KR20230029026A - Method for manufacturing thermochromic film - Google Patents

Method for manufacturing thermochromic film Download PDF

Info

Publication number
KR20230029026A
KR20230029026A KR1020210111011A KR20210111011A KR20230029026A KR 20230029026 A KR20230029026 A KR 20230029026A KR 1020210111011 A KR1020210111011 A KR 1020210111011A KR 20210111011 A KR20210111011 A KR 20210111011A KR 20230029026 A KR20230029026 A KR 20230029026A
Authority
KR
South Korea
Prior art keywords
thermochromic
vanadium oxide
annealing
untreated
film
Prior art date
Application number
KR1020210111011A
Other languages
Korean (ko)
Inventor
김광석
김정필
김명훈
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020210111011A priority Critical patent/KR20230029026A/en
Priority to PCT/KR2022/012572 priority patent/WO2023027475A1/en
Publication of KR20230029026A publication Critical patent/KR20230029026A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • B29D11/00894Applying coatings; tinting; colouring colouring or tinting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/26Thermosensitive paints

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The present invention provides a method for manufacturing a thermochromic film including: a forming step of forming a coating layer by applying a solution including untreated vanadium oxide on a substrate; and manufacturing a thermochromic layer by phase-changing untreated vanadium oxide into vanadium dioxide through annealing using intense pulsed light (IPL).

Description

열변색 필름의 제조 방법 {Method for manufacturing thermochromic film}Method for manufacturing thermochromic film {Method for manufacturing thermochromic film}

본 발명은 열변색 필름의 제조 방법에 관한 것이고, 상세하게는 IPL 어닐링을 이용한 열 변색 필름의 제조 방법에 관한 것이다.The present invention relates to a method for manufacturing a thermochromic film, and more particularly, to a method for manufacturing a thermochromic film using IPL annealing.

종래의 석탄, 석유 또는 원자력 에너지원의 단점이 부각되면서 최근 새로운 대체 에너지원 개발의 필요성이 커지고 있다. 하지만 이에 못지 않게 에너지 소비를 조절하는 것도 중요하다. 실제로 일반 가정의 에너지 소비량 중 60% 이상은 냉·난방비로 사용된다. 특히 일반 주택 및 건물에서 창문을 통해 소비되는 에너지는 24%에 이른다. 따라서 창문을 통해 소비되는 에너지를 줄이기 위하여, 창문의 크기를 조절하는 방법에서부터 고단열 창유리를 설치하는 방법까지 다양한 노력이 이루어지고 있다. As disadvantages of conventional coal, oil, or nuclear energy sources are highlighted, the need to develop new alternative energy sources has recently increased. However, it is equally important to control energy consumption. In fact, more than 60% of energy consumption in a typical home is used for heating and cooling. In particular, 24% of the energy consumed through windows in general houses and buildings. Therefore, in order to reduce the energy consumed through the window, various efforts have been made, from a method of adjusting the size of the window to a method of installing a high-insulation window glass.

예를 들어, 열변색성(thermochromism)을 가지는 열변색층을 유리에 코팅하여 적외선 투과율 제어를 통한 에너지 유입을 조절하는 열변색 유리(thermochromic glass)가 연구되고 있다.For example, research is being conducted on thermochromic glass in which a thermochromic layer having thermochromism is coated on the glass to control energy input through infrared transmittance control.

