KR20230005097A - High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same - Google Patents

High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same Download PDF

Info

Publication number
KR20230005097A
KR20230005097A KR1020220185882A KR20220185882A KR20230005097A KR 20230005097 A KR20230005097 A KR 20230005097A KR 1020220185882 A KR1020220185882 A KR 1020220185882A KR 20220185882 A KR20220185882 A KR 20220185882A KR 20230005097 A KR20230005097 A KR 20230005097A
Authority
KR
South Korea
Prior art keywords
methane
nickel
catalyst
based catalyst
steam reforming
Prior art date
Application number
KR1020220185882A
Other languages
Korean (ko)
Other versions
KR102573127B1 (en
Inventor
박해구
박선주
곽근재
위수빈
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020220185882A priority Critical patent/KR102573127B1/en
Publication of KR20230005097A publication Critical patent/KR20230005097A/en
Application granted granted Critical
Publication of KR102573127B1 publication Critical patent/KR102573127B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

The present invention relates to a steam-reforming Ni-based catalyst for methane, which includes a catalyst support with a regular pore structure manufactured by 3D printing technology of a mixture containing magnesium oxide (MgO), alumina (Al_2O_3), and a binder, thereby maximizing the contact area between a reactant and an active metal and exhibiting improved pressure drop characteristics during a reforming reaction. According to the present invention, a steam reforming process of methane exhibits a high conversion rate of methane gas of more than 75% even under high spatial velocity conditions in the range of 10,000 to 20,000 mL(CH_4)/gcat/hr, thereby being used in a method for industrially producing synthetic gas or hydrogen gas from methane gas. The steam-reforming Ni-based catalyst for methane comprises a 3D catalyst support and a Ni-based catalyst impregnated in the 3D catalyst support.

Description

메탄의 수증기 개질용 니켈계 촉매 및 이를 이용한 메탄의 수증기 개질 반응{High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same}High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same}

본 발명은 메탄의 수증기 개질용 니켈계 촉매 및 이를 이용한 메탄의 수증기 개질 반응에 관한 것이다.The present invention relates to a nickel-based catalyst for steam reforming of methane and a steam reforming reaction of methane using the same.

천연가스, 석탄 및 바이오매스는 개질반응을 통하여 합성가스를 생산하며 생산된 합성가스는 다양한 후단공정을 거쳐 화학물질 합성원료, 연료 및 산업공정에 사용한다. 생산된 합성가스에는 다량의 수소가 포함되어 있는데 수소는 정제공정을 거쳐 암모니아 합성, 정유공정, 제련공정, 폴리실리콘 제조공정 및 반도체제조공정, LED 제조공정에 사용하는 등 현대 산업에 있어 필수적이다. Natural gas, coal, and biomass produce syngas through reforming reactions, and the produced syngas goes through various downstream processes to be used for chemical synthesis raw materials, fuels, and industrial processes. The produced syngas contains a large amount of hydrogen. Hydrogen is essential for modern industries, such as ammonia synthesis, oil refining process, smelting process, polysilicon manufacturing process, semiconductor manufacturing process, and LED manufacturing process through the purification process.

최근 이산화탄소 감축 목표를 달성하기 위하여 철강산업에서도 제련공정에 수소를 사용하기 위한 연구가 진행 중이다. 특히, 수소는 연료전지와 연계할 경우 효율이 높고 오염물 배출이 없는 청정에너지원으로서 그 가치가 날로 증가하고 있다.Recently, in order to achieve the carbon dioxide reduction target, research is being conducted to use hydrogen in the steel industry in the smelting process. In particular, when hydrogen is linked with a fuel cell, its value is increasing day by day as a clean energy source with high efficiency and no emission of pollutants.

천연가스로부터 합성가스를 제조하는 방법은, 메탄의 수증기 개질 반응(steam reforming of methane; SMR), 산소를 이용한 메탄의 부분산화반응(partial oxidation of methane; POX), 메탄의 이산화탄소 개질반응(carbon dioxide reforming of methane; CDR) 및 수증기 개질반응과 이산화탄소 개질 반응이 혼합된 메탄의 혼합 개질반응(Steam carbon dioxide reforming, SCR) 등으로 크게 구분될 수 있으며, 각 개질반응으로부터 생성되는 일산화탄소와 수소(H2/CO) 비는 후속 공정에서 최적으로 요구되는 비에 따라서 다르게 사용될 수 있다. Methods for producing syngas from natural gas include steam reforming of methane (SMR), partial oxidation of methane (POX) using oxygen, and carbon dioxide reforming of methane. reforming of methane; CDR) and steam carbon dioxide reforming (SCR), which is a mixture of steam reforming and carbon dioxide reforming. The carbon monoxide and hydrogen (H 2 /CO) ratio may be used differently depending on the optimally required ratio in the subsequent process.

이 중에서 메탄의 수증기 개질공정(SMR, Steam Methane Reforming)은 촉매를 이용해 천연가스를 수증기 존재 하에서 개질시킴으로써 하기 반응식 1에 도시된 반응식과 같이 합성가스(CO + H2의 혼합 가스)로 화학 전환하는 반응으로, 메탄 1몰 당 수소 생산 수율이 가장 높으므로 가장 경제적인 수소 생산 방법이다. Among them, the steam methane reforming process (SMR) of methane is a process in which natural gas is reformed in the presence of steam using a catalyst to synthesize gas (a mixed gas of CO + H 2 ) as shown in the following reaction formula 1. Chemical conversion As a reaction, it is the most economical hydrogen production method because the yield of hydrogen production per mole of methane is the highest.

[반응식 1][Scheme 1]

CH4 + H2O = 3H2 + CO ΔH = 226 kJ/molCH4 + H2O = 3H2 + CO ΔH = 226 kJ/mol

현재 상업적으로 활용되고 있는 메탄의 수증기 개질공정(SRM)의 경우에는 반응온도 750 ~ 850 ℃에서 스팀과 메탄의 몰 비 4~6 : 1의 영역에서 Ni/Al2O3 촉매계가 주로 사용되고 있으나, 탄소침적에 의한 촉매의 비활성화가 심하게 발생하는 문제점이 있어서 귀금속 또는 조촉매로서 전이금속 및 알칼리금속이 함유된 촉매계에 대한 연구가 많이 진행되고 있는 실정이다.[Journal of Molecular Catalysis A 147 (1999) 41]In the case of methane steam reforming (SRM), which is currently used commercially, the Ni/Al2O3 catalyst system is mainly used in the range of 4 to 6:1 molar ratio of steam and methane at a reaction temperature of 750 ~ 850 ℃, but [Journal of Molecular Catalysis A 147 (1999) 41]

한국공개특허공보 제10-2010-0014012호에서는 메탄의 혼합 개질 반응(SRM과 CDR 개질 반응)용 촉매로서 니켈을 활성성분으로 하여 MgAlOx 금속산화물 지지체에 세륨 및 지르코늄에서 단일 성분 또는 2성분으로 전처리된 촉매를 사용하여 카본 침적에 의한 촉매의 비활성화가 억제되면서도 우수한 촉매 성능을 나타내는 합성가스의 제조방법이 기재되어 있으며, 또한 한국등록특허공보 제10-1794316호에서는 보헤마이트(boehmite)에 니켈 전구체를 함침시켜 담지한 촉매 파우더를 압축성형하여 소성하여 수증기 메탄 개질(SMR)용 Ni계 촉매 성형체를 공지하였으며, 보헤마이트를 지지체로 사용함으로써 펠렛화 및 성형화를 통한 촉매의 고강도화가 가능하며 향상된 반응 특성을 나타내었다.Korean Patent Publication No. 10-2010-0014012 discloses a MgAlOx metal oxide support with nickel as an active component as a catalyst for a mixed reforming reaction of methane (SRM and CDR reforming reaction) pretreated with cerium and zirconium as a single component or two components. A method for producing syngas that exhibits excellent catalytic performance while suppressing deactivation of the catalyst due to carbon deposition using a catalyst is described, and in Korean Patent Registration No. 10-1794316, boehmite is impregnated with a nickel precursor. A Ni-based catalyst molded body for steam methane reforming (SMR) has been known by compressing and sintering the catalyst powder supported thereon, and by using boehmite as a support, it is possible to increase the strength of the catalyst through pelletization and molding, and to have improved reaction characteristics. showed up

한편, 수소 제조를 위한 수증기 메탄 개질 공정(SMR: Steam Methane Reforming)은 몰 수가 증가하는 반응으로 압력에 큰 영향을 받는다. 따라서, 수증기 메탄 개질 공정 중 압력 강하 현상을 억제함으로써 메탄의 전환율을 상승시킬 수 있는 형상의 촉매를 제조해야 한다.On the other hand, steam methane reforming (SMR:   steam methane reforming) for hydrogen production is a reaction in which the number of moles increases, and is greatly affected by pressure. Therefore, it is necessary to manufacture a catalyst having a shape capable of increasing the conversion rate of methane by suppressing the pressure drop during the steam methane reforming process.

