 인터페이스 방식에 따라서 다양한 형태의 커넥터로 구성될 수 있음은 자명하다.
전원 커넥터(1103)는 호스트 장치(1100)의 전원 공급 방식에 따라서 다양한 형태의 커넥터로 구성될 수 있음은 물론이다.
도 11 및 도 12는 실시예들에 따른 데이터 처리 시스템의 구성도이다.
도 11을 참조하면, 데이터 처리 시스템(3000)은 호스트 장치(3100)와 메모리 시스템(3200)을 포함할 수 있다.
호스트 장치(3100)는 인쇄 회로 기판(printed circuit board)과 같은 기판(board) 형태로 구성될 수 있다. 비록 도시되지 않았지만, 호스트 장치(3100)는 호스트 장치의 기능을 수행하기 위한 백그라운드 기능 블록들을 포함할 수 있다.
호스트 장치(3100)는 소켓(socket), 슬롯(slot) 또는 커넥터(connector)와 같은 접속 터미널(3110)을 포함할 수 있다. 메모리 시스템(3200)은 접속 터미널(3110)에 마운트(mount)될 수 있다.
메모리 시스템(3200)은 인쇄 회로 기판과 같은 기판 형태로 구성될 수 있다. 메모리 시스템(3200)은 메모리 모듈 또는 메모리 카드로 불릴 수 있다. 메모리 시스템(3200)은 컨트롤러(3210), 버퍼 메모리 장치(3220), 비휘발성 메모리 장치(3231~3232), PMIC(power management integrated circuit)(3240) 및 접속 터미널(3250)을 포함할 수 있다.
컨트롤러(3210)는 메모리 시스템(3200)의 제반 동작을 제어할 수 있다.
컨트롤러(3210)는 도 1 내지 도 3에 도시된 컨트롤러(130)를 포함하도록 구성될 수 있다.
버퍼 메모리 장치(3220)는 비휘발성 메모리 장치들(3231~3232)에 저장될 데이터를 임시 저장할 수 있다. 또한, 버퍼 메모리 장치(3220)는 비휘발성 메모리 장치들(3231~3232)로부터 읽혀진 데이터를 임시 저장할 수 있다. 버퍼 메모리 장치(3220)에 임시 저장된 데이터는 컨트롤러(3210)의 제어에 따라 호스트 장치(3100) 또는 비휘발성 메모리 장치들(3231~3232)로 전송될 수 있다.
비휘발성 메모리 장치들(3231~3232)은 메모리 시스템(3200)의 저장 매체로 사용될 수 있다.
PMIC(3240)는 접속 터미널(3250)을 통해 입력된 전원을 메모리 시스템(3200) 백그라운드에 제공할 수 있다. PMIC(3240)는, 컨트롤러(3210)의 제어에 따라서, 메모리 시스템(3200)의 전원을 관리할 수 있다.
접속 터미널(3250)은 호스트 장치의 접속 터미널(3110)에 연결될 수 있다. 접속 터미널(3250)을 통해서, 호스트 장치(3100)와 메모리 시스템(3200) 간에 커맨드, 어드레스, 데이터 등과 같은 신호와, 전원이 전달될 수 있다. 접속 터미널(3250)은 호스트 장치(3100)와 메모리 시스템(3200)의 인터페이스 방식에 따라 다양한 형태로 구성될 수 있다. 접속 터미널(3250)은 메모리 시스템(3200)의 어느 한 변에 배치될 수 있다.
도 12는 본 발명의 실시 예에 따른 메모리 시스템을 포함하는 데이터 처리 시스템을 예시적으로 도시하는 도면이다.
도 12를 참조하면, 데이터 처리 시스템(4000)은 호스트 장치(4100)와 메모리 시스템(4200)을 포함할 수 있다.
호스트 장치(4100)는 인쇄 회로 기판(printed circuit board)과 같은 기판(board) 형태로 구성될 수 있다. 비록 도시되지 않았지만, 호스트 장치(4100)는 호스트 장치의 기능을 수행하기 위한 백그라운드 기능 블록들을 포함할 수 있다.
메모리 시스템(4200)은 표면 실장형 패키지 형태로 구성될 수 있다. 메모리 시스템(4200)은 솔더 볼(solder ball)(4250)을 통해서 호스트 장치(4100)에 마운트될 수 있다. 메모리 시스템(4200)은 컨트롤러(4210), 버퍼 메모리 장치(4220) 및 비휘발성 메모리 장치(4230)를 포함할 수 있다.
컨트롤러(4210)는 메모리 시스템(4200)의 제반 동작을 제어할 수 있다. 컨트롤러(4210)는 도 1 내지 도 3에 도시한 읽기 컨트롤러(130)를 포함하도록 구성될 수 있다.
버퍼 메모리 장치(4220)는 비휘발성 메모리 장치(4230)에 저장될 데이터를 임시 저장할 수 있다. 또한, 버퍼 메모리 장치(4220)는 비휘발성 메모리 장치들(4230)로부터 읽혀진 데이터를 임시 저장할 수 있다. 버퍼 메모리 장치(4220)에 임시 저장된 데이터는 컨트롤러(4210)의 제어에 따라 호스트 장치(4100) 또는 비휘발성 메모리 장치(4230)로 전송될 수 있다.
비휘발성 메모리 장치(4230)는 메모리 시스템(4200)의 저장 매체로 사용될 수 있다.
도 13은 일 실시예에 의한 메모리 시스템 포함하는 네트워크 시스템의 구성도이다.