열변색성은 어떤 천이 금속(transition metal)의 산화물 또는 황화물의 색이 천이온도(또는 임계온도)에서 가역적으로 변하는 현상으로서, 이러한 열변색성 재료를 유리에 코팅하면 특정 온도 이상에서는 가시광선은 들어오지만 근적외선 및 적외선이 차단되어 실내온도가 상승하지 않게 되는 열변색 유리를 제조할 수 있다. 이 특성을 이용함으로써, 여름철의 고온에서는 근적외광을 차폐해 실내의 온도 상승을 억제하고, 겨울철의 저온에서는 외부로부터의 빛 에너지를 가져올 수 있게 된다. 이러한 열변색 유리를 건물의 창호에 사용하면 큰 에너지 절약 효과를 기대할 수 있다. Thermochromic is a phenomenon in which the color of an oxide or sulfide of a transition metal changes reversibly at a transition temperature (or critical temperature). It is possible to manufacture a thermochromic glass in which near-infrared rays and infrared rays are blocked so that the room temperature does not rise. By using this characteristic, near-infrared light is blocked at high temperatures in summer to suppress an increase in indoor temperature, and light energy from the outside can be brought in at low temperatures in winter. When such thermochromic glass is used for windows and doors of buildings, a great energy saving effect can be expected.

열변색성 효과를 나타내는 재료로는 다양한 천이 금속의 산화물 또는 황화물이 있는데, 그 중에 서도 천이온도(상전이 온도)가 68℃인 이산화바나듐(VO2)의 사용에 대한 연구가 주로 이루어지고 있다.Materials exhibiting a thermochromic effect include oxides or sulfides of various transition metals. Among them, studies on the use of vanadium dioxide (VO 2 ) having a transition temperature (phase transition temperature) of 68° C. have been mainly conducted.

한편, 이산화바나듐(VO2)은 오산화바나듐(V2O5)의 상변화를 유도하여 제조될 수 있으며, 종래에는 오산화바나듐(V2O5)을 포함하는 용액을 기재에 도포한 후, 고온의 열 처리 공정을 수행하여 상변화를 유도하였다. 그러나, 이러한 열 처리 공정은 광학적 특성을 떨어뜨리더라도 열확산을 방지하기 위해 확산 방지층을 불가피하게 사용하는 문제와 고분자 등 열에 민감한 기재에 적용하기 어려운 문제가 있었다.On the other hand, vanadium dioxide (VO 2 ) can be produced by inducing a phase change of vanadium pentoxide (V 2 O 5 ), conventionally, after applying a solution containing vanadium pentoxide (V 2 O 5 ) to a substrate, A heat treatment process was performed to induce a phase change. However, this heat treatment process has problems inevitably using an anti-diffusion layer to prevent thermal diffusion even if optical properties are deteriorated and difficult to apply to heat-sensitive substrates such as polymers.

본 발명은 확산 방지층 없이 산화바나듐의 상변화 유도 가능하고, 또한, 고분자 기재와 같이 열에 민감한 재질로 기재를 구성하는 경우에도 열변색 필름 제조 가능한 열변색 필름의 제조 방법을 제공하는 것을 해결하고자 하는 과제로 한다.The present invention is an object to solve the problem of providing a method for manufacturing a thermochromic film capable of inducing phase change of vanadium oxide without a diffusion barrier layer and capable of producing a thermochromic film even when the substrate is made of a heat-sensitive material such as a polymer substrate. do it with

상기 과제를 해결하기 위하여, 본 발명은 미처리된 산화바나듐(VOx)을 포함하는 용액을 기재 상에 도포하여 도포층을 형성하는 형성 단계; 및 극단파 백색광(intense pulsed light, IPL)을 이용한 어닐링을 통해 미처리된산화바나듐을 이산화바나듐으로 상변화시켜 열변색층을 제조하는 제조 단계;를 포함하는, 열변색 필름의 제조 방법을 제공한다.In order to solve the above problems, the present invention is a forming step of forming a coating layer by applying a solution containing untreated vanadium oxide (VOx) on a substrate; and preparing a thermochromic layer by phase-changing untreated vanadium oxide into vanadium dioxide through annealing using intense pulsed light (IPL).