현재 수소 제조를 위한 수증기 메탄 개질 공정(SMR: Steam Methane Reforming) 촉매로 비교적 가격이 저렴한 세라믹 지지체에 Ni, Ru 등의 활성물질을 담지한 펠렛형 세라믹 지지체 촉매가 사용되고 있다. 그러나, 펠렛형 세라믹 지지체 촉매는 내충격성이 떨어져 쉽게 파손되고 반응기내 차압을 발생시키는 원인이 되었다. 또한, 수증기 메탄 개질 공정은 반응물 몰수보다 생성물 몰수가 증가하는 반응으로 압력이 증가하면 반응 특성, 예컨대 압력에 따른 평형전환율이 하락하는 단점이 있었다. 또한 에너지(촉매가 활성화 되기 위한 힘: 온도)가 불충분하여 촉매의 활성화 에너지 및 촉매량에 의존하는 단점이 있었다.Currently, as a steam methane reforming (SMR) catalyst for hydrogen production, a pellet-type ceramic support catalyst in which active materials such as Ni and Ru are supported on a relatively inexpensive ceramic support is used. However, the pellet-type ceramic support catalyst has low impact resistance and is easily damaged and causes a differential pressure in the reactor. In addition, the steam methane reforming process is a reaction in which the number of moles of a product increases rather than the number of moles of a reactant, and when the pressure increases, the reaction characteristics, for example, the equilibrium conversion rate according to the pressure, has a disadvantage. In addition, there is a disadvantage in that the energy (force for activating the catalyst: temperature) is insufficient and depends on the activation energy of the catalyst and the catalyst amount.

또한, 니켈계 알루미나를 펠렛 또는 비드형태로 압축 성형하는 시도가 이루어지고 있는데, 특히 2mm 펠렛의 경우 SMR 촉매 중 매우 소형의 사이즈로, 특수하게 제작된 반응기에 충진되기 적합하다. 그러나, 알루미나 계열의 파우더를 이용하여 2mm 펠렛을 압축성형하여 제조할 경우 성형 모듈의 손상으로 인해 제작이 불가능한 문제점이 여전히 존재한다.In addition, attempts have been made to compress nickel-based alumina in the form of pellets or beads. In particular, in the case of 2 mm pellets, it is a very small size among SMR catalysts and is suitable for filling in a specially designed reactor. However, when manufacturing 2mm pellets by compression molding using an alumina-based powder, there is still a problem in that manufacturing is impossible due to damage to the molding module.

이러한 배경 기술하에, 본 발명자들은 압력 강하 현상을 최소화할 수 있는 입체적 형상의 지지체를 제조하기 위하여 3D 프린팅 기술을 도입하여 알루미나(Al2O3) 및 산화마그네슘을 포함하는 복합 성분의 지지체를 제조한 후 니켈을 함침시켜 제조된 촉매 복합체의 향상된 반응 전환율을 확인하고 본 발명을 완성하였다.Under this background art, the present inventors introduced 3D printing technology to manufacture a three-dimensional support capable of minimizing the pressure drop phenomenon to prepare a support of a composite component including alumina (Al2O3) and magnesium oxide, and then nickel The improved reaction conversion rate of the catalyst composite prepared by impregnation was confirmed and the present invention was completed.

한국공개특허공보 제10-2010-0014012호(공개일: 2010년02월10일)Korean Patent Publication No. 10-2010-0014012 (published on February 10, 2010) 한국등록특허공보 제10-1794316호(공고일: 2017년11월07일)Korean Registered Patent Publication No. 10-1794316 (Announcement date: November 07, 2017)

Journal of Molecular Catalysis A 147 (1999) 41Journal of Molecular Catalysis A 147 (1999) 41

본 발명은 3D 프린팅 기술을 도입하여 반응 물질과 활성 금속과의 접촉면적을 극대화 시킬 수 있는 3D 구조체인 메탄의 수증기 개질용 니켈계 촉매를 제공하고자 한다.The present invention is to provide a nickel-based catalyst for steam reforming of methane, which is a 3D structure capable of maximizing the contact area between a reactive material and an active metal by introducing 3D printing technology.

또한, 본 발명에 따른 촉매의 존재하에서 메탄가스로부터 합성가스 또는 수소가스를 제조하기 위한 메탄의 수증기 개질 공정을 제공하고자 한다.In addition, it is intended to provide a steam reforming process of methane for producing synthesis gas or hydrogen gas from methane gas in the presence of the catalyst according to the present invention.

상기의 과제를 해결하기 위해 본 발명은, 3D 프린팅법에 의하여 마그네슘-알루미늄 금속산화물 및 바인더를 포함하는 혼합물로 성형되어 다수의 채널이 형성된 3차원 촉매 지지체; 상기 3차원 촉매 지지체에 함침된 니켈계 촉매;를 포함하는 것을 특징으로 하는 메탄의 수증기 개질용 니켈계 촉매를 제공한다.In order to solve the above problems, the present invention is a three-dimensional catalyst support formed of a plurality of channels formed by a mixture containing a magnesium-aluminum metal oxide and a binder by a 3D printing method; It provides a nickel-based catalyst for steam reforming of methane, characterized in that it comprises; a nickel-based catalyst impregnated in the three-dimensional catalyst support.

상기 메탄의 수증기 개질용 니켈계 촉매는 마그네슘-알루미늄 금속산화물에 대하여 알루미나(Al2O3)를 50 내지 100 중량%을 포함할 수 있다.The nickel-based catalyst for steam reforming of methane may include 50 to 100 wt % of alumina (Al 2 O 3 ) based on the magnesium-aluminum metal oxide.

상기 바인더는 유기 바인더 또는 무기 바인더일 수 있다. The binder may be an organic binder or an inorganic binder.

상기 유기 바인더는 메틸셀룰로오스, 카르복시메틸셀룰로오스, 히드록시에틸셀룰로오스, 녹말, 폴리에틸렌글리콜, 폴리비닐알콜, 덱스트린(dextrin), 왁스 에멀전(wax emulsions), 리그노설포네이트, 파라핀, 폴리아크릴레이트 중에서 선택되는 하나 이상일 수 있다.The organic binder is selected from methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, starch, polyethylene glycol, polyvinyl alcohol, dextrin, wax emulsions, lignosulfonates, paraffins, and polyacrylates. There can be more than one.

상기 무기 바인더는 벤토나이트(Bentonite), 마그네슘알루미늄실리케이트(Magnesium Aluminum Silicates) 및 나트륨실리케이트(Sodium Silicate) 중에서 선택되는 하나 이상일 수 있다.The inorganic binder may be one or more selected from bentonite, magnesium aluminum silicate, and sodium silicate.

상기 촉매 지지체의 비표면적이 200 내지 300 m2/g이고, 상기 채널의 평균 직경이 5 내지 15 nm 일 수 있다.The specific surface area of the catalyst support is 200 to 300 m 2 /g, and the average diameter of the channel may be 5 to 15 nm.

상기 니켈 함량이 5 내지 20 중량%일 수 있다.The nickel content may be 5 to 20% by weight.

상기 메탄의 수증기 개질용 니켈계 촉매는 900 내지 1100 oC 온도에서 소성하여 제조할 수 있다.The nickel-based catalyst for steam reforming of methane may be prepared by calcining at a temperature of 900 to 1100 ° C.

또한, 본 발명은 상기 니켈계 촉매의 존재 하에서 수행하는 메탄의 수증기 개질 반응 공정을 제공한다.In addition, the present invention provides a steam reforming reaction process of methane carried out in the presence of the nickel-based catalyst.