도 13을 참조하면, 네트워크 시스템(5000)은 네트워크(5500)를 통해서 연결된 서버 시스템(5300) 및 복수의 클라이언트 시스템들(5410~5430)을 포함할 수 있다.
서버 시스템(5300)은 복수의 클라이언트 시스템들(5410~5430)의 요청에 응답하여 데이터를 서비스할 수 있다. 예를 들면, 서버 시스템(5300)은 복수의 클라이언트 시스템들(5410~5430)로부터 제공된 데이터를 저장할 수 있다. 다른 예로서, 서버 시스템(5300)은 복수의 클라이언트 시스템들(5410~5430)로 데이터를 제공할 수 있다.
서버 시스템(5300)은 호스트 장치(5100) 및 메모리 시스템(5200)을 포함할 수 있다. 메모리 시스템(5200)은 도 1 내지 도 3의 스토리지 장치(120), 도 10의 스토리지 장치(1200), 도 11의 메모리 시스템(3200), 도 12의 메모리 시스템(4200)으로 구성될 수 있다.
도 14는 일 실시 예에 따른 스토리지 장치에 포함된 비휘발성 메모리 장치의 구성도이다.
도 14를 참조하면, 비휘발성 메모리 장치(300)는 메모리 셀 어레이(310), 행 디코더(320), 데이터 읽기/쓰기 블록(330), 열 디코더(340), 전압 발생기(350) 및 제어 로직(360)을 포함할 수 있다.
메모리 셀 어레이(310)는 워드 라인들(WL1~WLm)과 비트 라인들(BL1~BLn)이 서로 교차된 영역에 배열된 메모리 셀(MC)들을 포함할 수 있다.
메모리 셀 어레이(310)는 3차원 메모리 어레이를 포함할 수 있다. 3차원 메모리 어레이는 반도체 기판의 평판면에 대해 수직의 방향성을 가지며, 적어도 하나의 메모리 셀이 다른 하나의 메모리 셀의 수직 상부에 위치하는 낸드(NAND) 스트링을 포함하는 구조를 의미한다. 하지만 3차원 메모리 어레이의 구조가 이에 한정되는 것은 아니며 수직의 방향성뿐 아니라 수평의 방향성을 가지고 고집적도로 형성된 메모리 어레이 구조라면 선택적으로 적용 가능함은 자명하다.
행 디코더(320)는 워드 라인들(WL1~WLm)을 통해서 메모리 셀 어레이(310)와 연결될 수 있다. 행 디코더(320)는 제어 로직(360)의 제어에 따라 동작할 수 있다. 행 디코더(320)는 외부 장치(도시되지 않음)로부터 제공된 어드레스를 디코딩할 수 있다. 행 디코더(320)는 디코딩 결과에 근거하여 워드 라인들(WL1~WLm)을 선택하고, 구동할 수 있다. 예시적으로, 행 디코더(320)는 전압 발생기(350)로부터 제공된 워드 라인 전압을 워드 라인들(WL1~WLm)에 제공할 수 있다.
데이터 읽기/쓰기 블록(330)은 비트 라인들(BL1~BLn)을 통해서 메모리 셀 어레이(310)와 연결될 수 있다. 데이터 읽기/쓰기 블록(330)은 비트 라인들(BL1~BLn) 각각에 대응하는 읽기/쓰기 회로들(RW1~RWn)을 포함할 수 있다. 데이터 읽기/쓰기 블록(330)은 제어 로직(360)의 제어에 따라 동작할 수 있다. 데이터 읽기/쓰기 블록(330)은 동작 모드에 따라서 쓰기 드라이버로서 또는 감지 증폭기로서 동작할 수 있다. 예를 들면, 데이터 읽기/쓰기 블록(330)은 쓰기 동작 시 외부 장치로부터 제공된 데이터를 메모리 셀 어레이(310)에 저장하는 쓰기 드라이버로서 동작할 수 있다. 다른 예로서, 데이터 읽기/쓰기 블록(330)은 읽기 동작 시 메모리 셀 어레이(310)로부터 데이터를 독출하는 감지 증폭기로서 동작할 수 있다.
열 디코더(340)는 제어 로직(360)의 제어에 따라 동작할 수 있다. 열 디코더(340)는 외부 장치로부터 제공된 어드레스를 디코딩할 수 있다. 열 디코더(340)는 디코딩 결과에 근거하여 비트 라인들(BL1~BLn) 각각에 대응하는 데이터 읽기/쓰기 블록(330)의 읽기/쓰기 회로들(RW1~RWn)과 데이터 입출력 라인(또는 데이터 입출력 버퍼)을 연결할 수 있다.
전압 발생기(350)는 비휘발성 메모리 장치(300)의 백그라운드 동작에 사용되는 전압을 생성할 수 있다. 전압 발생기(350)에 의해서 생성된 전압들은 메모리 셀 어레이(310)의 메모리 셀들에 인가될 수 있다. 예를 들면, 프로그램 동작 시 생성된 프로그램 전압은 프로그램 동작이 수행될 메모리 셀들의 워드 라인에 인가될 수 있다. 다른 예로서, 소거 동작 시 생성된 소거 전압은 소거 동작이 수행될 메모리 셀들의 웰-영역에 인가될 수 있다. 다른 예로서, 읽기 동작 시 생성된 읽기 전압은 읽기 동작이 수행될 메모리 셀들의 워드 라인에 인가될 수 있다.
제어 로직(360)은 외부 장치로부터 제공된 제어 신호에 근거하여 비휘발성 메모리 장치(300)의 제반 동작을 제어할 수 있다. 예를 들면, 제어 로직(360)은 비휘발성 메모리 장치(300)의 읽기, 쓰기, 소거 동작을 제어할 수 있다.
이와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
10 : 데이터 처리 시스템
110 : 호스트 장치
120 : 스토리지 장치
130 : 컨트롤러
140 : 저장부