본 발명에 따른 제조 방법은, IPL 어닐링을 이용함에 따라, 광학적 특성을 떨어뜨리는 확산 방지층 없이 산화바나듐의 상변화 유도 가능하고, 또한, 고분자 기재와 같이 열에 민감한 재질로 기재를 구성하는 경우에도 열변색 필름 제조가 가능한 장점을 갖는다.In the manufacturing method according to the present invention, as IPL annealing is used, it is possible to induce a phase change of vanadium oxide without a diffusion barrier deteriorating optical properties, and even when the substrate is made of a heat-sensitive material such as a polymer substrate, thermal discoloration It has the advantage that film production is possible.

도 1은 실시예에 따라 제조된 열변색 필름의 열변색 특성 그래프이다.
도 2 및 3은 대조군으로 제조된 열변색 필름의 열변색 특성 그래프이다.
1 is a graph of thermochromic characteristics of a thermochromic film prepared according to an example.
2 and 3 are graphs of thermochromic properties of a thermochromic film prepared as a control group.

본 발명은 열 변색 필름의 제조 방법에 관한 것으로서, 상세하게는 IPL 어닐링을 이용한 열 변색 필름의 제조 방법에 관한 것이다.The present invention relates to a method for manufacturing a thermochromic film, and more particularly, to a method for manufacturing a thermochromic film using IPL annealing.

상기 제조 방법은, 미처리된 산화바나듐(VOx)을 포함하는 용액을 기재 상에 도포하여 도포층을 형성하는 형성 단계; 및 극단파 백색광(intense pulsed light, IPL)을 이용한 어닐링을 통해 미처리된 산화바나듐을 이산화바나듐으로 상변화시켜 열변색층을 제조하는 제조 단계;를 포함한다. 본 명세서에서 미처리된 산화바나듐이란 상변화가 일어나지 않은 산화바나듐을 나타내는 한정적인 의미로 사용될 수 있다. 상기 미처리된 산화바나듐은 용액 내 입자 또는 이온 형태로 존재할 수 있고, 용매는 산화바나듐을 용해시키는 다양한 공지된 물질을 제한없이 사용할 수 있다. 또한, 상기 도포는 스핀 코팅, 슬롯다이코팅, 스프레이 코팅 등 다양한 방법이 사용될 수 있다.The manufacturing method may include a forming step of forming a coating layer by applying a solution containing untreated vanadium oxide (VOx) on a substrate; and preparing a thermochromic layer by phase-changing untreated vanadium oxide into vanadium dioxide through annealing using intense pulsed light (IPL). In the present specification, untreated vanadium oxide may be used in a limited sense to indicate vanadium oxide in which a phase change has not occurred. The untreated vanadium oxide may exist in the form of particles or ions in a solution, and various known materials that dissolve vanadium oxide may be used as the solvent without limitation. In addition, various methods such as spin coating, slot die coating, and spray coating may be used for the application.

본 발명에 따른 방법은 종래 고온의 열 처리 대신 IPL을 이용함에 따라, 고분자 기재와 같이 열에 민감한 재질로 기재를 구성하는 경우에도 열변색 필름 제조가 가능하다. As the method according to the present invention uses IPL instead of conventional high-temperature heat treatment, it is possible to manufacture a thermochromic film even when the substrate is made of a heat-sensitive material such as a polymer substrate.

예를 들어, 상기 미처리된 산화바나듐(VOx)은 오산화바나듐(V2O5)일 수 있다.For example, the untreated vanadium oxide (VOx) may be vanadium pentoxide (V 2 O 5 ).

한편 IPL을 이용한 산화바나듐의 상변화 유도 및 열에 민감한 고분자 기재의 변형을 방지하기 위해서, 어닐링의 구체적인 조건, 예를 들어, 어닐링 분위기, 광의 종류, 인가되는 전압(출력 전압), 펄스 폭, 펄스 수(광의 반복 조사 횟수), 펄스 간격(진동수)을 최적화로 설립하는게 중요하다.Meanwhile, in order to prevent the induction of phase change of vanadium oxide using IPL and the deformation of heat-sensitive polymer substrates, specific conditions of annealing, for example, annealing atmosphere, type of light, applied voltage (output voltage), pulse width, number of pulses (repetitive irradiation number of light), it is important to establish the pulse interval (frequency) as an optimization.