상기 메탄의 수증기 개질 반응 공정에 있어서, 메탄 가스의 공간 속도는 1,000 내지 20,000 mL(CH4)/gcat/hr 범위일 수 있다.In the steam reforming reaction process of methane, the space velocity of methane gas may be in the range of 1,000 to 20,000 mL(CH4)/gcat/hr.

상기 메탄의 수증기 개질 반응 공정에 있어서, 메탄 전환율이 75% 이상일 수 있다.In the steam reforming reaction process of methane, the methane conversion rate may be 75% or more.

본 발명의 메탄의 수증기 개질용 니켈계 촉매는 3D 프린팅 기술을 도입하여 규칙적인 기공구조를 가지는 촉매 지지체를 포함함으로써, 반응 물질과 활성 금속과의 접촉면적을 극대화시킬 수 있을 뿐만 아니라, 반응 중 개선된 압력강하 특성을 나타내어 메탄의 전환율을 향상시키는데 기여한다.The nickel-based catalyst for steam reforming of methane of the present invention includes a catalyst support having a regular pore structure by introducing 3D printing technology, thereby maximizing the contact area between the reactant and the active metal, and improving the reaction during the reaction. It contributes to improving the conversion rate of methane by showing the pressure drop characteristic.

또한, 본 발명에 따른 촉매의 존재 하에서 수증기 메탄 개질 반응은 통상적으로 사용되는 높은 공간속도에서 메탄의 전환율이 높게 나타내어 산업적으로 메탄 가스로부터 합성가스 또는 수소가스를 제조하는 방법에 이용할 수 있다.In addition, the steam methane reforming reaction in the presence of the catalyst according to the present invention shows a high methane conversion rate at a commonly used high space velocity, so it can be used industrially in a method for producing syngas or hydrogen gas from methane gas.

도 1은 비교제조예에 따른 니켈계 촉매의 환원온도에 따른 수증기 메탄 개질 반응에서의 메탄의 전환율을 나타낸 그래프이다.
도 2는 제조예 1에 따른 니켈계 촉매를 이용한 수증기 메탄 개질 반응에서의 메탄의 전환율을 나타낸 그래프이다.
도 3은 제조예 2에 따른 (a) 촉매 지지체 및 (b) 촉매 지지체에 니켈 금속이 함참된 니켈계 촉매의 사진이다.
도 4는 제조예 2에 따른 니켈계 촉매를 이용한 수증기 메탄 개질 반응에서의 메탄의 전환율을 나타낸 그래프이다.
1 is a graph showing the conversion rate of methane in a steam methane reforming reaction according to the reduction temperature of a nickel-based catalyst according to Comparative Preparation Example.
Figure 2 is a graph showing the conversion of methane in the steam methane reforming reaction using a nickel-based catalyst according to Preparation Example 1.
3 is a photograph of a nickel-based catalyst containing nickel metal in (a) a catalyst support and (b) a catalyst support according to Preparation Example 2;
Figure 4 is a graph showing the conversion of methane in the steam methane reforming reaction using a nickel-based catalyst according to Preparation Example 2.

본 발명에 따른 메탄의 수증기 개질용 니켈계 촉매는 다수의 채널이 형성된 촉매 지지체에 니켈(Ni)을 함침시켜 제조하며, 상기 촉매 지지체는 마그네슘-알루미늄 금속산화물 및 바인더를 포함하는 혼합물을 3D 프린팅법에 의하여 성형하여 제조한 것을 특징으로 한다.The nickel-based catalyst for steam reforming of methane according to the present invention is prepared by impregnating a catalyst support having a plurality of channels with nickel (Ni), and the catalyst support is prepared by 3D printing a mixture including a magnesium-aluminum metal oxide and a binder. It is characterized in that it is manufactured by molding.

이하, 본 발명에 따른 메탄의 수증기 개질용 니켈계 촉매를 자세히 설명한다.Hereinafter, the nickel-based catalyst for steam reforming of methane according to the present invention will be described in detail.

본 발명의 촉매 지지체 성분으로서 마그네슘-알루미늄 금속산화물은 다음에서 설명한 바와 같은 공침법으로 제조하여 사용하거나, 또는 상용제품을 사용할 수 있으며, 이에 상응하는 타제품 또는 제조하여 사용하는 것도 가능하다.The magnesium-aluminum metal oxide as a component of the catalyst support of the present invention may be prepared and used by the coprecipitation method as described below, or a commercial product may be used, and other products or products corresponding thereto may be used.

마그네슘-알루미늄 금속산화물은 당 분야에서 일반적으로 사용되는 것으로, 비표면적이 100 ∼ 400 ㎡/g, 바람직하기로는 100 ∼ 200 ㎡/g 이고, MgO/Al2O3 중에서 알루미나(Al2O3)는 50 내지 100 중량% 범위를 만족하는 것을 사용할 수 있으며, 바람직하게는 MgO/Al2O3 중에서 알루미나(Al2O3)는 50 내지 90 중량% 범위일 수 있고, 더욱 바람직하게는 MgO/Al2O3 중에서 알루미나(Al2O3)는 50 내지 80 중량% 범위일 수 있다.Magnesium-aluminum metal oxide is generally used in the field, and has a specific surface area of 100 to 400 m2/g, preferably 100 to 200 m2/g, and 50 to 100% by weight of alumina (Al2O3) in MgO/Al2O3. It is possible to use one that satisfies the range, preferably in MgO / Al2O3, alumina (Al2O3) may be in the range of 50 to 90% by weight, more preferably in MgO / Al2O3, alumina (Al2O3) is in the range of 50 to 80% by weight can be

이때, 금속산화물내 알루미나(Al2O3)가 50중량% 미만인 경우에는 고온 소성과정에서 생성되는 하이드로탈사이트 구조가 안정화되지 못하여 촉매의 비활성화가 발생할 수 있으므로 상기의 범위를 유지할 필요성이 있다.At this time, when the amount of alumina (Al2O3) in the metal oxide is less than 50% by weight, the hydrotalcite structure generated in the high-temperature firing process is not stabilized and the catalyst may be deactivated, so it is necessary to maintain the above range.

지지체를 구성하는 마그네슘-알루미늄 금속산화물을 공침법으로 제조하기 위해서는, 먼저 알루미나 전구체 및 마그네슘 전구체의 금속 혼합물에 염기성 침전제를 가하여 pH 10의 염기성 수용액 하에서 공침, 숙성하여 형성된 침전물을 여과 및 세척하는 과정을 도입한다.In order to prepare the magnesium-aluminum metal oxide constituting the support by the coprecipitation method, first, a basic precipitant is added to the metal mixture of the alumina precursor and the magnesium precursor, and the precipitate formed by coprecipitation and aging in a basic aqueous solution of pH 10 is filtered and washed. introduce

상기 알루미나 전구체 및 마그네슘 전구체의 금속 혼합물은 당 분야에서 일반적으로 사용되는 각 금속의 전구체로 구체적으로 아세테이트염, 수산화염 및 질산염 등을 사용할 수 있다. 상기 염기성 침전제는 당 분야에서 일반적으로 사용되는 것으로, 구체적으로 탄산나트륨(Na2CO3), 탄산칼륨(K2CO3), 탄산암모늄((NH4)2CO3) 및 탄산수소나트륨(NaHCO3) 등을 사용하는 것이 바람직하다.The metal mixture of the alumina precursor and the magnesium precursor is a precursor of each metal commonly used in the art, and specifically, acetate salts, hydroxide salts, nitrates, and the like may be used. The basic precipitant is generally used in the art, and specifically, it is preferable to use sodium carbonate (Na2CO3), potassium carbonate (K2CO3), ammonium carbonate ((NH4)2CO3) and sodium hydrogen carbonate (NaHCO3).