Claims (20)

  1. 각각 복수의 메모리 블록을 포함하는 복수의 다이로 구성되고, 기본 존 네임스페이스(ZNS) 사이즈를 호스트 장치로 제공하는 저장부; 및
    호스트 장치가 요구 ZNS 사이즈를 포함하는 ZNS 생성 요청 신호를 전송함에 따라, 상기 복수의 다이로부터 상기 요구 ZNS 사이즈에 대응하는 적어도 하나의 메모리 블록을 선택하여 ZNS을 생성하도록 구성되는 컨트롤러;
    를 포함하는 스토리지 장치.
  2. 제 1 항에 있어서,
    상기 컨트롤러는, 상기 ZNS를 구성하는 블록 정보를 ZNS별 블록 리스트로 관리하는 스토리지 장치.
  3. 제 1 항에 있어서,
    상기 컨트롤러는, 상기 복수의 메모리 블록 각각이 ZNS에 할당 가능한지의 여부를 비트맵 테이블로 관리하는 스토리지 장치.
  4. 제 1 항에 있어서,
    상기 호스트 장치가 상기 ZNS에 대하여 쓰기 데이터를 포함하는 쓰기 요청을 전송함에 따라,
    상기 컨트롤러는, 상기 쓰기 데이터의 사이즈가 상기 ZNS의 잔여 용량보다 큰 경우, 상기 ZNS에 속하지 않은 새로운 메모리 블록을 상기 ZNS에 추가하고 상기 쓰기 요청을 처리하도록 구성되는 스토리지 장치.
  5. 제 1 항에 있어서,
    상기 컨트롤러는, 상기 ZNS 에 포함된 적어도 하나의 소스 메모리 블록에 대한 블록 교체 명령에 응답하여, 상기 ZNS에 속하지 않은 적어도 하나의 타겟 메모리 블록을 선택하여 상기 ZNS에 포함시키고, 상기 소스 메모리 블록의 유효 데이터를 상기 타겟 메모리 블록으로 이동시키도록 구성되는 스토리지 장치.
  6. 제 5 항에 있어서,
    상기 타겟 메모리 블록은 상기 소스 메모리 블록이 포함된 다이 내에서 선택되도록 구성되는 스토리지 장치.
  7. 제 1 항에 있어서,
    상기 기본 ZNS 사이즈는 상기 저장부의 최소 소거 단위에 대응하는 스토리지 장치.
  8. 제 1 항에 있어서,
    상기 요구 ZNS 사이즈는 상기 ZNS를 구성할 메모리 블록의 개수인 스토리지 장치.
  9. 복수의 메모리 블록을 포함하는 저장부; 및
    호스트 장치가 요구하는 사이즈의 ZNS를 생성하기 위하여 복수의 메모리 블록을 취합하고, 상기 호스트 장치가 제공하는 쓰기 데이터의 크기에 기초하여 상기 생성한 ZNS의 크기를 조정하는 컨트롤러;
    를 포함하도록 구성되는 스토리지 장치.
  10. 제 9 항에 있어서,
    상기 컨트롤러는, 상기 ZNS를 구성하는 메모리 블록 정보를 ZNS별 블록 리스트로 관리하는 스토리지 장치.
  11. 제 9 항에 있어서,
    상기 컨트롤러는, 상기 복수의 메모리 블록 각각이 ZNS에 할당 가능한지의 여부를 비트맵 테이블로 관리하는 스토리지 장치.
  12. 제 9 항에 있어서,
    상기 컨트롤러는, 상기 ZNS에 저장된 유효 데이터를 상기 메모리 블록 단위로 선택하여, 상기 ZNS에 속하지 않은 타겟 메모리 블록으로 이동시키고, 상기 타겟 메모리 블록을 상기 ZNS에 포함시키도록 구성되는 스토리지 장치.
  13. 각각 복수의 메모리 블록을 포함하는 복수의 다이를 포함하는 저장부를 제어하는 컨트롤러가 기본 존 네임스페이스(ZNS) 사이즈를 호스트 장치로 전송하는 단계; 및
    컨트롤러가, 호스트 장치로부터 요구 ZNS 사이즈를 포함하는 ZNS 생성 요청 신호를 수신하는 단계; 및