하나의 예시에서, 상기 어닐링은 진공 분위기에서 수행될 수 있다. 상세하게는, 상기 진공 분위기는 1 내지 20Torr의 진공 분위기일 수 있다.In one example, the annealing may be performed in a vacuum atmosphere. Specifically, the vacuum atmosphere may be a vacuum atmosphere of 1 to 20 Torr.

상기 광의 출력 전압은 1500 내지 1900V 범위 내일 수 있다. 출력 전압이 증가할수록 상변화가 효과적으로 일어나지만, 고분자 필름의 물리적 변형이 발생될 수 있으며, 물리적 변형이 일어나지 않는 적정 전압은 1500 내지 1750V 범위 내일 수 있다.The output voltage of the light may be in the range of 1500 to 1900V. Phase change effectively occurs as the output voltage increases, but physical transformation of the polymer film may occur, and an appropriate voltage at which physical transformation does not occur may be in the range of 1500 to 1750V.

또한, 상기 어닐링은 일정한 펄스 간격 및 펄스 폭을 갖고 반복적으로 광 조사할 수 있다. 구체적으로, 상기 펄스 간격은 0.2 내지 1Hz 범위 내일 수 있다. 펄스 간격이 감소할수록 초당 인가되는 평균 전력(average power)의 증가로 공정시간이 감소될 수 있다. 상기 평균 전력은 출력 전압, 펄스 폭, 펄스 간격에 의해 결정된다. 다만, 펄스 간격이 0.2Hz 이에서는 누적된 열에너지가 베드로 빠져나가 상변화가 일어나지 않을 수 있고, 1Hz 이상의 경우 베드 온도가 급격히 상승하게 되어 고분자 필름의 물리적 변형이 발생될 수 있다. In addition, the annealing may be repeatedly irradiated with light with a constant pulse interval and pulse width. Specifically, the pulse interval may be within a range of 0.2 to 1 Hz. As the pulse interval decreases, the process time may be reduced due to an increase in average power applied per second. The average power is determined by the output voltage, pulse width, and pulse interval. However, if the pulse interval is 0.2 Hz or less, the accumulated thermal energy may escape to the bed and phase change may not occur, and if the pulse interval is 1 Hz or more, the bed temperature rises rapidly and physical deformation of the polymer film may occur.

하나의 예시에서, 어닐링의 반복 횟수는 20 내지 200회 범위 내일 수 있다. 상기 반복 횟수가 증가할수록 제조되는 열변색층의 가시광 투과율 및 적외선 투과율이 향상되지만, 일정 횟수를 넘어서면 기재의 변형이 발생되어 감소하게 된다. 예를 들어, 200회까지 적외선 투과율이 향상되고, 250회 이상에서 가시광 투과율 및 적외선 투과율이 떨어진다. 따라서, 반복 횟수는 20 내지 200회, 50회 내지 200회, 100 내지 200회 또는 약 200회가 적절할 수 있다.In one example, the number of repetitions of annealing may be in the range of 20 to 200 times. As the number of repetitions increases, the visible light transmittance and infrared transmittance of the prepared thermochromic layer are improved, but when the number of repetitions exceeds a certain number of times, deformation of the substrate occurs and decreases. For example, infrared transmittance is improved up to 200 times, and visible light transmittance and infrared transmittance decrease at 250 times or more. Accordingly, the number of repetitions may be 20 to 200 times, 50 to 200 times, 100 to 200 times or about 200 times.