공침 반응 후 촉매의 숙성과정을 거쳐 침전물을 제조한다. 이때, 상기 숙성은 50 ∼ 90 ℃에서 2 ∼ 20시간 이상, 바람직하게는 2 ∼ 15시간으로 유지하는 것이 적절한데, 이는 제시된 숙성시간 영역에서 적절한 크기의 비표면적과 안정화된 하이드로탈사이트 구조의 마그네슘-알루미늄 금속산화물(Mg-Al) 형성이 유리하다. 상기 숙성 과정에서 숙성온도가 50 ℃ 미만이면 금속산화물의 구조 형성이 어려운 단점이 있고 90 ℃를 초과하는 경우에는 금속산화물의 입자 크기가 증가하여 비표면적이 감소하는 문제가 발생한다. 또한, 숙성 시간이 2 시간 미만으로 짧으면 금속산화물의 구조가 잘 발달되지 않으며, 20 시간을 초과하는 경우에는 금속산화물의 입자 사이즈가 증가하여 비표면적 감소에 의한 최종 촉매의 활성점이 감소하고 합성 시간이 증가하여 경제적이지 않으므로 적절하지 못하다.After the coprecipitation reaction, a catalyst is aged to prepare a precipitate. At this time, it is appropriate to maintain the aging at 50 to 90 ° C. for 2 to 20 hours or more, preferably 2 to 15 hours. - Formation of aluminum metal oxide (Mg-Al) is advantageous. In the aging process, if the aging temperature is less than 50 ° C., it is difficult to form a metal oxide structure, and if it exceeds 90 ° C., the particle size of the metal oxide increases and the specific surface area decreases. In addition, if the aging time is less than 2 hours, the structure of the metal oxide is not well developed, and if the aging time exceeds 20 hours, the particle size of the metal oxide increases, reducing the active point of the final catalyst due to the decrease in the specific surface area and the synthesis time It is not suitable because it is not economical because it increases.

상기 침전물은 세척 과정을 거친 후에 100 ℃ 이상, 구체적으로 100 ∼ 150 ℃ 범위의 오븐에서 하루 이상 건조시킨 후에 500 ∼ 1000 ℃ 범위, 바람직하기로는 600 ∼ 900 ℃ 범위에서 소성시켜 촉매를 제조하거나 건조한 후에 소성과정을 생략하고 촉매 제조에 바로 사용할 수도 있다. 상기 소성온도가 500 ℃ 미만이면 금속전구체가 산화물 형태로 전환되지 못해 적절한 구조가 형성되지 않아 지지체의 비표면적이 감소하는 문제가 있으며, 1000 ℃를 초과하는 경우에는 지지체의 입자 크기의 성장에 의한 비표면적의 감소로 활성성분의 분산성이 감소하여 혼합개질의 반응속도가 감소하는 문제가 발생한다. 또한, 건조만을 수행한 금속산화물을 지지체로 사용하는 경우에는 활성성분의 담지 과정에서 촉매 입자의 분산성을 증대시켜 혼합개질 반응의 활성이 증가할 수 있으나, 하이드로탈사이트 구조의 산화물 형태로 전환되지 못해 문제가 발생할 수 있으므로 스피넬 구조의 형성을 위한 당량비로 제조된 금속산화물의 제조가 중요하게 된다.The precipitate is dried in an oven at 100 ° C. or more, specifically in the range of 100 to 150 ° C. for one day or more after passing through a washing process, and then calcined in the range of 500 to 1000 ° C., preferably 600 to 900 ° C. to prepare a catalyst or after drying The calcination process may be omitted and it may be directly used for catalyst preparation. If the firing temperature is less than 500 ° C, the metal precursor is not converted into an oxide form, so that an appropriate structure is not formed, resulting in a decrease in the specific surface area of the support. As the surface area decreases, the dispersibility of the active ingredient decreases, resulting in a decrease in the reaction rate of mixed reforming. In addition, in the case of using a metal oxide that has only been dried as a support, the activity of the mixed reforming reaction can be increased by increasing the dispersibility of the catalyst particles in the process of supporting the active ingredient, but it is not converted to the oxide form of the hydrotalcite structure. Since problems may occur, it is important to prepare a metal oxide prepared in an equivalent ratio for forming a spinel structure.

상기 방법으로 제조된 하이드로탈사이트 구조의 마그네슘-알루미늄 금속산화물을 바인더와 혼합하여 페이스트를 제조한 후 3D 프린팅법에 의하여 다수의 채널이 형성된 구조의 촉매 지지체를 제조한다.After preparing a paste by mixing the magnesium-aluminum metal oxide having a hydrotalcite structure prepared by the above method with a binder, a catalyst support having a structure in which a plurality of channels is formed is prepared by a 3D printing method.

3D 프린팅법은 채널 크기 및 구조, 촉매 활성 성분 분포 등의 제어가 용이한 ME(Material Extrusion), FDM(Fused Deposition Modeling), FFF(Fused Filament Fabrication), DMT(Laser-aided Direct Metal Tooling), SLS(Selective Laser Sintering), Polyjet(Photopolymer Hetting), MJM (Multi Jet modeling) 등의 3D 프린팅법을 적용할 수 있으며, 바람직하게는 ME(Material Extrusion)이 사용될 수 있다. 3D printing methods include ME (Material Extrusion), FDM (Fused Deposition Modeling), FFF (Fused Filament Fabrication), DMT (Laser-aided Direct Metal Tooling), SLS, etc. (Selective Laser Sintering), Polyjet (Photopolymer Hetting), MJM (Multi Jet modeling), and the like may be applied, and ME (Material Extrusion) may be preferably used.

일반적인 고정층 촉매 반응시스템에서는 펠릿타입의 촉매들의 로딩으로 불규칙적인 공극이 생겨 반응기 내부에 압력강하가 생길 수 있고, 이에 따라 반응 특성의 재현성 확보의 어려움이 있다. 3D 프린팅법으로 만든 촉매는 규칙적인 구조와 촉매 활성의 분포를 통해 촉매층의 압력강하를 최소화하여 공정규모의 확대가 용이하고, 촉매활성의 재현성을 확보할 수 있는 장점이 있다.In a typical fixed-bed catalytic reaction system, irregular air gaps may occur due to the loading of pellet-type catalysts, resulting in a pressure drop inside the reactor, and accordingly, it is difficult to secure reproducibility of reaction characteristics. The catalyst made by the 3D printing method has the advantage of being easy to expand the process scale by minimizing the pressure drop in the catalyst layer through a regular structure and distribution of catalytic activity, and securing reproducibility of catalytic activity.

구체적으로, 상기 3D 프린팅법은 바람직한 조성을 가지는 마그네슘-알루미늄 금속산화물에 바인더, 용매, 첨가제 등을 첨가하여 세라믹 페이스트(paste)를 준비한 다음, 상기 세라믹 페이스트를 재료 압출방식(Material Extrusion) 기법의 3D 프린팅을 이용하여 다수의 채널이 형성된 촉매 성형체를 수득하고, 상기 수득된 성형체를 건조시킨 다음, 소성하여 제조된다. Specifically, in the 3D printing method, a ceramic paste is prepared by adding a binder, a solvent, an additive, etc. to a magnesium-aluminum metal oxide having a desired composition, and then the ceramic paste is 3D printed using a material extrusion method. It is prepared by obtaining a catalyst molded body having a plurality of channels formed by using, drying the obtained molded body, and then firing it.

이때, 상기 바인더는 유기 바인더 또는 무기 바인더인를 사용할 수 있으며, 구체적으로 유기 바인더로서 메틸셀룰로오스, 카르복시메틸셀룰로오스, 히드록시에틸셀룰로오스, 녹말, 폴리에틸렌글리콜, 폴리비닐알콜, 덱스트린(dextrin), 왁스 에멀전(wax emulsions), 리그노설포네이트, 파라핀, 폴리아크릴레이트 중에서 선택되는 하나 이상이 사용될 수 있으며, 또한 무기 바인더로서 벤토나이트(Bentonite), 마그네슘알루미늄실리케이트(Magnesium Aluminum Silicates) 및 나트륨실리케이트(Sodium Silicate) 중에서 선택되는 하나 이상이 사용될 수 있으나 이에 제한되는 것은 아니다.In this case, an organic binder or an inorganic binder may be used as the binder, and specifically, as an organic binder, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, starch, polyethylene glycol, polyvinyl alcohol, dextrin, wax emulsion (wax emulsions), lignosulfonate, paraffin, and polyacrylate may be used, and as an inorganic binder, Bentonite, Magnesium Aluminum Silicates, and Sodium Silicate are selected. One or more may be used, but is not limited thereto.