    상기 컨트롤러가, 저장부를 구성하는 수의 다이 내에 포함된 복수의 메모리 블록으로부터 상기 요구 ZNS 사이즈에 대응하는 적어도 하나의 메모리 블록을 선택하여 ZNS을 생성하는 단계;
    를 포함하는 스토리지 장치의 동작 방법.
  14. 제 13 항에 있어서,
    상기 컨트롤러가, 상기 ZNS를 구성하는 블록 정보를 ZNS별 블록 리스트로 관리하는 단계를 더 포함하는 스토리지 장치의 동작 방법.
  15. 제 13 항에 있어서,
    상기 컨트롤러가, 상기 복수의 메모리 블록 각각이 ZNS에 할당 가능한지의 여부를 비트맵 테이블로 관리하는 단계를 더 포함하는 스토리지 장치의 동작 방법.
  16. 제 13 항에 있어서,
    상기 컨트롤러가, 상기 호스트 장치로부터 상기 ZNS에 대한 쓰기 데이터를 포함하는 쓰기 요청을 수신하는 단계;
    상기 쓰기 데이터의 사이즈가 상기 ZNS의 잔여 용량보다 큰 경우, 상기 컨트롤러가, 상기 ZNS에 속하지 않은 새로운 메모리 블록을 상기 ZNS에 추가하는 단계; 및
    상기 컨트롤러가, 상기 쓰기 요청을 처리하는 단계;
    를 더 포함하도록 구성되는 스토리지 장치의 동작 방법.
  17. 제 13 항에 있어서,
    상기 ZNS 에 포함된 적어도 하나의 소스 메모리 블록에 대한 블록 교체 명령에 응답하여,
    상기 컨트롤러가, 상기 ZNS에 속하지 않은 적어도 하나의 타겟 메모리 블록을 선택하여 상기 ZNS에 포함시키는 단계; 및
    상기 소스 메모리 블록의 유효 데이터를 상기 타겟 메모리 블록으로 이동시키는 단계;
    를 더 포함하도록 구성되는 스토리지 장치의 동작 방법.
  18. 제 17 항에 있어서,
    상기 타겟 메모리 블록은 상기 소스 메모리 블록이 포함된 다이 내에서 선택되는 스토리지 장치의 동작 방법.
  19. 제 13 항에 있어서,
    상기 기본 ZNS 사이즈는 상기 저장부의 최소 소거 단위에 대응하는 스토리지 장치의 동작 방법.
  20. 제 13 항에 있어서,
    상기 요구 ZNS 사이즈는 상기 ZNS를 구성할 메모리 블록의 개수인 스토리지 장치의 동작 방법.
KR1020210150388A 2021-11-04 2021-11-04 스토리지 장치 및 그 동작 방법 KR20230064849A (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020210150388A KR20230064849A (ko) 2021-11-04 2021-11-04 스토리지 장치 및 그 동작 방법
US17/730,648 US11966610B2 (en) 2021-11-04 2022-04-27 Storage device capable of adjusting size of zoned namespace and operating method thereof
CN202210793617.8A CN116069239A (zh) 2021-11-04 2022-07-05 存储装置及其操作方法
TW111131485A TW202319915A (zh) 2021-11-04 2022-08-22 儲存裝置及其操作方法
DE102022210372.6A DE102022210372A1 (de) 2021-11-04 2022-09-30 Speichereinrichtung und betriebsverfahren dafür