일 구체예에서, 상기 기재의 종류는 유리, 석영 또는 고분자 필름으로부터 선택될 수 있다. 특히, 플랙서블 장치의 활용도를 고려할 때, 기재는 고분자 필름으로 선택될 수 있고, 이러한 고분자 필름의 종류는 특별히 제한되지 않지만, 폴리올레핀 필름(예를 들면 사이클로올레핀, 폴리에틸렌, 폴리프로필렌 등), 폴리에스테르 필름(예를 들면 폴리에틸렌 테레프탈레이트, 폴리에틸렌나프탈레이트), 폴리염화비닐, 또는 셀룰로오스계 필름(예를 들면 트리아세틸 셀룰로오스)이 사용될 수 있다. In one embodiment, the type of substrate may be selected from glass, quartz or polymer film. In particular, considering the utilization of flexible devices, the substrate may be selected from a polymer film, and the type of such polymer film is not particularly limited, but polyolefin film (eg cycloolefin, polyethylene, polypropylene, etc.), polyester A film (eg polyethylene terephthalate, polyethylene naphthalate), polyvinyl chloride, or a cellulosic film (eg triacetyl cellulose) may be used.

구체적으로, 고분자 필름은 유리전이 온도가 70℃ 이상, 80℃ 이상, 90℃ 이상, 100℃ 이상, 110℃ 이상 또는 120인 이상인 고분자를 포함할 수 있다. 유리 전이 온도가 상기 범위를 만족하는 한, 그 종류는 특별히 제한되지 않으며, 원하는 물성 구현을 고려하여 적절히 선택될 수 있다. 예를 들어, 상기 고분자 필름이 폴리에틸렌나프탈레이트 필름인 경우, 우수한 열 저항성이 구현될 수 있다.Specifically, the polymer film may include a polymer having a glass transition temperature of 70 °C or higher, 80 °C or higher, 90 °C or higher, 100 °C or higher, 110 °C or higher, or 120 °C or higher. As long as the glass transition temperature satisfies the above range, the type is not particularly limited and may be appropriately selected in consideration of desired physical properties. For example, when the polymer film is a polyethylene naphthalate film, excellent heat resistance may be realized.

또한, 고분자 필름은 예를 들어, 1축 이상으로 연신되고, 120℃에서 1시간 동안 노출시 수축율이 3% 미만인 것을 사용할 수 있다. 연신된 고분자 필름을 사용하는 경우 우수한 기계적 강도를 가질 수 있고, 고온에서 수축을 방지할 수 있다. 이러한 조건을 만족시키는 고분자 필름은 공지된 재료 중에서 임의로 선택하여 사용할 수 있다.In addition, the polymer film may be, for example, one that is uniaxially stretched and has a shrinkage rate of less than 3% when exposed to 120° C. for 1 hour. When using a stretched polymer film, it can have excellent mechanical strength and can prevent shrinkage at high temperatures. A polymer film satisfying these conditions can be arbitrarily selected from known materials and used.

이하, 실시예를 통하여 본 발명을 상세히 설명하나, 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Hereinafter, the present invention will be described in detail through examples, but the embodiments described in the specification and the configuration shown in the drawings are only one most preferred embodiment of the present invention and do not represent all the technical ideas of the present invention. It should be understood that there may be various equivalents and modifications that can replace them at the time of filing.

실시예 Example

오산화바나듐을 포함하는 용액을 스핀코터(ACE-200, 동아무역, 한국)를 이용하여 10×10 mm2 크기에 유리에 1000 rpm, 30 초 코팅하였다.A solution containing vanadium pentoxide was coated on glass in a size of 10×10 mm 2 at 1000 rpm for 30 seconds using a spin coater (ACE-200, Donga Trading, Korea).

그리고, 1 Torr의 분위기에서 1900 V, 2 ms, 0.5 Hz, 100 회 IPL 처리하여 열변색 필름을 제조하였다.In addition, a thermochromic film was prepared by IPL treatment at 1900 V, 2 ms, 0.5 Hz, 100 times in an atmosphere of 1 Torr.