본 발명에 따른 마그네슘-알루미늄 금속산화물의 촉매 지지체는 3D 프린팅법에 의하여 균일하고 정밀한 형상의 채널을 포함하도록 제조가 가능하며, 촉매 구조물의 입구 단부와 출구 단부의 축을 기준으로 횡단면이 사각형, 오각형, 육각형, 칠각형, 팔각형 및 더 큰 수의 각들을 갖는 다각형 형상; 원형; 타원형; 기하학적 형상; 및 이들의 혼합 형상;일 수 있으며, 바람직하게는 다수의 채널의 횡단면은 물질교환 및 열전달 측면에서 사각형, 오각형, 육각형, 원형 등일 수 있다.The catalyst support of magnesium-aluminum metal oxide according to the present invention can be manufactured to include channels of uniform and precise shape by 3D printing, and the cross section based on the axis of the inlet and outlet ends of the catalyst structure is rectangular, pentagonal, polygonal shapes with hexagons, heptagons, octagons and larger numbers of angles; circle; oval; geometric shapes; and a mixture shape thereof; and preferably, the cross section of the plurality of channels may be a square, pentagonal, hexagonal, or circular shape in terms of material exchange and heat transfer.

메탄의 수증기 개질 공정은 기체 몰 수가 증가하는 반응으로 압력에 큰 영향을 받는데, 다수의 1D 채널이 형성된 촉매 지지체는 반응 압력을 감소시켜 반응 효율을 증가시키는 요인으로서 작용하는 것으로 여겨진다.The steam reforming process of methane is a reaction in which the number of moles of gas is increased and is greatly affected by pressure, and the catalyst support having a plurality of 1D channels is considered to act as a factor in increasing reaction efficiency by reducing the reaction pressure.

상기 촉매 지지체의 비표면적이 200 ∼ 300 ㎡/g 인 것이 바람직하며, 촉매 지지체내 채널의 평균 직경이 5 내지 15 nm 인 것이 바람직하다. 이때, 촉매 지지체의 비표면적이 200 ㎡/g 미만이거나 채널의 평균 직경이 15 nm 초과이면 지지체의 비표면적이 작아서 활성성분의 분산성이 감소하는 문제가 발생하여 촉매의 활성이 감소하며, 비표면적이 300 ㎡/g 초과이거나 채널의 평균 직경이 5 nm 미만의 지지체를 사용하는 경우에는 지지체의 열적 안정성이 감소하여 촉매 제조 및 반응 과정에서 지지체의 소결현상에 의한 촉매의 활성이 감소하는 문제가 발생할 수 있다The specific surface area of the catalyst support is preferably 200 to 300 m 2 /g, and the average diameter of the channels in the catalyst support is preferably 5 to 15 nm. At this time, if the specific surface area of the catalyst support is less than 200 m / g or the average diameter of the channels exceeds 15 nm, the specific surface area of the support is small and the dispersibility of the active component is reduced. If the support exceeds 300 m 2 / g or the average channel diameter is less than 5 nm, the thermal stability of the support is reduced, resulting in a decrease in the activity of the catalyst due to sintering of the support during catalyst preparation and reaction. can

한편, 상기 촉매 지지체의 채널벽 두께는 메탄의 수증기 개질 반응용 촉매 구조물에서 요구되는 기계적 특성이나, 구조적 특성 및 구조물 형성 재료에 따라 조절하여 구성될 수 있으며, 바람직하게는 100 내지 500 μm 일 수 있다. 상기 범위의 두께를 만족하면, 메탄의 수증기 개질 반응에서 압력강하가 일어나지 않고 반응물의 전환율을 향상시키는 측면에서 바람직하다.On the other hand, the thickness of the channel wall of the catalyst support may be adjusted according to the mechanical properties required in the catalyst structure for the steam reforming reaction of methane, the structural properties, and the material for forming the structure, and preferably may be 100 to 500 μm. . When the thickness within the above range is satisfied, a pressure drop does not occur in the steam reforming reaction of methane and the conversion rate of the reactants is improved.

상기 촉매 지지체에 니켈 금속을 함침 시키기 위해 사용되는 니켈 전구체는 니켈 나이트레이트 헥사하이드레이트(Nickel Nitrate Hexahydrate), 니켈클로라이드 헥사하이드레이트(Nickel Chloride Hexahydrate), 니켈 아세테이트 테트라하이드레이트(Nickel Acetate Tetrahydrate) 및 니켈 브로마이드 하이드레이트(Nickel Bromide Hydrate)로 이루어진 군으로부터 선택된 1 종 이상일 수 있으나 이에 한정되지는 않는다.The nickel precursor used to impregnate the nickel metal into the catalyst support includes nickel nitrate hexahydrate, nickel chloride hexahydrate, nickel acetate tetrahydrate, and nickel bromide hydrate ( Nickel Bromide Hydrate) may be one or more selected from the group consisting of, but is not limited thereto.

상기 전구체용 용매로는 물, C1~C6의 저급 알콜 등이 있으며, 특히 증류수, 탈이온수를 사용하는 것이 바람직하다.Examples of the solvent for the precursor include water, lower alcohols of C1 to C6, and the like, and distilled water and deionized water are particularly preferably used.

상기 전구체 용액은 80~130 ℃에서 제조될 수 있다. 건조과정은 상온~130 ℃에서 5~10 시간 수행될 수 있다. 건조 방법은 특별히 한정하지 않으며 오븐을 사용할 수 있다. 촉매 지지체의 개질이나 촉매 금속 또는 촉매 증진제의 담지시, 이들 전구체 용액을 담지하는 횟수는 제한하지 않는다. 예들 들면, 촉매성분 담지시 여러 번에 걸쳐 나누어서 담지할 수 있다.The precursor solution may be prepared at 80 ~ 130 ℃. The drying process may be performed for 5 to 10 hours at room temperature to 130 ° C. The drying method is not particularly limited, and an oven may be used. When the catalyst support is reformed or the catalytic metal or catalyst enhancer is supported, the number of times these precursor solutions are supported is not limited. For example, when the catalyst component is supported, it can be divided and supported several times.

상기 니켈 함량은 전체 촉매량에 대하여 5 내지 20 중량%인 것이 바람직하다. 이때, 니켈함량이 5 중량% 미만일 경우 촉매 단위 면적당 촉매 활성을 나타내는 활성점이 충분히 나타나지 않으며, 20 중량% 초과이면, 촉매 활성 성분의 증가에 따라 나타나는 활성점의 증가분이 미미한 수준이어서 활성 성분의 담지량을 증가시키는 것은 비경제적이다.The nickel content is preferably 5 to 20% by weight based on the total catalyst amount. At this time, when the nickel content is less than 5% by weight, the active points representing the catalytic activity per catalyst unit area are not sufficiently displayed, and when the nickel content is greater than 20% by weight, the increase in the active points that appears according to the increase of the catalytically active component is insignificant, so that the supported amount of the active component is reduced. Increasing it is uneconomical.

상기 메탄의 수증기 개질용 니켈계 촉매는 니켈 함침 및 건조 후에 900 내지 1100 oC 온도에서 소성하는 것이 바람직하며, 상기 온도로 소성하여 제조된 촉매는 촉매 활성점과 지지체의 결합력을 증가시키고, 소성 공정을 수행하지 않은 촉매보다 비표면적 및 산점 특성이 우수하여, 반응특성이 향상되는 장점이 있다.The nickel-based catalyst for steam reforming of methane is preferably calcined at a temperature of 900 to 1100 ° C after nickel impregnation and drying. It has an advantage in that the reaction characteristics are improved because the specific surface area and acid point characteristics are superior to those of the catalysts that do not perform the reaction.

또한, 본 발명은 상기 메탄의 수증기 개질용 니켈계 촉매의 존재 하에서 메탄 가스와 수증기를 주입하여 메탄의 수증기 개질 공정을 수행함으로써, 합성 가스 및 수소 가스를 수득할 수 있다.In addition, in the present invention, synthesis gas and hydrogen gas may be obtained by performing a steam reforming process of methane by injecting methane gas and steam in the presence of the nickel-based catalyst for steam reforming of methane.