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210150388A KR20230064849A (ko) 2021-11-04 2021-11-04 스토리지 장치 및 그 동작 방법

Publications (1)

Publication Number Publication Date
KR20230064849A true KR20230064849A (ko) 2023-05-11

Family

ID=85983750

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210150388A KR20230064849A (ko) 2021-11-04 2021-11-04 스토리지 장치 및 그 동작 방법

Country Status (5)

Country Link
US (1) US11966610B2 (ko)
KR (1) KR20230064849A (ko)
CN (1) CN116069239A (ko)
DE (1) DE102022210372A1 (ko)
TW (1) TW202319915A (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023002294A (ja) * 2021-06-22 2023-01-10 キオクシア株式会社 メモリシステムおよびリフレッシュ制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102225525B1 (ko) 2014-04-08 2021-03-09 삼성전자 주식회사 하드웨어 기반 메모리 관리 장치 및 메모리 관리 방법
US20190044809A1 (en) * 2017-08-30 2019-02-07 Intel Corporation Technologies for managing a flexible host interface of a network interface controller
US11797433B2 (en) * 2019-12-20 2023-10-24 Sk Hynix Nand Product Solutions Corp. Zoned namespace with zone grouping
US11055176B1 (en) * 2020-04-24 2021-07-06 Western Digital Technologies, Inc. Storage devices hiding parity swapping behavior
US11379117B2 (en) * 2020-06-19 2022-07-05 Western Digital Technologies, Inc. Storage system and method for using host-assisted variable zone speed grade modes to minimize overprovisioning

Also Published As

Publication number Publication date
US20230134639A1 (en) 2023-05-04
US11966610B2 (en) 2024-04-23
DE102022210372A1 (de) 2023-05-04
TW202319915A (zh) 2023-05-16
CN116069239A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
US11086537B2 (en) Method and system to perform urgency level garbage collection based on write history of memory blocks
CN112416242B (zh) 数据存储设备及其操作方法
CN110874188B (zh) 数据存储装置、其操作方法以及具有其的存储***
US11747989B2 (en) Memory system and method for controlling nonvolatile memory
US11543990B2 (en) Data storage apparatus with extended lifespan and operation method thereof
US11150819B2 (en) Controller for allocating memory blocks, operation method of the controller, and memory system including the controller
KR20210144249A (ko) 저장 장치 및 이의 동작 방법
US20220236903A1 (en) Data storage apparatus and operation method thereof
US11966610B2 (en) Storage device capable of adjusting size of zoned namespace and operating method thereof
KR20220103340A (ko) 데이터 저장 장치 및 그것의 동작 방법
CN114981785A (zh) 基于改变高速缓存中数据块的写入模式执行媒体管理操作
US11409444B2 (en) Memory system and operation method thereof
CN115543860A (zh) 数据处理***及其操作方法
KR20220158372A (ko) 데이터 저장 장치 및 그 동작 방법
KR20210079894A (ko) 데이터 저장 장치 및 그것의 동작 방법
CN113010092A (zh) 数据存储设备及其操作方法
US11657000B2 (en) Controller and memory system including the same
US20220156003A1 (en) Controller and operation method thereof
US20220164119A1 (en) Controller, and memory system and data processing system including the same
KR20230060163A (ko) 스토리지 장치 및 그 동작 방법
CN116361199A (zh) 数据存储装置及其操作方法
KR20230135357A (ko) 메모리 시스템 및 그 동작 방법
KR20220080273A (ko) 데이터 저장 장치 및 그 동작 방법
KR20240048774A (ko) 호스트와 메모리 시스템이 데이터를 공유하는 장치 및 방법
KR20220122064A (ko) 데이터 저장 장치 및 그 동작 방법