도 1은 실시예에 따라 제조된 열변색 필름의 열변색 특성 그래프이고, 도 2 및 3은 대조군으로 제조된 열변색 필름의 열변색 특성 그래프이다.1 is a thermochromic property graph of a thermochromic film prepared according to an example, and FIGS. 2 and 3 are thermochromic property graphs of a thermochromic film prepared as a control group.

구체적으로, 도 2는 실시예의 IPL 처리 대신 상온 건조하여 제조된 열변색 필름의 열변색 특성 그래프이고, 도 3은 실시예의 IPL 처리 대신 1 Torr의 분위기에서 500 ℃ 1시간 동안 열처리하여 제조된 열변색 필름의 열변색 특성 그래프이다. Specifically, FIG. 2 is a thermochromic characteristic graph of a thermochromic film prepared by drying at room temperature instead of the IPL treatment of the example, and FIG. 3 is a thermochromic property of the thermochromic film prepared by heat treatment at 500 ° C. This is a graph of the thermochromic properties of the film.

도면을 참조하면, 상온 건조한 열변색 필름은 산화바나듐의 상변화가 일어나지 않아, 열변색 특성이 구현되지 않았으며 (도 2 참조), 열처리 한 열변색 필름은 산화바나듐의 상변화가 일어나 열변색 특성이 구현되었고 (도 3 참조), 본 발명에 따른 IPL 처리로 제조된 열변색 필름도 상변화가 일어나 열처리 한 열변색 필름과 동일한 효과를 나타내었음을 확인할 수 있었다 (도 1 참조). Referring to the drawing, the thermochromic film dried at room temperature does not undergo a phase change of vanadium oxide, so no thermochromic characteristics are realized (see FIG. 2), and the thermochromic film subjected to heat treatment undergoes a phase change of vanadium oxide, resulting in thermal discoloration characteristics. This was implemented (see FIG. 3), and it was confirmed that the thermochromic film prepared by IPL treatment according to the present invention also exhibited the same effect as the thermochromic film subjected to heat treatment due to a phase change (see FIG. 1).

Claims (10)

미처리된 산화바나듐(VOx)을 포함하는 용액을 기재 상에 도포하여 도포층을 형성하는 형성 단계; 및
극단파 백색광(intense pulsed light, IPL)을 이용한 어닐링을 통해 미처리된 산화바나듐(VOx)을 이산화바나듐(VO2)으로 상변화시켜 열변색층을 제조하는 제조 단계;를 포함하는, 열변색 필름의 제조 방법.
Forming a coating layer by applying a solution containing untreated vanadium oxide (VOx) on a substrate; and
A manufacturing step of preparing a thermochromic layer by phase-changing untreated vanadium oxide (VOx) into vanadium dioxide (VO 2 ) through annealing using intense pulsed light (IPL); manufacturing method.
제 1 항에 있어서, 상기 미처리된 산화바나듐(VOx)은 오산화바나듐(V2O5)인, 열변색 필름의 제조 방법.The method of claim 1 , wherein the untreated vanadium oxide (VOx) is vanadium pentoxide (V 2 O 5 ). 제 1 항에 있어서, 상기 어닐링은 진공 분위기에서 수행하는, 열변색 필름의 제조 방법.The method of claim 1, wherein the annealing is performed in a vacuum atmosphere. 제 1 항에 있어서, 극단파 백색광의 출력 전압은 1500 내지 1900V 범위 내인, 열변색 필름의 제조 방법.The method of claim 1, wherein the output voltage of the extreme short wave white light is in the range of 1500 to 1900V. 제 1 항에 있어서, 어닐링은 일정한 펄스 간격 및 펄스 폭을 갖고 반복적으로 광 조사하는, 열변색 필름의 제조 방법.The method of claim 1, wherein the annealing is performed by repeatedly irradiating light with a constant pulse interval and pulse width. 제 5 항에 있어서, 상기 펄스 폭은 1 내지 4ms 범위 내인, 열변색 필름의 제조 방법.The method of claim 5, wherein the pulse width is in the range of 1 to 4 ms. 제 5 항에 있어서, 상기 펄스 간격은 0.2 내지 1Hz 범위 내인, 열변색 필름의 제조 방법.The method of claim 5, wherein the pulse interval is in the range of 0.2 to 1 Hz. 제 5 항에 있어서, 반복 횟수는 20 내지 200회 범위 내인, 열변색 필름의 제조 방법.The method of claim 5, wherein the number of repetitions is in the range of 20 to 200 times. 제 1 항에 있어서, 상기 기재는 유리, 석영 또는 고분자 필름인 광학 적층체의 제조 방법.The method of claim 1 , wherein the substrate is glass, quartz, or a polymer film. 제 9 항에 있어서, 고분자 필름은 유리전이 온도가 70℃ 이상인 고분자를 포함하는 광학 적층체의 제조 방법.The method of claim 9 , wherein the polymer film includes a polymer having a glass transition temperature of 70° C. or higher.
KR1020210111011A 2021-08-23 2021-08-23 Method for manufacturing thermochromic film KR20230029026A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210111011A KR20230029026A (en) 2021-08-23 2021-08-23 Method for manufacturing thermochromic film
PCT/KR2022/012572 WO2023027475A1 (en) 2021-08-23 2022-08-23 Thermochromic film and method for manufacturing thermochromic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210111011A KR20230029026A (en) 2021-08-23 2021-08-23 Method for manufacturing thermochromic film