상기 메탄의 수증기 개질 반응의 온도는 700 ℃ ~ 1,000 ℃일 수 있으며, 증기와 메탄의 비(S/C)는 2~6인 것이 바람직하다.The temperature of the steam reforming reaction of methane may be 700 ° C. to 1,000 ° C., and the steam to methane ratio (S / C) is preferably 2 to 6.

수증기와 메탄의 비(S/C)가 2 미만인 경우에는 일산화탄소의 함량이 증가하고, 이에 따라 촉매층과 반응기 표면에 탄소가 침적될 우려가 있어 공정상 불리하며, 수증기와 메탄의 비(S/C)가 6을 초과하면, 과량의 수증기로 인해 촉매가 산화되거나 반응 후 미반응된 물을 분리시키는 후속공정이 필요하다. When the ratio of water vapor to methane (S/C) is less than 2, the content of carbon monoxide increases, which is disadvantageous in the process due to the possibility of carbon deposition on the catalyst layer and the surface of the reactor. ) exceeds 6, the catalyst is oxidized due to excess water vapor or a subsequent process of separating unreacted water after the reaction is required.

또한, 본 발명에 따른 니켈계 촉매를 이용한 메탄의 수증기 개질 반응 공정에서의 메탄가스의 공간 속도는 1,000 내지 20,000 mL(CH4)/gcat/hr 범위일 수 있으며, 바람직하게는 10,000 내지 20,000 mL(CH4)/gcat/hr 범위일 수 있다.In addition, the space velocity of methane gas in the steam reforming reaction process of methane using the nickel-based catalyst according to the present invention may range from 1,000 to 20,000 mL (CH4) / gcat / hr, and preferably from 10,000 to 20,000 mL (CH4 )/gcat/hr range.

따라서, 본 발명에 따른 메탄의 수증기 개질 반응용 니켈계 촉매를 사용하면, 압력강하가 낮아 높은 공간 속도(10,000 내지 20,000 mL(CH4)/gcat/hr)에서도 메탄 전환율이 75% 이상으로 높게 나타나 경제 적으로 유리해 산업적으로 이용 가능성이 높다.Therefore, when the nickel-based catalyst for steam reforming of methane according to the present invention is used, the pressure drop is low and the methane conversion rate is as high as 75% or more even at a high space velocity (10,000 to 20,000 mL (CH4) / gcat / hr). It is advantageous and industrially applicable.

이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are intended to illustrate the present invention by way of example, and the scope of the present invention is not limited to these examples.

[비교제조예] [Comparative Manufacturing Example]

상용 보헤마이트(Catapal A)에 1 wt.%의 메틸셀룰로오스(Methyl Cellulose)를 바인더로 사용하여 혼합한 다음, 스팀리포밍 반응의 활성물질인 니켈 전구체로 니켈나이트레이트(Ni(NO3)26H2O)를 12 wt.% 첨가시켜 물(D.I.W.)과 함께 혼합하여 페이스트(paste)를 제조하였다. 페이스트는 재료 압출방식 기법의 3D 프린트를 이용하여 촉매 구조물 성형체를 제조했다. 3D 프린터의 nozzle tip 크기는 400 μm이고, 충진율은 40%이다.Commercial boehmite (Catapal A) was mixed with 1 wt.% of methyl cellulose as a binder, and nickel nitrate (Ni(NO 3 ) 2 6H was used as a nickel precursor, which is an active material of the steam reforming reaction. 2 O) was added at 12 wt.% and mixed with water (DIW) to prepare a paste. For the paste, a molded body of the catalyst structure was manufactured using 3D printing of material extrusion method. The nozzle tip size of the 3D printer is 400 μm, and the filling rate is 40%.

제조한 촉매 구조물은 상온에서 하루 동안 1차 건조시키고, 110℃ 오븐에서 12시간 동안 2차 건조시켰다. 건조된 촉매 구조물을 1050℃ 소성로에서 5시간 동안 소성시켰다. 촉매 구조물의 직경은 7.85 mm, 높이는 8.52 mm이며, 채널 간격은 489 μm이고 공극률은 34.58%이다. The prepared catalyst structure was firstly dried at room temperature for one day, and secondarily dried in an oven at 110° C. for 12 hours. The dried catalyst structure was calcined in a 1050° C. furnace for 5 hours. The diameter of the catalyst structure is 7.85 mm, the height is 8.52 mm, the channel spacing is 489 μm, and the porosity is 34.58%.

[제조예 1] [Production Example 1]

상용 보헤마이트(Catapal A)에 1 wt.%의 메틸셀룰로오스(Methyl Cellulose)를 바인더로 사용하고 물(D.I.W)과 함께 혼합하여 페이스트(paste)를 제조하였다. 페이스트는 재료 압출방식 기법의 3D 프린트를 이용하여 지지체 구조물 성형체를 제조했다. 3D 프린터의 nozzle tip 크기는 400 μm이고, 충진율은 40%이다.Commercial boehmite (Catapal A) was mixed with 1 wt.% of methyl cellulose as a binder and mixed with water (D.I.W) to prepare a paste. The paste was manufactured into a molded body of the support structure using 3D printing of material extrusion method. The nozzle tip size of the 3D printer is 400 μm, and the filling rate is 40%.

제조한 지지체 구조물은 상온에서 하루 동안 1차 건조시키고, 110℃오븐에서 12시간 동안 2차 건조시켰다. 건조된 지지체 구조물을 500℃소성로에서 5시간 동안 소성시켰다. 이와 같이 제조된 지지체 구조물에 스팀리포밍 반응의 활성물질인 니켈 전구체로 니켈나이트레이트(Ni(NO3)26H2O)를 12wt.% 함침시켜 촉매를 제조하였다. 제조된 촉매 구조체는 110℃오븐에서 12시간동안 건조시키고 1000℃소성로에서 5시간 동안 소성시켰다. 촉매 구조물의 직경은 8.42 mm, 높이는 10.52 mm이며, 채널 간격은 489 μm이고 공극률은 30.06%이다.The prepared support structure was firstly dried at room temperature for one day and secondarily dried in an oven at 110° C. for 12 hours. The dried support structure was calcined in a 500° C. furnace for 5 hours. A catalyst was prepared by impregnating 12 wt.% of nickel nitrate (Ni(NO 3 ) 2 6H 2 O) as a nickel precursor, which is an active material of a steam reforming reaction, into the support structure prepared as described above. The prepared catalyst structure was dried in an oven at 110° C. for 12 hours and calcined in a furnace at 1000° C. for 5 hours. The diameter of the catalyst structure is 8.42 mm, the height is 10.52 mm, the channel spacing is 489 μm, and the porosity is 30.06%.

[제조예 2] [Production Example 2]

MG30(30% MGO, 70% Al2O3)에 3 wt.%의 메틸셀룰로오스(Methyl Cellulose)를 바인더로 사용하고 물(D.I.W.)과 함께 혼합하여 페이스트(paste)를 제조하였다. 페이스트는 재료 압출방식 기법의 3D 프린트(direct ink printing)를 이용하여 지지체 구조물 성형체를 제조했다. 3D 프린터의 nozzle tip 크기는 400 μm이고, 충진율은 40%이다.A paste was prepared by using 3 wt.% of methyl cellulose in MG30 (30% MGO, 70% Al 2 O 3 ) as a binder and mixing it with water (DIW). The paste was manufactured into a molded body of the support structure using 3D printing (direct ink printing) of a material extrusion method. The nozzle tip size of the 3D printer is 400 μm, and the filling rate is 40%.

제조한 지지체 구조물은 상온에서 하루 동안 1차 건조시키고, 110℃ 오븐에서 12시간 동안 2차 건조시켰다. 건조된 지지체 구조물을 500℃ 소성로에서 5시간 동안 소성시켰다. 이와 같이 제조된 지지체 구조물에 스팀리포밍 반응의 활성물질인 니켈 전구체로 니켈나이트레이트(Ni(NO3)26H2O)를 12 wt.% 함침시켜 촉매를 제조하였다. 제조된 촉매 구조체는 110℃ 오븐에서 12시간 동안 건조시키고 1000℃ 소성로에서 5시간 동안 소성시켜 니켈계 촉매를 수득하여 하기 도 3에 도시하였다.The prepared support structure was firstly dried at room temperature for one day and secondarily dried in an oven at 110° C. for 12 hours. The dried support structure was calcined in a 500° C. furnace for 5 hours. A catalyst was prepared by impregnating 12 wt.% of nickel nitrate (Ni(NO 3 ) 2 6H 2 O) as a nickel precursor, which is an active material of a steam reforming reaction, into the support structure prepared as described above. The prepared catalyst structure was dried in an oven at 110° C. for 12 hours and calcined in a furnace at 1000° C. for 5 hours to obtain a nickel-based catalyst, which is shown in FIG. 3 below.

촉매 구조물의 직경은 9.00 mm, 높이는 9.84 mm이며, 채널 간격은 489 μm이고 공극률은 26.31%이다.The diameter of the catalyst structure is 9.00 mm, the height is 9.84 mm, the channel spacing is 489 μm, and the porosity is 26.31%.

[실험예 1] 지지체에 따른 반응 특성[Experimental Example 1] Reaction characteristics according to the support

하기 표 1에는 상기 비교제조예 및 제조예 1, 제조예 2의 촉매에 따른 BET 결과를 나타내었다.Table 1 below shows the BET results according to the comparative preparation examples and the catalysts of preparation examples 1 and 2.

시료sample 비표면적
(m2g-1)
specific surface area
(m 2 g -1 )
기공 부피
(cm3g-1)
pore volume
(cm 3 g -1 )
기공 직경
(nm)
pore diameter
(nm)
제조예 1Preparation Example 1 251251 0.450.45 5.95.9 제조예 2Preparation Example 2 260260 0.530.53 9.19.1

[실험예 2][Experimental Example 2] 메탄의 수증기 개질 반응 및 조건Steam reforming reaction and conditions of methane

상기 비교제조예 및 제조예에서 제조한 니켈계 촉매에 대해 증기와 메탄의 비(S/C)=3.2, SV=6,000 or 10,000/h, 800℃ 조건 하에서 수증기 메탄개질 반응에 대한 활성을 평가하여 그 결과를 하기 표 2 및 도 1, 도 2 및 도 4에 나타냈다.The steam to methane ratio (S / C) = 3.2, SV = 6,000 or 10,000 / h, under the condition of 800 ℃ for the nickel-based catalyst prepared in Comparative Preparation Example and Preparation Example By evaluating the activity for the steam methane reforming reaction The results are shown in Table 2 and FIGS. 1, 2 and 4 below.


촉매

catalyst

환원온도(℃)

Reduction temperature (℃)
공간속도(mL(CH4)/gcat/hr)Space velocity (mL(CH4)/gcat/hr)
6,0006,000 18,00018,000 비교제조예 Comparative Manufacturing Example 800800 71.16% 71.16% 41.84%41.84% 비교제조예 Comparative Manufacturing Example 850850 84.27% 84.27% 57.54%57.54% 비교제조예 Comparative Manufacturing Example 880880 85.31% 85.31% 57.91%57.91% 제조예 1Preparation Example 1 880880 94.32%94.32% 72.67%72.67% 제조예 2Preparation Example 2 880880 92.11%92.11% 77.18%77.18%

상기 표 2에서 기재된 바와 같이, 3D 프린팅법을 사용하여 촉매 지지체를 제조한뒤 니켈 금속을 함침시켜 제조한 제조예 1 및 제조예 2의 촉매는 높은 공간속도 조건(18,000 mL(CH4)/gcat/hr)에서 촉매 지지체와 니켈 금속을 포함하는 페이스트를 3D 프린팅법을 이용하여 제조한 촉매 성형체(비교제조예)에 비하여 높은 메탄의 전환율을 나타내는 것을 확인하였다.As described in Table 2 above, the catalysts of Preparation Examples 1 and 2 prepared by impregnating nickel metal after preparing a catalyst support using a 3D printing method under high space velocity conditions (18,000 mL (CH 4 ) / gcat / hr), it was confirmed that the paste containing the catalyst support and nickel metal exhibited a higher methane conversion rate than the catalyst molded body (Comparative Preparation Example) prepared using the 3D printing method.

Claims (11)

메탄의 수증기 개질용 니켈계 촉매에 있어서,
3D 프린팅법에 의하여 마그네슘-알루미늄 금속산화물 및 바인더를 포함하는 혼합물로 성형되어 다수의 채널이 형성된 3차원 촉매 지지체;
상기 3차원 촉매 지지체에 함침된 니켈계 촉매;를 포함하는 것을 특징으로 하는 메탄의 수증기 개질용 니켈계 촉매.
In the nickel-based catalyst for steam reforming of methane,
A three-dimensional catalyst support formed of a plurality of channels by being molded from a mixture containing a magnesium-aluminum metal oxide and a binder by a 3D printing method;
A nickel-based catalyst for steam reforming of methane, comprising: a nickel-based catalyst impregnated into the three-dimensional catalyst support.
제1항에 있어서,
알루미나(Al2O3)는 마그네슘-알루미늄 금속산화물에 대하여 50 내지 100 중량%을 포함하는 것을 특징으로 하는 메탄의 수증기 개질용 니켈계 촉매.
According to claim 1,
A nickel-based catalyst for steam reforming of methane, characterized in that it contains 50 to 100% by weight of alumina (Al2O3) based on magnesium-aluminum metal oxide.
제1항에 있어서,
상기 바인더는 유기 바인더 또는 무기 바인더인 것을 특징으로 하는 메탄의 수증기 개질용 니켈계 촉매.
According to claim 1,
The binder is a nickel-based catalyst for steam reforming of methane, characterized in that the organic binder or inorganic binder.
제3항에 있어서,
상기 유기 바인더는 메틸셀룰로오스, 카르복시메틸셀룰로오스, 히드록시에틸셀룰로오스, 녹말, 폴리에틸렌글리콜, 폴리비닐알콜, 덱스트린(dextrin), 왁스 에멀전(wax emulsions), 리그노설포네이트, 파라핀, 폴리아크릴레이트 중에서 선택되는 하나 이상인 것을 특징으로 하는 메탄의 수증기 개질용 니켈계 촉매.
According to claim 3,
The organic binder is selected from methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, starch, polyethylene glycol, polyvinyl alcohol, dextrin, wax emulsions, lignosulfonates, paraffins, and polyacrylates. A nickel-based catalyst for steam reforming of methane, characterized in that at least one.
제3항에 있어서,
상기 무기 바인더는 벤토나이트(Bentonite), 마그네슘알루미늄실리케이트(Magnesium Aluminum Silicates) 및 나트륨실리케이트(Sodium Silicate) 중에서 선택되는 하나 이상인 것을 특징으로 하는 메탄의 수증기 개질용 니켈계 촉매.
According to claim 3,
The inorganic binder is a nickel-based catalyst for steam reforming of methane, characterized in that at least one selected from bentonite, magnesium aluminum silicate and sodium silicate.
제1항에 있어서,
상기 촉매 지지체의 비표면적이 200 내지 300 m2/g이고, 상기 채널의 평균 직경이 5 내지 15 nm 인 것을 특징으로 하는 메탄의 수증기 개질용 니켈계 촉매.
According to claim 1,
A nickel-based catalyst for steam reforming of methane, characterized in that the specific surface area of the catalyst support is 200 to 300 m 2 /g, and the average diameter of the channel is 5 to 15 nm.
제1항에 있어서,
상기 니켈 함량이 5 내지 20 중량%인 것을 특징으로 하는 메탄의 수증기 개질용 니켈계 촉매.
According to claim 1,
A nickel-based catalyst for steam reforming of methane, characterized in that the nickel content is 5 to 20% by weight.
제1항에 있어서,
상기 메탄의 수증기 개질용 니켈계 촉매는 900 내지 1100 oC 온도에서 소성한 것을 특징으로 하는 메탄의 수증기 개질용 니켈계 촉매.
According to claim 1,
The nickel-based catalyst for steam reforming of methane is a nickel-based catalyst for steam reforming of methane, characterized in that calcined at a temperature of 900 to 1100 ° C.
제1항 내지 제8항 중 어느 한 항에 기재된 니켈계 촉매의 존재 하에서 수행하는 메탄의 수증기 개질 반응 공정.
A steam reforming reaction process for methane carried out in the presence of the nickel-based catalyst according to any one of claims 1 to 8.
제9항에 있어서,
메탄 가스의 공간 속도는 1,000 내지 20,000 mL(CH4)/gcat/hr 범위인 것을 특징으로 하는 메탄의 수증기 개질 반응 공정.
According to claim 9,
The steam reforming reaction process for methane, characterized in that the space velocity of methane gas is in the range of 1,000 to 20,000 mL (CH4) / gcat / hr.
제10항에 있어서,
메탄 전환율이 75% 이상인 것을 특징으로 하는 메탄의 수증기 개질 반응 공정.
According to claim 10,
A steam reforming reaction process for methane, characterized in that the methane conversion rate is 75% or more.
KR1020220185882A 2020-10-20 2022-12-27 High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same KR102573127B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220185882A KR102573127B1 (en) 2020-10-20 2022-12-27 High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200136045A KR20220052099A (en) 2020-10-20 2020-10-20 High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same
KR1020220185882A KR102573127B1 (en) 2020-10-20 2022-12-27 High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020200136045A Division KR20220052099A (en) 2020-10-20 2020-10-20 High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same