Publications (1)

Publication Number Publication Date
KR20230029026A true KR20230029026A (en) 2023-03-03

Family

ID=85510620

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210111011A KR20230029026A (en) 2021-08-23 2021-08-23 Method for manufacturing thermochromic film

Country Status (1)

Country Link
KR (1) KR20230029026A (en)

Similar Documents

Publication Publication Date Title
KR101286170B1 (en) Thermochromic glass and method for manufacturing thereof
US20120301642A1 (en) Smart window
CN102765231A (en) Thermochromic substrate and pair-glass with thermochromic thin film
EP2679556A1 (en) Method of manufacturing thermochromic window
US20130149441A1 (en) Method Of Manufacturing Thermochromic Substrate
KR20160100066A (en) Ion Gel Smart Window and Manufacturing Method Thereof
US8801905B2 (en) Thermochromic substrate and method of manufacturing the same
US20160216588A1 (en) Electrochromic devices and method of manufacturing the same
JP5816753B2 (en) Method for producing thermochromic glass using low-temperature metal vapor deposition process and thermochromic glass using the same
BR112017027283B1 (en) METHOD FOR MANUFACTURING A COATED ARTICLE AND COATED ARTICLE
KR20230029026A (en) Method for manufacturing thermochromic film
KR101917040B1 (en) smart glass including vanadium dioxide film formed by low-temperature deposition and method for manufacturing thereof
WO2023027475A1 (en) Thermochromic film and method for manufacturing thermochromic film
KR101792403B1 (en) smart glass including vanadium dioxide film formed by low-temperature deposition and method for manufacturing thereof
Ghosh et al. Optical studies on ZnO films prepared by sol‐gel method
Wang et al. VO2 Film with high luminous transmittance and infrared modulation for smart windows application
JP2718471B2 (en) Method for producing niobium oxide electrochromic material
KR0143716B1 (en) Thermochromic material and smart window making with the material
KR101279397B1 (en) Thermochromic glass and method of producing the same
Wang et al. Tuning phase transition temperature of VO2 thin films with annealing O2 pressure
JPH08225937A (en) Production of nickel oxide based electrochromic material
KR960031660A (en) Crystallization Method of Thin Films for Thermochromic Smart Windows
Kwon et al. Multistep synthesis of VO2 (M) nanoparticles and their application to thermochromic hybrid films for IR modulation
Baloukas et al. Thermochromic VO2 coatings for energy control
CN116395978A (en) Preparation method of titanium dioxide with worm-shaped pores