Publications (2)

Publication Number Publication Date
KR20230005097A true KR20230005097A (en) 2023-01-09
KR102573127B1 KR102573127B1 (en) 2023-09-01

Family

ID=81390871

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020200136045A KR20220052099A (en) 2020-10-20 2020-10-20 High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same
KR1020220185882A KR102573127B1 (en) 2020-10-20 2022-12-27 High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020200136045A KR20220052099A (en) 2020-10-20 2020-10-20 High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same

Country Status (1)

Country Link
KR (2) KR20220052099A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114832866A (en) * 2022-05-23 2022-08-02 广东省科学院新材料研究所 Catalytic reformer and shape regulation method and application thereof
CN115646496A (en) * 2022-10-31 2023-01-31 上海簇睿低碳能源技术有限公司 Methane and carbon dioxide reforming catalyst and preparation and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4098508B2 (en) * 2001-08-20 2008-06-11 財団法人 ひろしま産業振興機構 Method for producing catalyst for reacting hydrocarbon and water vapor, and method for producing hydrogen from hydrocarbon using the catalyst
US20090111687A1 (en) * 2007-09-27 2009-04-30 Sud-Chemie Ag Catalyst design and preparation process for steam-reforming catalysts
KR20100014012A (en) 2008-08-01 2010-02-10 한국화학연구원 Catalyst for the preparation of synthesis gas from natural gas with carbon dioxide and the preparation method there of
KR20140099475A (en) * 2011-11-08 2014-08-12 바스프 에스이 Process for producing reforming catalyst and reforming of methane
KR101794316B1 (en) 2016-09-09 2017-11-07 주식회사 에코프로 Molded object of Ni-based Catalyst for Steam Methane Reforming and use thereof
WO2019228796A1 (en) * 2018-05-31 2019-12-05 Haldor Topsøe A/S Hydrogen production by steam methane reforming
KR20190140536A (en) * 2018-05-31 2019-12-20 한국화학연구원 Catalytic Structure for Fischer―Tropsch Synthesis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4098508B2 (en) * 2001-08-20 2008-06-11 財団法人 ひろしま産業振興機構 Method for producing catalyst for reacting hydrocarbon and water vapor, and method for producing hydrogen from hydrocarbon using the catalyst
US20090111687A1 (en) * 2007-09-27 2009-04-30 Sud-Chemie Ag Catalyst design and preparation process for steam-reforming catalysts
KR20100014012A (en) 2008-08-01 2010-02-10 한국화학연구원 Catalyst for the preparation of synthesis gas from natural gas with carbon dioxide and the preparation method there of
KR20140099475A (en) * 2011-11-08 2014-08-12 바스프 에스이 Process for producing reforming catalyst and reforming of methane
KR101794316B1 (en) 2016-09-09 2017-11-07 주식회사 에코프로 Molded object of Ni-based Catalyst for Steam Methane Reforming and use thereof
WO2019228796A1 (en) * 2018-05-31 2019-12-05 Haldor Topsøe A/S Hydrogen production by steam methane reforming
KR20190140536A (en) * 2018-05-31 2019-12-20 한국화학연구원 Catalytic Structure for Fischer―Tropsch Synthesis

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Fazia Agueniou et al, 3D-printing of metallic honeycomb monoliths as ~ in methane dry reforming showcase, Catalysis Communications 148, 106181, 2020.10.6.온라인공개 *
John M. Pappas et al., Direct 3D Printing of Silica Doped Transparent Magnesium Aluminate Spinel Ceramics, Materials 2020, 13(21), 4810; 2020.10.28.발행 *
Journal of Molecular Catalysis A 147 (1999) 41
Papiya Biswas et al, 3D extrusion printing of magnesium aluminate spinel ceramic parts using thermally induced gelation of methyl cellulose, Journal of Alloys and Compounds 770, 419~423쪽, 2018.8.17.발행 *
Qinhong Wei et al., Metal 3D printing technology for functional integration of catalytic system, Nature Communications 11, 4098, 2020.8.14.발행 *
곽근재 등, 화학/환경 촉매3차원 자유형상 제어기술 선행연구 최종보고서, 과학기술연구회, 2020.8.31 발행, 7 내지 36쪽 *
정유식 등, 천연가스 개질촉매 압출 성형방법의 개발, 한국신재생에너지학회 2009년도 춘계학술대회논문집, 2009. 발행, 735 내지 738쪽 *

Also Published As

Publication number Publication date
KR20220052099A (en) 2022-04-27
KR102573127B1 (en) 2023-09-01

Similar Documents

Publication Publication Date Title
KR102573127B1 (en) High Efficiency Ni-based Catalyst for Steam Methane Reforming and Steam Methane Reforming Reaction using the Same
JP5285776B2 (en) Catalyst for producing synthesis gas from natural gas and carbon dioxide and method for producing the same
KR101085038B1 (en) Catalyst for synthesis of methanol from syngas and preparation method thereof
US8486368B2 (en) Hydrocarbon-decomposing porous catalyst body and process for producing the same, process for producing hydrogen-containing mixed reformed gas from hydrocarbons, and fuel cell system
KR101994152B1 (en) A Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, Preparation Method Thereof and Methane Reforming Method Threrewith
US9388082B2 (en) Porous molded product and process for producing the same, carrier for catalysts, and catalyst
KR20080011628A (en) Catalyst for methanol and dimethyl ether synthesis from syngas and preparation method thereof
US20160030927A1 (en) Monolith catalyst for carbon dioxide reforming reaction, preparation method for same, and preparation method for synthesis gas using same
KR101794316B1 (en) Molded object of Ni-based Catalyst for Steam Methane Reforming and use thereof
KR102092736B1 (en) Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith
KR102186058B1 (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Alcohol Using the Same
JP6933144B2 (en) Heterogeneous catalyst structure and its manufacturing method
KR101467169B1 (en) Method for the preparation of molded article of nickel-containing catalyst for mixed modification reaction of methane and the molded catalyst article thus obtained
US20220203341A1 (en) Steam reforming catalysts for sustainable hydrogen production from biobased materials
KR101578538B1 (en) Process for preparing hydrotalcite catalyst for aqueous phase reforming of alcohols
KR101570943B1 (en) A perovskite-like catalyst supported on alumina having a bimodal pore structure for combined steam and co_2 reforming reaction with methane and a preparation method thereof
KR101933014B1 (en) Catalyst for Methane Reformation Using Carbon dioxide and Preparing Method of the Same
KR101451407B1 (en) CATAlYST COMPOSITION FOR AUTOTHERMAL REACTION OF METHANE, METHOD FOR PREPARING THE SAME, METHOD FOR PREPARING A SYNGAS USING THE SAME
Sutormina et al. Catalysts based on cordierite modified with transition metal oxides
KR102186052B1 (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Acetone Using the Same
JP2008302276A (en) Catalyst for steam-reforming and manufacturing method of hydrogen
RU2333797C2 (en) Catalyst for obtaining synthesis-gas and method for obtaining synthesis-gas using same
KR20240061913A (en) Catalyst for methane reforming and manufacturing method thereof
KR20230021799A (en) Catalyst for preparing synthesis gas, method for preparing the same, and method for preparing synthesis gas using the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant