KR20220107026A - 퓨린 유도체 및 의학에서의 그의 용도 - Google Patents

퓨린 유도체 및 의학에서의 그의 용도 Download PDF

Info

Publication number
KR20220107026A
KR20220107026A KR1020227021886A KR20227021886A KR20220107026A KR 20220107026 A KR20220107026 A KR 20220107026A KR 1020227021886 A KR1020227021886 A KR 1020227021886A KR 20227021886 A KR20227021886 A KR 20227021886A KR 20220107026 A KR20220107026 A KR 20220107026A
Authority
KR
South Korea
Prior art keywords
alkyl
compound
heterocycloalkyl
mmol
halogen
Prior art date
Application number
KR1020227021886A
Other languages
English (en)
Inventor
웨이 용강
수 쉬에전
추 홍주
헤 르브수
멩 시앙유
왕 메이웨이
수 귀주안
리우 빙
선 이
Original Assignee
청두 바이위 파머수티컬 씨오., 엘티디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 청두 바이위 파머수티컬 씨오., 엘티디 filed Critical 청두 바이위 파머수티컬 씨오., 엘티디
Publication of KR20220107026A publication Critical patent/KR20220107026A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/26Heterocyclic compounds containing purine ring systems with an oxygen, sulphur, or nitrogen atom directly attached in position 2 or 6, but not in both
    • C07D473/32Nitrogen atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/40Heterocyclic compounds containing purine ring systems with halogen atoms or perhalogeno-alkyl radicals directly attached in position 2 or 6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

본 발명은 퓨린 유도체 및 의약에서의 그의 용도, 및 특히 일반 화학식(I)로 표시되는 피리미딘 유도체 또는 이의 입체이성질체, 용매화물, 대사산물, 전구약물, 중수소화물, 약제학적으로 허용 가능한 염 또는 공결정, 유도체를 포함하는 약제학적 조성물, 및 DNA-PK 억제제의 제조 분야에서의 본 발명의 화합물 또는 조성물의 용도에 관한 것이고, 일반 화학식(I) 내의 치환기는 명세서에서와 동일한 방식으로 정의된다.

Description

퓨린 유도체 및 의학에서의 그의 용도
본 발명은 일반 화학식(I)로 표시되는 퓨린 유도체 또는 이의 입체이성질체, 용매화물, 전구약물, 대사산물, 중수소화물, 약제학적으로 허용 가능한 염 또는 공결정, 그의 약제학적 조성물, 및 DNA-PK 억제제의 제조에서의 그의 용도에 관한 것이다.
DNA 의존성 단백질 키나제(DNA-PK)는 Ku70/Ku80 이종이량체 및 DNA 의존성 단백질 키나제 촉매 소단위(DNA-PKc)로 구성된 DNA-PK 효소 복합체이다. 효소 복합체는 해당 기능을 수행하기 위해 DNA의 존재에서 활성화되어야 한다(George 등, 2019). 세린/트레오닌 단백질 키나제로서, DNA-PK는 PIKK(포스파티딜이노시톨 3-키나제 관련 키나제) 계열의 구성원이다. 그것은 세포 내 DNA 이중 가닥 파손(DSB)을 복구하고 세포 DNA 재조합 또는 항체 DNA 재배열(V(D)J 재조합) 과정에서 중요한 역할을 한다. 또한, 염색체 변형, 전사 조절 및 텔로미어 유지와 같은 생리학적 과정에도 관여한다.
정상적인 생리학적 과정에서, 다수의 인자가 DNA의 DSB에 기여할 수 있다: 예를 들어, DSB는 종종 모든 척추동물에서 기능적 면역계의 발달에 매우 중요한 생리학적 과정인 체세포 DNA 재조합 동안 중간체로서 나타나고; DNA 복제 과정에서 손상된 염기를 갖는 복제 포크의 만남은 또한 단일- 또는 이중-가닥 파괴를 초래할 수 있고; DSB는 또한 정상 대사 과정에서 DNA에 대한 반응성 산소 종(ROS)에 의한 공격의 결과로서 발생할 수 있다(Cannan & Pederson, 2016). 그 외에도 이온화 방사선(IR) 및 화학요법제(예를 들어, 토포이소머라제 II 억제제)와 같은 DSB에 기여할 수도 있는 여러 외부 인자가 있다(George 등, 2019). DSB가 복구되지 않거나 부정확하게 복구된다면, 돌연변이 및/또는 염색체 이상이 일어나 결국 세포 사멸로 이어질 것이다. DSB에 의해 제기되는 위험에 반응하여, 진핵 세포는 세포 생존력 및 게놈 안정성을 유지하기 위해 손상된 DNA를 복구하기 위한 다수의 메카니즘을 진화시켰다. 진핵 세포에서, DNA 복구의 주된 방식은 비-상동성 말단 결합(NHEJ)이다. 파손된 DNA의 이러한 직접 연결은 상동 DNA 단편의 개입을 필요로 하지 않으며 세포 주기의 임의의 단계에서 발생할 수 있다. NHEJ는 DNA-PK에 의해 매개되는 동적 과정이며 기본적으로 다음과 같이 신호 전달 경로와 함께 다양한 단백질의 관여를 필요로 한다: (1) Ku70/Ku80 이종이량체는 이중 가닥 DNA 절단의 말단을 인식하고 결합하고; (2) DNA-PKc 및 XRCC4-DNA 리가제 IV 복합체와 같은 단백질은 파손된 DNA의 두 가닥의 양쪽에 동원되고; (3) DNA-PKc는 자체 키나제 활성을 자가인산화하고 활성화하고; (4) DNA-PKc는 DNA가 엑소뉴클레아제에 의해 분해되는 것을 방지하기 위해 파손된 DNA의 두 말단을 결찰하는 접착제로 사용되고; (5) DNA는 결찰할 수 없는 말단 및 파손 시 다른 형태의 손상을 제거하도록 처리되고; (6) XRCC4-DNA 리가제 IV 복합체는 DNA 말단을 복구한다(일부 경우에, 결찰 전에 새로운 말단을 합성하기 위해 DNA 중합효소가 필요할 수 있음). DNA-PKc가 인산화되는 경우, NHEJ 과정의 다양한 단백질(예컨대 아르테미스(Artemis), Ku70, Ku80 및 DNA 리가제)이 구조의 변화를 유도하여 활성을 조절하며 이는 DNA 복구 과정에 매우 중요하다. 따라서 인산화된 DNA-PKc(pDNA-PKc)는 종종 세포 DSB의 마커로 사용된다.
DNA-PK 활성은 다양한 종양의 발달 및 진행과 연관된 것으로 나타났다: 예를 들어 흑색종의 DNA-PKc는 혈관신생 및 종양 전이를 촉진할 수 있으며; 다발성 골수종에서 DNA-PKc의 발현 수준은 상당히 상향 조절되고; 방사선 요법 내성 갑상선 종양에서 Ku 단백질 함량이 상당히 증가한다(Ihara, Ashizawa, Shichijo & Kudo, 2019). 따라서, DNA-PK 억제제는 효과를 개선하기 위해 DNA 손상을 유발하는 항종양 요법(예를 들어, IR 또는 화학요법제)과 조합하여 사용될 수 있는 것으로 고려된다. DNA-PK 억제제의 사용은 정상 세포의 DNA 복구 기능을 어느 정도 방해할 수 있다. 그러나 정상 세포에는 보충물로서 많은 DNA 복구 경로가 있는 반면, 종양 세포는 상당한 DNA 복제 스트레스를 받고 있으며 효율적인 DNA 복구 모드가 부족하다. 종양 세포에 대한 다른 항종양 약물의 사멸 효과는 종양 세포의 DNA-PK 활성을 억제함으로써 개선될 수 있다.
수년간의 연구 후, 현재 다수의 DNA-PK 억제제가 밝혀졌다. DNA-PK 키나제에 대한 억제 활성이 있는 것으로 밝혀진 첫 번째 화합물은 약 15 nM의 IC50 (DNA-PK)을 갖는 진균 대사산물인 보르트만닌(Wortmannin)이다. 이 화합물은 또한 p53 단백질의 아세틸화 및 인산화 과정 모두에서 중요한 역할을 한다(Sarkaria 등, 1998). 나중에 보고된 쿠에르세틴 유도체 LY294002도 DNA-PK에 대한 억제 활성이 있다(Maira, Stauffer, Schnell, & Garcia-Echeverria, 2009). 나중에 NU7026 및 NU7441과 같은 차세대 DNA-PK 억제제가 LY294002의 구조를 기반으로 개발된다. 이러한 화합물은 종양 세포에 대한 우수한 사멸 효과가 있는 것으로 입증되었지만, 높은 독성 및 불량한 선택성과 같은 문제로 인해 임상적으로 개발되지 않았다(Maira 등, 2009). 다른 DNA-PK 억제제, 예컨대 소분자 화합물 OK1035, SU11752, PP121 및 KU-0060648도 보고되었지만; 이러한 화합물은 DNA-PK에 덜 특이적인 것과 같은 단점도 있다(George 등, 2019). 따라서, 임상 요구를 더 잘 충족시키기 위해 높은 활성, 고특이성 및 저독성을 갖는 DNA-PK 억제제를 개발할 필요가 여전히 존재한다.
본 발명의 하나 이상의 구현예는 퓨린 유도체 또는 이의 모든 입체이성질체, 용매화물, 대사산물, 중수소화물, 약제학적으로 허용 가능한 염, 공결정 또는 전구약물, 그의 약제학적 조성물, 및 DNA-PK 억제제의 제조에서의 그의 용도를 제공한다.
하나 이상의 구현예에서, 화합물은 DNA-PK에 대한 높은 억제 활성 및/또는 높은 선택성을 갖는다. 이들은 선행 기술의 단점을 극복할 수 있고 암 치료에 효과적인 화학감작화제 및 방사선감작제로 사용될 수 있어 독성 부작용을 감소시키면서 선행 기술의 효능을 개선시킬 수 있다.
본 발명의 하나 이상의 구현예는 하기 화학식 I로 나타낸 화합물 또는 이의 모든 입체이성질체, 용매화물, 전구약물, 대사물, 중수소화물, 약제학적으로 허용가능한 염 또는 공결정을 개시한다:
Figure pct00001
(I)
식 중,
A는 존재하지 않거나 N, O 및 S로부터 선택된 1 내지 4개의 헤테로원자를 함유하는 4 내지 12원 헤테로사이클로부터 선택되고;
X1 및 X2는 각각 독립적으로 C, O, N 및 S로부터 선택되고, A가 4 내지 12원 헤테로사이클로부터 선택되는 경우, X1 및 X2는 고리 A의 일부이고;
B는 아다만틸로부터 선택되고;
R0 및 R1은 각각 독립적으로 H, 할로겐, 카복실, =O, -OH, 시아노, -NRa1Ra2, C1-6 알킬, -C1-6 알킬렌-OH, -C1-6 알킬렌-NRa1Ra2, C1-6 알콕시, -C(=O)OC1 -6 알킬, -C(=O)NRa1Ra2, C2-6 알케닐 및 C2-6 알키닐로부터 선택되고, 여기서 C1-6 알킬, C1-6 알킬렌 및 C1-6 알콕시는 D 및 할로겐으로부터 선택된 1 내지 3개의 치환기로 선택적으로 추가로 치환되고;
또는 n이 2, 3 및 4로부터 선택되는 경우, 2개의 R0는 이들이 부착된 원자와 함께 3 내지 8원 고리를 형성할 수 있고, 여기서 3 내지 8원 고리는 선택적으로 N, O 및 S로부터 선택된 1 내지 3개의 헤테로원자를 함유하고, 그리고 -OH, 카복실, 할로겐, 시아노, =O, C1-6 알킬 및 아미노로부터 선택된 하나 이상의 치환기로 선택적으로 추가로 치환되고;
R2는 H 및 C1-6 알킬로부터 선택되고;
R3은 H, 할로겐, C1-6 알킬 및 C1-6 알콕시로부터 선택되고;
R4는 H, C1-6 알킬, C3-12 사이클로알킬, C3 헤테로사이클로알킬 및 C4-12 헤테로사이클로알킬로부터 선택되고, 여기서 C3 헤테로사이클로알킬 또는 C4-12 헤테로사이클로알킬은 N, O 및 S로부터 선택된 1 내지 3개의 헤테로원자를 함유하고, 그리고 C1-6 알킬, C3-12 사이클로알킬, C3 헤테로사이클로알킬 또는 C4-12 헤테로사이클로알킬은 -OH, D, 할로겐, 시아노, 카복실, -NH2, =O, -C(=O)NH2, C1-6 알킬, -C1-6 알킬렌-OH, C1-6 알콕시, C2-6 알케닐, C2-6 알키닐, C3-12 사이클로알킬, C3 헤테로사이클로알킬, C4-12 헤테로사이클로알킬, C6-12 아릴 및 C5-12 헤테로아릴로부터 선택된 하나 이상의 치환기로 선택적으로 치환되고;
또는, R3 및 R4는, 이들이 부착된 원자와 함께, 4 내지 12원 헤테로사이클를 형성하고, 여기서 헤테로사이클은 N, O 및 S로부터 선택된 1 내지 3개의 헤테로원자를 함유할 수 있고, 그리고 4-12원 헤테로사이클은 -OH, 카복실, 할로겐, 시아노, =O, C1-6 알킬, C1-6 헤테로알킬, C2-6 알케닐, C2-6 알키닐, -NRa1Ra2, -C(=O)OC1 -6 알킬, -C(=O)NRa1Ra2, C3-12 사이클로알킬, C3 헤테로사이클로알킬, C4-12 헤테로사이클로알킬, C6-12 아릴 및 C5-12 헤테로아릴로부터 선택된 하나 이상의 치환기로 선택적으로 치환되고, 여기서 C1-6 알킬, C1-6 헤테로알킬, C1-6 알케닐 또는 C1-6 알키닐은 -OH, 카복실, 시아노, 할로겐, -O-Ra1, -NRa1Ra2, C3-12 사이클로알킬, C3 헤테로사이클로알킬, C4-12 헤테로사이클로알킬, C6-12 아릴 및 C5-12 헤테로아릴로부터 선택된 하나 이상의 치환기로 선택적으로 추가로 치환되고;
R5는 -OH, D, 할로겐, 시아노, 카복실, =O, C1-6 알킬, C1-6 알콕시, C2-6 알케닐, C2-6 알키닐, -NRa1Ra2, -C(=O)OC1 -6 알킬, -OC(=O)C1 -6 알킬, -C(=O)NRa1Ra2, C3-12 사이클로알킬, C3 헤테로사이클로알킬, C4-12 헤테로사이클로알킬, C6-12 아릴 및 C5 내지 12 헤테로아릴로부터 선택되고, 여기서 C1-6 알킬, C1-6 알콕시, C3-12 사이클로알킬, C4-12 헤테로사이클로알킬, C6-12 아릴 및 C5-12 헤테로아릴은 OH, 카복실, 할로겐, C1-6 알킬, C1-6 알콕시, -NRa1Ra2 및 =O로부터 선택된 1 내지 3개의 치환기로 선택적으로 추가로 치환되고;
Ra1 및 Ra2는 각각 독립적으로 H, C1-6 알킬, -C(=O)Ra3 및 -C(=O)NRa4Ra5로부터 선택되고, 여기서 C1-6 알킬은 OH, 할로겐, C1-6 알킬, C1-6 알콕시, C6-12 아릴, C5 내지 12 헤테로아릴, C3-12 사이클로알킬, C3 헤테로사이클로알킬 및 C4-12 헤테로사이클로알킬로부터 선택된 하나 이상의 치환기로 선택적으로 추가로 치환되거나; 또는 Ra1 및 Ra2는, N 원자와 함께 3 내지 12원 헤테로사이클을 형성하고, 이는 N, O 및 S로부터 선택된 1 내지 4개의 헤테로원자를 함유하고;
Ra3은 C1-6 알킬, C1-6 알콕시 및 C6-12 아릴로부터 선택되고;
Ra4 및 Ra5는 각각 독립적으로 H 및 C1-6 알킬로부터 선택되고;
W는 O 및 S로부터 선택되고;
n, p 및 q는 각각 독립적으로 0, 1, 2, 3 또는 4로부터 선택되고;
Figure pct00002
은 단일 결합 또는 이중 결합이다.
하나 이상의 구현예는 일반 화학식(II)로 표시되는 화합물 또는 이의 입체이성질체, 용매화물, 대사산물, 전구약물, 중수소화물, 약제학적으로 허용 가능한 염 또는 공결정을 제공한다:
Figure pct00003
(II)
식 중,
A는 존재하지 않거나 N, O 및 S로부터 선택된 1 내지 4개의 헤테로원자를 함유하는 4 내지 12원 헤테로사이클로부터 선택되고;
X1 및 X2는 각각 독립적으로 C 및 N으로부터 선택되고, A가 4 내지 12원 헤테로사이클로부터 선택되는 경우, X1 및 X2는 고리 A의 일부이고;
B는 아다만틸로부터 선택되고;
R0 및 R1은 각각 독립적으로 H, 할로겐, 카복실, =O, -OH, 시아노, -NRa1Ra2, C1-6 알킬, -C1-6 알킬렌-OH, -C1-6 알킬렌-NRa1Ra2, C1-6 알콕시, -C(=O)OC1 -6 알킬, -C(=O)NRa1Ra2, C2-6 알케닐 및 C2-6 알키닐로부터 선택되고, 여기서 C1-6 알킬, C1-6 알킬렌 및 C1-6 알콕시는 D 및 할로겐으로부터 선택된 1 내지 3개의 치환기로 선택적으로 추가로 치환되고;
또는 n이 2, 3 및 4로부터 선택되는 경우, 2개의 R0는 이들이 부착된 원자와 함께 3 내지 8원 고리를 형성할 수 있고, 여기서 고리는 선택적으로 N, O 및 S로부터 선택된 1 내지 3개의 헤테로원자를 함유하고, 그리고 -OH, 카복실, 할로겐, 시아노, =O, C1-6 알킬 및 아미노로부터 선택된 하나 이상의 치환기로 선택적으로 추가로 치환되고;
R3은 H, 할로겐, C1-6 알킬 및 C1-6 알콕시로부터 선택되고;
R4는 H, C1-6 알킬, C3-12 사이클로알킬, C3 헤테로사이클로알킬 및 C4-12 헤테로사이클로알킬로부터 선택되고, 여기서 C3 헤테로사이클로알킬 또는 C4-12 헤테로사이클로알킬은 N, O 및 S로부터 선택된 1 내지 3개의 헤테로원자를 함유하고, 그리고 C1-6 알킬, C3-12 사이클로알킬, C3 헤테로사이클로알킬 또는 C4-12 헤테로사이클로알킬은 -OH, D, 할로겐, 시아노, 카복실, -NH2, =O, -C(=O)NH2, C1-6 알킬, -C1-6 알킬렌-OH, C1-6 알콕시, C2-6 알케닐, C2-6 알키닐, C3-12 사이클로알킬, C3 헤테로사이클로알킬, C4-12 헤테로사이클로알킬, C6-12 아릴 및 C5-12 헤테로아릴로부터 선택된 하나 이상의 치환기로 선택적으로 치환되고;
R5는 -OH, D, 할로겐, 시아노, 카복실, =O, C1-6 알킬, C1-6 알콕시, C2-6 알케닐, C2-6 알키닐, -NRa1Ra2, -C(=O)OC1 -6 알킬, -OC(=O)C1 -6 알킬, -C(=O)NRa1Ra2, C3-12 사이클로알킬, C3 헤테로사이클로알킬, C4-12 헤테로사이클로알킬, C6-12 아릴 및 C5 내지 12 헤테로아릴로부터 선택되고, 여기서 C1-6 알킬, C1-6 알콕시, C3-12 사이클로알킬, C4-12 헤테로사이클로알킬, C6-12 아릴 및 C5-12 헤테로아릴은 OH, 카복실, 할로겐, C1-6 알킬, C1-6 알콕시, -NRa1Ra2 및 =O로부터 선택된 1 내지 3개의 치환기로 선택적으로 추가로 치환되고;
Ra1 및 Ra2는 각각 독립적으로 H, C1-6 알킬, -C(=O)Ra3 및 -C(=O)NRa4Ra5로부터 선택되고, 여기서 C1-6 알킬은 OH, 할로겐, C1-6 알킬, C1-6 알콕시, C6-12 아릴, C5 내지 12 헤테로아릴, C3-12 사이클로알킬, C3 헤테로사이클로알킬 및 C4-12 헤테로사이클로알킬로부터 선택된 하나 이상의 치환기로 선택적으로 추가로 치환되거나; 또는 Ra1 및 Ra2는, N 원자와 함께 3 내지 12원 헤테로사이클을 형성하고, 이는 N, O 및 S로부터 선택된 1 내지 4개의 헤테로원자를 함유할 수 있고;
Ra3은 C1-6 알킬, C1-6 알콕시 및 C6-12 아릴로부터 선택되고;
Ra4 및 Ra5는 각각 독립적으로 H 및 C1-6 알킬로부터 선택되거나; 또는 Ra4 및 Ra5는, N 원자와 함께 3 내지 12원 헤테로사이클을 형성하고, 이는 N, O 및 S로부터 선택된 1 내지 4개의 헤테로원자를 함유하고;
n, p 및 q는 각각 독립적으로 0, 1, 2, 3 및 4로부터 선택되고;
Figure pct00004
은 단일 결합 또는 이중 결합이다.
본원의 하나 이상의 구현예는 일반 화학식(III), (IV), (V), (VI), (VII) 또는 (VIII)로 표시되는 화합물 또는 이의 입체이성질체, 용매화물, 대사산물, 전구약물, 중수소화물, 약제학적으로 허용 가능한 염 또는 공결정을 제공한다:
Figure pct00005
(III)
Figure pct00006
(IV)
Figure pct00007
(V)
Figure pct00008
(VI)
Figure pct00009
(VII)
Figure pct00010
(VIII)
Figure pct00011
(VIX)
Figure pct00012
(VX)
R0, R1, R3, R4, R5, B, n, p 및 q는 일반 화학식(II)에서와 동일한 방식으로 정의된다.
본원의 하나 이상의 구현예는 화합물 또는 이의 입체이성질체, 용매화물, 대사산물, 전구약물, 중수소화물, 약제학적으로 허용 가능한 염 또는 공결정을 제공한다:
A는 존재하지 않거나 N 및 O로부터 선택된 1 내지 3개의 헤테로원자를 함유하는 5원 헤테로사이클로부터 선택되고;
X1 및 X2는 각각 독립적으로 C 및 N으로부터 선택되고, A가 5원 헤테로사이클로부터 선택되는 경우, X1 및 X2는 고리 A의 일부이고;
B는 아다만틸로부터 선택되고;
R0는 H로부터 선택되고;
R1은 H, 할로겐, C1-4 알킬, 시아노 및 -C(=O)NRa1Ra2로부터 선택되고, 여기서 C1-4 알킬은 D 및 할로겐으로부터 선택된 1 내지 3개의 치환기로 선택적으로 추가로 치환되고;
R3은 H로부터 선택되고;
R2는 H 및 C1-6 알킬로부터 선택되고;
R5는 -OH, D, 시아노, -NRa1Ra2, C1-4 알킬, C1-4 알콕시, -C(=O)OC1 -4 알킬, 카복실, 할로겐, =O 및 -C(=O)NRa1Ra2로부터 선택되고, 여기서 C1-4 알킬 및 C1-4 알콕시는 OH 및 할로겐으로부터 선택된 1 내지 3개의 치환기로 선택적으로 추가로 치환되고;
Ra1 및 Ra2는 각각 독립적으로 H 및 C1-4 알킬로부터 선택되거나; 또는 Ra1 및 Ra2는, N 원자와 함께 6원 헤테로사이클을 형성하고, 이는 N 및 O로부터 선택된 1 내지 2개의 헤테로원자를 함유하고;
n은 0 및 1로부터 선택되고;
p는 1, 2 및 3으로부터 선택되고;
q는 1 및 2로부터 선택되고;
Figure pct00013
은 단일 결합 또는 이중 결합이다.
본원의 하나 이상의 구현예는 화합물 또는 이의 입체이성질체, 용매화물, 대사산물, 전구약물, 중수소화물, 약제학적으로 허용 가능한 염 또는 공결정을 제공하고, 화합물은 하기로부터 선택되지만 이에 제한되지는 않는다:
Figure pct00014
,
Figure pct00015
,
Figure pct00016
,
Figure pct00017
,
Figure pct00018
,
Figure pct00019
,
Figure pct00020
,
Figure pct00021
,
Figure pct00022
,
Figure pct00023
,
Figure pct00024
,
Figure pct00025
,
Figure pct00026
,
Figure pct00027
,
Figure pct00028
,
Figure pct00029
,
Figure pct00030
,
Figure pct00031
,
Figure pct00032
,
Figure pct00033
,
Figure pct00034
,
Figure pct00035
,
Figure pct00036
,
Figure pct00037
,
Figure pct00038
,
Figure pct00039
,
Figure pct00040
,
Figure pct00041
,
Figure pct00042
,
Figure pct00043
,
Figure pct00044
,
Figure pct00045
,
Figure pct00046
,
Figure pct00047
,
Figure pct00048
,
Figure pct00049
,
Figure pct00050
,
Figure pct00051
,
Figure pct00052
,
Figure pct00053
,
Figure pct00054
,
Figure pct00055
,
Figure pct00056
,
Figure pct00057
,
Figure pct00058
,
Figure pct00059
,
Figure pct00060
,
Figure pct00061
,
Figure pct00062
,
Figure pct00063
,
Figure pct00064
,
Figure pct00065
,
Figure pct00066
,
Figure pct00067
,
Figure pct00068
,
Figure pct00069
,
Figure pct00070
,
Figure pct00071
,
Figure pct00072
,
Figure pct00073
,
Figure pct00074
,
Figure pct00075
,
Figure pct00076
,
Figure pct00077
,
Figure pct00078
,
Figure pct00079
,
Figure pct00080
,
Figure pct00081
,
Figure pct00082
,
Figure pct00083
,
Figure pct00084
,
Figure pct00085
,
Figure pct00086
,
Figure pct00087
,
Figure pct00088
,
Figure pct00089
,
Figure pct00090
,
Figure pct00091
,
Figure pct00092
,
Figure pct00093
,
Figure pct00094
,
Figure pct00095
,
Figure pct00096
,
Figure pct00097
,
Figure pct00098
,
Figure pct00099
,
Figure pct00100
,
Figure pct00101
,
Figure pct00102
,
Figure pct00103
,
Figure pct00104
,
Figure pct00105
,
Figure pct00106
,
Figure pct00107
,
Figure pct00108
Figure pct00109
,
Figure pct00110
,
Figure pct00111
,
Figure pct00112
,
Figure pct00113
,
Figure pct00114
,
Figure pct00115
,
Figure pct00116
,
Figure pct00117
,
Figure pct00118
,
Figure pct00119
,
Figure pct00120
,
Figure pct00121
,
Figure pct00122
,
Figure pct00123
,
Figure pct00124
,
Figure pct00125
,
Figure pct00126
,
Figure pct00127
Figure pct00128
.
본 발명은 또한 일반 화학식(I), (II), (III), (IV), (V), (VI), (VII), (VIII), (VIX) 또는 (VX)의 화합물을 제조하기 위한 중간체 화합물을 제공하고, 중간체 화합물은 하기 화학식(I-A) 또는 (I-B)로 표시되는 화합물로부터 선택된다:
Figure pct00129
(I-A) 또는
Figure pct00130
(I-B)
식 중,
X는 할로겐으로부터 선택되고;
B는 아다만틸로부터 선택되고;
Rx는 H 및 C1-6 알킬로부터 선택되고;
R4, R5 및 q는 (I), (II), (III), (IV), (V), (VI), (VII), (VIII), (VIX) 또는 (VX)에서와 동일한 방식으로 정의된다.
본원의 하나 이상의 구현예는 일반 화학식(I), (II), (III), (IV), (V), (VI), (VII), (VIII), (VIX) 또는 (VX)의 화합물을 제조하기 위한 중간체 화합물을 제공하고, 중간체 화합물은 하기 구조 중 하나로부터 선택된다:
Figure pct00131
,
Figure pct00132
,
Figure pct00133
,
Figure pct00134
,
Figure pct00135
,
Figure pct00136
,
Figure pct00137
,
Figure pct00138
,
Figure pct00139
,
Figure pct00140
,
Figure pct00141
,
Figure pct00142
,
Figure pct00143
,
Figure pct00144
,
Figure pct00145
,
Figure pct00146
,
Figure pct00147
,
Figure pct00148
,
Figure pct00149
,
Figure pct00150
Figure pct00151
.
본원의 하나 이상의 구현예는 하기를 포함하는 약제학적 조성물을 제공한다:
(1) 본원의 화합물 또는 이의 입체이성질체, 용매화물, 대사산물, 약제학적으로 허용 가능한 염, 중수소화물, 공결정 또는 전구약물;
(2) 선택적으로 하나 이상의 다른 활성 성분; 및
(3) 약제학적으로 허용 가능한 담체 및/또는 부형제.
본원의 하나 이상의 구현예는 DNA-PK 억제제 약제의 제조에서의 본원의 약제학적 조성물 또는 화합물 또는 이의 입체이성질체, 용매화물, 대사산물, 중수소화물, 약제학적으로 허용 가능한 염, 공결정 또는 전구약물의 용도를 제공한다.
본원의 하나 이상의 구현예에서, DNA-PK 억제제는 암 치료에 사용된다.
본원의 하나 이상의 구현예는 약제로서 사용하기 위한 본원의 화합물을 제공한다.
본원의 하나 이상의 구현예는 DNA-PK 억제제로서 사용하기 위한 본원의 화합물을 제공한다.
본원의 하나 이상의 구현예는 암을 치료하거나, 예방하거나 억제하는 방법에 사용하기 위한 본원의 화합물을 제공한다.
본원의 하나 이상의 구현예는 DNA-PK를 억제하는 방법에 사용하기 위한 본원의 화합물을 제공한다.
본원의 하나 이상의 구현예는 본원의 화합물을 필요로 하는 대상체에게 투여하는 것을 포함하는, 암을 치료하거나, 예방하거나 억제하는 방법을 제공한다.
본원의 하나 이상의 구현예는 본원의 화합물을 필요로 하는 대상체에게 투여하는 것을 포함하는, DNA-PK를 억제하는 방법을 제공한다.
반대로 언급되지 않는 한, 명세서 및 구범위에서 사용되는 용어는 다음과 같은 의미를 갖는다.
본원에 기재된 기 및 화합물에 관련된 탄소, 수소, 산소, 황, 질소, F, Cl, Br 및 I는 각각 이들의 동위원소를 포괄하고, 본 명세서에 기재된 기 및 화합물에 관련된 탄소, 수소, 산소, 황 또는 질소는 그에 상응하는 하나 이상의 동위원소로 선택적으로 추가로 대체되고, 탄소의 동위원소는 12C, 13C 및 14C를 포함하고, 수소의 동위원소는 프로튬(H), 중수소 (D, 또한 소위 중 수소) 및 삼중수소 (T, 또한 소위 초중(superheavy) 수소)를 포함하고, 산소의 동위원소는 16O, 17O 및 18O를 포함하고, 황의 동위원소는 32S, 33S, 34S 및 36S를 포함하고, 질소의 동위원소는 14N 및 15N을 포함하고, 불소의 동위원소는 17F 및 19F를 포함하고, 염소의 동위원소는 35Cl 및 37Cl을 포함하고, 그리고 브롬의 동위원소는 79Br 및 81Br을 포함한다.
"알킬"은 1 내지 20개의 탄소 원자로 이루어진 군으로부터 선택된 선형 또는 분지형 포화된 지방족 탄화수소 기, 바람직하게는 1 내지 8개의 (예를 들어, 1, 2, 3, 4, 5, 6, 7 또는 8개의) 탄소 원자로 이루어진 군으로부터 선택된 알킬 기, 더 바람직하게는 1 내지 6개의 탄소 원자로 이루어진 군으로부터 선택된 알킬 기, 및 추가로 바람직하게는 1 내지 4개의 탄소 원자로 이루어진 군으로부터 선택된 알킬 기를 지칭한다. 비제한적인 예는 메틸, 에틸, n-프로필, 이소프로필, n-부틸, sec-부틸, 네오부틸, tert-부틸, n-펜틸, 이소펜틸, 네오펜틸, n-헥실 및 이의 다양한 분지쇄 이성질체를 포함하고; 알킬이 치환되는 경우, 하나 이상의 치환기로 선택적으로 추가로 치환될 수 있다.
"알콕시"은 산소 원자에 의한 알킬 기의 적어도 하나의 탄소 원자의 치환에 의해 형성된 기를 지칭한다. 비제한적인 예는 메톡시, 에톡시, n-프로폭시, 이소프로폭시, n-부톡시, sec-부톡시, tert-부톡시, n-펜톡시, n-헥속시, 사이클로프로폭시 및 사이클로부톡시를 포함한다. 알킬은 상기에 기재된 "알킬"에 대한 것과 동일한 방식으로 정의된다.
"알케닐"은 1 내지 10개의 (예를 들어, 1, 2, 3, 4, 5, 6, 7, 8, 9 또는 10개의) 탄소-탄소 이중 결합를 함유하고 2 내지 20개의 탄소 원자로 구성된 선형 또는 분지형 불포화된 지방족 탄화수소 기, 바람직하게는 2 내지 12개의 (예를 들어, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 또는 12개의) 탄소 원자로 구성된 알케닐 기, 더 바람직하게는 2 내지 8개의 탄소 원자로 구성된 알케닐 기, 및 추가로 바람직하게는 2 내지 6개의 탄소 원자로 구성된 알케닐 기를 지칭한다. 비제한적인 예는 비닐, 프로펜-2-일, 부텐-2-일, 펜텐-2-일, 펜텐-4-일, 헥센-2-일, 헥센-3-일, 헵텐-2-일, 헵텐-3-일, 헵텐-4-일, 옥텐-3-일, 노넨-3-일, 데센-4-일, 및 운데센-3-일을 포함한다. 알케닐은 하나 이상의 치환기로 선택적으로 추가로 치환될 수 있다.
"알키닐"은 1 내지 10개의 (예를 들어, 1, 2, 3, 4, 5, 6, 7, 8, 9 또는 10개의) 탄소-탄소 삼중 결합을 함유하고 2 내지 20개의 탄소 원자로 구성된 선형 또는 분지형 불포화된 지방족 탄화수소 기, 바람직하게는 2 내지 12개의 (예를 들어, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 또는 12개의) 탄소 원자로 구성된 알키닐 기, 더 바람직하게는 2 내지 8개의 탄소 원자로 구성된 알키닐 기, 및 추가로 바람직하게는 2 내지 6개의 탄소 원자로 구성된 알키닐 기를 지칭한다. 비제한적인 예는 에티닐, 프로핀-1-일, 프로핀-2-일, 부틴-1-일, 부틴-2-일, 부틴-3-일, 3,3-디메틸부틴-2-일, 펜틴-1-일, 펜틴-2-일, 헥신-1-일, 1-헵틴-1-일, 헵틴-3-일, 헵틴-4-일, 옥틴-3-일, 노닌-3-일, 데신-4-일, 운덱-3-일, 및 도데신-4-일을 포함한다. 알키닐은 하나 이상의 치환기로 선택적으로 추가로 치환될 수 있다.
"아릴"은 치환된 또는 비치환된 방향족 고리를 지칭한다. 5 내지 8원 (예를 들어, 5, 6, 7 또는 8원) 모노사이클릭 고리계, 5 내지 12원 (예를 들어, 5, 6, 7, 8, 9, 10, 11 또는 12원) 바이사이클릭 고리계 또는 10 내지 15원 (예를 들어, 10, 11, 12, 13, 14 또는 15원) 삼환형 고리계일 수 있고 브릿징된 고리 또는 스피로 고리일 수 있다. 비제한적인 예는 페닐 및 나프틸을 포함한다. 아릴은 하나 이상의 치환기로 선택적으로 추가로 치환될 수 있다.
"헤테로아릴"은 치환된 또는 비치환된 방향족 고리를 지칭한다. 3 내지 8원 (예를 들어, 3, 4, 5, 6, 7 또는 8원) 모노사이클릭 고리계, 5 내지 12원 (예를 들어, 5, 6, 7, 8, 9, 10, 11 또는 12원) 바이사이클릭 고리계 또는 10 내지 15원 (예를 들어, 10, 11, 12, 13, 14 또는 15원) 삼환형 고리계일 수 있고, N, O 및 S로부터 선택된 1 내지 6개의 (예를 들어, 1, 2, 3, 4, 5 또는 6개의) 헤테로원자를 함유하고 바람직하게는 5 내지 8원 헤테로아릴이다. 헤테로아릴의 고리에서 선택적으로 치환된 1 내지 4개의 (예를 들어, 1, 2, 3 또는 4)개의 N 및 S는 다양한 산화 상태로 산화될 수 있다. 헤테로아릴은 헤테로원자 또는 탄소 원자에 부착될 수 있고, 브릿징된 고리 또는 스피로 고리일 수 있다. 비제한적인 예는 사이클릭 피리디닐, 푸라닐, 티에닐, 피라닐, 피롤릴, 피리미디닐, 피라지닐, 피리다지닐, 이미다졸릴, 피페리디닐, 벤즈이미다졸릴, 벤조피리디닐 및 피롤로피리디닐을 포함한다. 헤테로아릴은 하나 이상의 치환기로 선택적으로 추가로 치환된다.
"카보사이클릴" 또는 "카보사이클"은 포화 또는 불포화된, 방향족 또는 비-방향족 고리를 지칭한다. 방향족 고리인 경우, 상기에 기재된 "아릴"에 대한 것과 동일한 방식으로 정의되고; 비-방향족 고리인 경우, 3 내지 10원 (예를 들어, 3, 4, 5, 6, 7, 8, 9 또는 10원) 모노사이클릭 고리계, 4 내지 12원 (예를 들어, 4, 5, 6, 7, 8, 9, 10, 11 또는 12원) 바이사이클릭 고리계 또는 10 내지 15원 (예를 들어, 10, 11, 12, 13, 14 또는 15원) 삼환형 고리계일 수 있고, 브릿징된 고리 또는 스피로 고리일 수 있다. 비제한적인 예는 사이클로프로필, 사이클로부틸, 사이클로펜틸, 1-사이클로펜틸-1-알케닐, 1-사이클로펜틸-2-알케닐, 1-사이클로펜틸-3-알케닐, 사이클로헥실, 1-사이클로헥실-2-알케닐, 1-사이클로헥실-3-알케닐, 사이클로헥세닐, 사이클로헥사디에닐, 사이클로헵틸, 사이클로옥틸, 사이클로노닐, 사이클로데실, 사이클로운데실, 사이클로도데실,
Figure pct00152
,
Figure pct00153
,
Figure pct00154
,
Figure pct00155
,
Figure pct00156
,
Figure pct00157
,
Figure pct00158
,
Figure pct00159
Figure pct00160
을 포함한다. "카보사이클릴" 또는 "카보사이클"은 하나 이상의 치환기로 선택적으로 추가로 치환된다.
"헤테로사이클릴" 또는 "헤테로사이클"은 포화 또는 불포화된, 방향족 또는 비-방향족 헤테로사이클을 지칭한다. 방향족 헤테로사이클인 경우, 상기에 기재된 "헤테로아릴"에 대한 것과 동일한 방식으로 정의되고; 비-방향족 헤테로사이클인 경우, 3 내지 10원 (예를 들어, 3, 4, 5, 6, 7, 8, 9 또는 10원) 모노사이클릭 고리계, 4 내지 12원 (예를 들어, 4, 5, 6, 7, 8, 9, 10, 11 또는 12원) 바이사이클릭 고리계 또는 10 내지 15원 (예를 들어, 10, 11, 12, 13, 14 또는 15원) 삼환형 고리계일 수 있고, N, O 및 S로부터 선택된 1 내지 4개의 (예를 들어, 1, 2, 3 또는 4개의) 헤테로원자를 함유할 수 있고, 바람직하게는 3 내지 8원 헤테로사이클릴이다. "헤테로사이클릴" 또는 "헤테로사이클"의 고리에서 선택적으로 치환된 1 내지 4개의 (예를 들어, 1, 2, 3 또는 4)개의 N 및 S는 다양한 산화 상태로 산화될 수 있고; "헤테로사이클릴" 또는 "헤테로사이클"은 헤테로원자 또는 탄소 원자에 부착될 수 있고, 브릿징된 고리 또는 스피로 고리일 수 있다. "헤테로사이클릴" 또는 "헤테로사이클"의 비제한적인 예는 에폭시에틸, 에폭시프로필, 아지리디닐, 옥세타닐, 아제티디닐, 티에타닐, 1,3-디옥소라닐, 1,4-디옥소라닐, 1,3-디옥사닐, 아제파닐, 옥세파닐, 티에파닐, 옥소아제피닐, 디아제피닐, 티아제피닐, 피리디닐, 피페리디닐, 호모피페리디닐, 푸라닐, 티에닐, 피라닐, N-알킬피롤릴, 피리미디닐, 피라지닐, 피리다지닐, 피페라지닐, 호모피페라지닐, 이미다졸릴, 피페리디닐, 모폴리닐, 티오모폴리닐, 옥사티아닐, 1,3-디티아닐, 디하이드로푸라닐, 디티아사이클로펜틸, 테트라하이드로푸라닐, 테트라하이드로티에닐, 테트라하이드로피라닐, 테트라하이드로티오피라닐, 테트라하이드로피롤릴, 테트라하이드로이미다졸릴, 테트라하이드로티아졸릴, 테트라하이드로피라닐, 벤즈이미다졸릴, 벤조피리디닐, 피롤로피리디닐, 벤조디하이드로푸라닐, 2-피롤리닐, 3-피롤리닐, 인돌리닐, 2H-피라닐, 4H-피라닐, 디옥사사이클로헥실, 1,3-디옥소라닐, 피라졸리닐, 디티아닐, 디티올라닐, 디하이드로티에닐, 피라졸리디닐, 이미다졸리닐, 이미다졸리디닐, 1,2,3,4-테트라하이드로이소퀴놀리닐, 3-아자바이사이클로[3.1.0]헥실, 3-아자바이사이클로[4.1.0]헵틸, 아자바이사이클로[2.2.2]헥실, 3H-인돌릴퀴놀리지닐, N-피리딜우레아, 1,1-디옥소티오모폴리닐, 아자바이사이클로[3.2.1]옥틸, 아자바이사이클로[5.2.0]노닐, 옥사트리사이클로[5.3.1.1]도데실, 아자-아다만틸 및 옥사스피로[3.3]헵틸을 포함한다. "헤테로사이클릴" 또는 "헤테로사이클"은 하나 이상의 치환기로 선택적으로 추가로 치환될 수 있다.
"사이클로알킬"은 포화 사이클릭 탄화수소 기를 지칭하고, 이의 고리는 3 내지 10원 (예를 들어, 3, 4, 5, 6, 7, 8, 9 또는 10원) 모노사이클릭 고리계, 4 내지 12원 (예를 들어, 4, 5, 6, 7, 8, 9, 10, 11 또는 12원) 바이사이클릭 고리계 또는 10 내지 20원 (예를 들어, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 또는 20원) 폴리사이클릭 고리계일 수 있다. 고리 탄소 원자는 바람직하게는 3 내지 10개의 탄소 원자, 추가로 바람직하게는 3 내지 8개의 탄소 원자이다. "사이클로알킬"의 비제한적인 예는 사이클로프로필, 사이클로부틸, 사이클로펜틸, 사이클로헥실, 사이클로헵틸, 사이클로옥틸, 사이클로프로페닐, 사이클로부테닐, 사이클로펜테닐, 사이클로헥세닐, 사이클로헵테닐, 1,5-사이클로옥타디에닐, 1,4-사이클로헥사디에닐, 사이클로헵타트리에닐, 등을 포함한다. 사이클로알킬이 치환되는 경우, 하나 이상의 치환기로 선택적으로 추가로 치환될 수 있다.
"헤테로사이클로알킬"은 치환된 또는 비치환된 포화된 비-방향족 사이클릭 기를 지칭한다. 3 내지 8원 (예를 들어, 3, 4, 5, 6, 7 또는 8원) 모노사이클릭 고리계, 4 내지 12원 (예를 들어, 4, 5, 6, 7, 8, 9, 10, 11 또는 12원) 바이사이클릭 고리계 또는 10 내지 15원 (예를 들어, 10, 11, 12, 13, 14 또는 15원) 삼환형 고리계일 수 있고, N, O 및 S로부터 선택된 1, 2 또는 3개의 헤테로원자를 함유하고, 바람직하게는 3 내지 8원 헤테로사이클릴이다. "헤테로사이클로알킬"의 고리에서 선택적으로 치환된 1, 2 또는 3개의 N 및 S는 다양한 산화 상태로 산화될 수 있고; "헤테로사이클로알킬"은 헤테로원자 또는 탄소 원자에 부착될 수 있고, 브릿징된 고리 또는 스피로 고리일 수 있다. "헤테로사이클로알킬"의 비제한적인 예는 에폭시에틸, 아지리디닐, 옥세타닐, 아제티디닐, 1,3-디옥소라닐, 1,4-디옥소라닐, 1,3-디옥사닐, 아제파닐, 피페리디닐, 모폴리닐, 티오모폴리닐, 1,3-디티아닐, 테트라하이드로푸라닐, 테트라하이드로피롤릴, 테트라하이드로이미다졸릴, 테트라하이드로티아졸릴, 테트라하이드로피라닐, 아자바이사이클로[3.2.1]옥틸, 아자바이사이클로[5.2.0]노닐, 옥사트리사이클로[5.3.1.1]도데실, 아자-아다만틸 및 옥사스피로[3.3]헵틸을 포함한다.
상기에 기재된 "알킬", "알콕시", "알케닐", "알키닐", "아릴", "헤테로아릴", "카보사이클릴", "카보사이클", "헤테로사이클릴", "헤테로사이클", "사이클로알킬", "헤테로사이클로알킬" 또는 "헤테로사이클릴"이 치환되는 경우, F, Cl, Br, I, 하이드록시, 머캅토, 니트로, 시아노, 아미노, C1-6 알킬아미노, =O, C1-6 알킬, C1-6 알콕시, C2-6 알케닐, C2-6 알키닐, -NRq4Rq5, =NRq6, -C(=O)OC1 -6 알킬, -OC(=O)C1-6 알킬, -C(=O)NRq4Rq5, C3-8 사이클로알킬, C3-8 헤테로사이클로알킬, C6-10 아릴, C5-10 헤테로아릴, -C(=O)OC6 -10 아릴, -OC(=O)C6 -10 아릴, -OC(=O)C5 -10 헤테로아릴, -C(=O)OC5 -10 헤테로아릴, -OC(=O)C3 -8 헤테로사이클로알킬, -C(=O)OC3 -8 헤테로사이클로알킬, -OC(=O)C3 -8 사이클로알킬, -C(=O)OC3 -8 사이클로알킬, -NHC(=O)C3 -8 헤테로사이클로알킬, -NHC(=O)C6 -10 아릴, -NHC(=O)C5 -10 헤테로아릴, -NHC(=O)C3 -8 사이클로알킬, -NHC(=O)C3 -8 헤테로사이클로알킬, -NHC(=O)C2 -6 알케닐 및 -NHC(=O)C2 -6 알키닐로부터 선택된 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 또는 10개의 치환기로 선택적으로 추가로 치환될 수 있고, 치환기 C1-6 알킬, C1-6 알콕시, C2-6 알케닐, C2-6 알키닐, C3-8 사이클로알킬, C3-8 헤테로사이클로알킬, C6-10 아릴, C5-10 헤테로아릴, -NHC(=O)C6 -10 아릴, -NHC(=O)C5 -10 헤테로아릴, -NHC(=O)C3 -8 헤테로사이클로알킬 또는 -NHC(=O)C3-8 사이클로알킬은 OH, F, Cl, Br, I, C1-6 알킬, C1-6 알콕시, -NRq4Rq5 및 =O로부터 선택된 1 내지 3개의 치환기로 선택적으로 추가로 치환되고, Rq1은 C1-6 알킬, C1-6 알콕시 및 C6-10 아릴로부터 선택되고, 그리고 Rq2 및 Rq3은 H 및 C1-6 알킬로부터 선택되고, Rq4 및 Rq5는 H, C1-6 알킬, -NH(C=NRq1)NRq2Rq3, -S(=O)2NRq2Rq3, -C(=O)Rq1 및 -C(=O)NRq2Rq3로부터 선택되고, 여기서 C1-6 알킬은 OH, F, Cl, Br, I, C1-6 알킬, C1-6 알콕시, C6-10 아릴, C5-10 헤테로아릴, C3-8 사이클로알킬 및 C3-8 헤테로사이클로알킬로부터 선택된 하나 이상의 치환기로 선택적으로 추가로 치환되거나; 또는 Rq4 및 Rq5는, N 원자와 함께 3 내지 8원 헤테로사이클을 형성하고, 이는 N, O 및 S로부터 1개 이상의 헤테로원자를 함유할 수 있다.
"약학적으로 허용 가능한 염" 또는 "이의 약학적으로 허용 가능한 염"은 유리 산 형태의 본원에 개시된 화합물과 무독성 무기 또는 유기 염기와의 반응 또는 유리 염기 형태의 본원에 개시된 화합물과 무독성 무기 또는 유기 산과의 반응에 의해 수득되는 염을 지칭하고, 이 염에서 유리 산 또는 유리 염기 형태로 본원에 개시된 화합물의 생체이용률 및 특성이 유지된다.
"약제학적 조성물"은 본원에 기재된 하나 이상의 화합물 또는 이의 약제학적으로 허용 가능한 염 또는 전구약물 및 기타 화학 성분의 혼합물을 지칭하며, 여기서 "다른 화학 성분"은 약제학적으로 허용 가능한 담체, 부형제 및/또는 하나 이상의 다른 치료제를 지칭한다.
"담체"는 유기체에 심각한 자극을 일으키지 않고 투여된 화합물의 생물학적 활성 및 특성을 제거하지 않는 물질을 지칭한다.
"부형제"는 화합물의 투여를 용이하게 하기 위해 약제학적 조성물에 첨가되는 불활성 물질을 지칭한다. 비제한적인 예는 탄산칼슘, 인산칼슘, 당, 전분, 셀룰로스 유도체(미세결정질 셀룰로스 포함), 젤라틴, 식물성 오일, 폴리에틸렌 글리콜, 희석제, 과립화제, 윤활제, 결합제 및 붕해제를 포함한다.
"전구약물"은 생체내에서 대사되어 생물학적으로 활성이 될 수 있는 본원에 개시된 화합물을 지칭한다. 본원에 개시된 전구약물은 본원에 개시된 화합물에서 아미노 또는 카복실을 변형시켜 제조되며, 변형은 통상적인 조작에 의해 제거되거나 생체내에서 제거되어 모 화합물을 얻을 수 있다. 본원에 개시된 전구약물이 포유동물 대상체에게 투여될 때, 전구약물은 절단되어 유리 아미노 또는 카복실을 형성한다.
"공결정"은 활성 약제학적 성분(API)과 공결정 형성제(CCF)가 수소 결합 또는 기타 비공유 결합을 통해 결합하여 형성된 결정을 지칭하고, 여기서 API 및 CCF는 모두 실온에서 순수한 상태로 고체이고, 성분은 고정된 화학량론적 비율로 존재한다. 공결정은 두 개의 중성 고체로 형성된 이원 공결정과 중성 고체와 염 또는 용매화물로 형성된 다중 공결정을 모두 포함하는 다성분 결정이다.
"입체 이성질체"는 시스-트랜스 이성질체, 거울상 이성질체 및 이형태체를 포함하여 분자 내 원자의 다른 공간적 배열로 인한 이성질체를 지칭한다.
"선택적(optional)", "선택적으로(optionally)", "선택적(selective)" 또는 "선택적으로(selectively)"은 이후에 기술된 사건 또는 상황이 발생할 수 있지만 반드시 그런 것은 아님을 의미하며, 설명은 사건 또는 상황이 발생하는 경우와 발생하지 않는 경우를 포함한다. 예를 들어, "알킬로 선택적으로 치환된 헤테로시클릴"은 알킬이 존재할 수 있지만 반드시 그렇지는 않음을 의미하고, 설명은 헤테로시클릴이 알킬로 치환된 경우 및 헤테로시클릴이 알킬로 치환되지 않은 경우를 포함한다.
하기 실시예는 본 발명의 기술적 반응식을 구체적으로 예시하지만, 본 발명의 보호 범위가 이에 한정되는 것은 아니다.
화합물의 구조는 핵 자기 공명(NMR) 및/또는 질량 분광분석(MS)에 의해 결정된다. NMR 이동(δ)은 10-6(ppm)으로 표시된다. NMR 측정은 NMR 분광계(Bruker Avance III 400 및 Bruker Avance 300)를 사용하여 수행되며, 중수소화 디메틸 설폭사이드(DMSO-d6), 중수소화 클로로포름(CDCl3) 및 중수소화 메탄올(CD3OD)을 용매로 사용하고 테트라메틸실란(TMS)을 내부 표준으로 사용하고;
MS 결정은 Agilent 6120B(ESI) 및 Agilent 6120B(APCI)를 사용하여 수행되고;
HPLC 결정은 Agilent 1260DAD 고압 액체 크로마토그래피(Zorbax SB-C18 100 × 4.6 mm, 3.5 μM)를 사용하여 수행되고;
Yantai Yellow Sea HSGF254 또는 Qingdao GF254 실리카겔 플레이트는 박층 크로마토그래피(TLC) 실리카겔 플레이트로 사용된다. TLC용 실리카겔 플레이트의 사양은 0.15 내지 0.20 mm이고 생성물의 TLC 분리 및 정제용 사양은 0.4 내지 0.5 mm이고;
200 내지 300 메쉬의 Yantai Yellow Sea 실리카겔은 일반적으로 컬럼 크로마토그래피에서 담체로 사용되고;
본 발명의 공지된 시작 물질은 당업계에 공지된 방법으로 합성할 수 있거나 Shanghai Titan Scientific, Energy Chemical, Shanghai DEMO Medical, Chengdu Kelong Chemical, Accela ChemBio 및 J&K Scientific과 같은 회사에서 구입할 수 있고;
질소 분위기는 반응 플라스크가 약 1 L 부피의 질소 밸룬과 연결되어 있음을 의미하고;
수소 분위기는 반응 플라스크가 약 1 L 부피의 질소 밸룬과 연결되어 있음을 의미하고;
수소화 반응에서, 수소를 진공화하고 도입하는 작업이 일반적으로 수행되며 3회 반복되고;
실시예에 달리 명시되지 않은 경우 반응은 질소 분위기에서 수행되고;
실시예에서 달리 지정되지 않은 경우 용액은 수용액이다.
반응 온도는 실온이고, 실시예에서 달리 명시되지 않는 한 실온의 최적 반응 온도는 20 내지 30℃이고;
DCM: 디클로로메탄;
EA: 에틸 아세테이트;
HCl: 염산;
THF: 테트라하이드로푸란;
DMF: N,N-디메틸포름아미드;
PE: 석유 에테르;
TLC: 박층 크로마토그래피;
SFC: 초임계 유체 크로마토그래피;
NCS: N-클로로석신이미드;
Pd(dppf)Cl2: [1,1'-비스(디페닐포스피노)페로센]팔라듐 이염화물;
DMSO: 디메틸 설폭사이드;
DTT: 디티오트레이톨;
ATP: 아데노신 트리포스페이트;
DNA: 데옥시리보핵산.
IC50: DNA-PK 키나제의 활성이 50% 억제되는 화합물의 농도를 지칭한다.
실시예
실시예 1
9-(3-하이드록시아다만탄-1-일)-7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-7,9-디하이드로-8H-퓨린-8-온(화합물 1)
Figure pct00161
단계 1:
(E)-N,N-디메틸-N'-(4-메틸-5-니트로피리딘-2-일)포름이미드아미드(1b)
화합물 1a(30 g, 195.9 mmol)를 톨루엔(300 mL)에 용해시키고, N,N-디메틸포름아미드 디메틸 아세탈(90 mL, 587.7 mmol)을 실온에서 첨가하였다. 반응 혼합물을 100℃에서 2시간 동안 반응시켰다. 반응이 완료된 후, 반응 혼합물을 직접 농축하여 표제 화합물 1b(황색 고체, 40.79 g, 100% 수율)를 얻었다.
1H NMR (400 MHz DMSO) δ 8.85 (s, 1H), 8.66 (s, 1H), 6.78 (s, 1H), 3.32 (s, 1H), 3.15 (s, 3H), 3.04 (s, 3H), 2.45 (s, 3H).
단계 2:
(E)-N-하이드록시-N'-(4-메틸-5-니트로피리딘-2-일)포름이미드아미드(1c)
화합물 1b(40.79 g, 195.90 mmol)를 메탄올(300 mL)에 용해시키고 하이드록실아민 하이드로클로라이드(27.22 g, 391.80 mmol)을 실온에서 첨가하였다. 반응 혼합물을 65℃에서 1시간 동안 반응시켰다. 반응 혼합물을 실온으로 냉각하고 직접 농축하여 표제 화합물 1c(황색 고체, 38 g, 100% 수율)를 얻었다.
1H NMR (400 MHz DMSO) δ 10.56 (s, 1H), 10.13 (d, 1H), 8.87 (s, 1H), 7.88 (d, 1H), 7.03 (s, 1H), 2.50 (s, 3H).
단계 3:
7-메틸-6-니트로-[1,2,4]트리아졸로[1,5-a]피리딘(1d)
2,2,2-트리플루오로아세트산 무수물(41 mL, 290.56 mmol)을 0℃에서 테트라하이드로푸란(400 mL) 중 화합물 1c(38 g, 193.71 mmol)의 용액에 첨가하였다. 반응 혼합물을 80℃에서 1시간 동안 반응시키고 농축시켰다. 생성된 고체를 탄산수소나트륨의 포화 용액(100 mL × 3)으로 슬러리화한 후, 여과 및 건조하여 표제 화합물 1d(적색 고체, 30 g, 수율 100%)를 얻었다.
1H NMR (400 MHz DMSO) δ 9.98 (s, 1H), 8.73 (s, 1H), 7.95 (s, 1H), 2.66 (s, 3H).
단계 4:
7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-아민(1e)
Pd/C(10%, 습윤 지지체)(0.8 g)를 메탄올(100 mL) 중 화합물 1d(8 g, 44.91 mmol)의 용액에 첨가하였다. 반응 혼합물을 수소 분위기 하에 실온에서 밤새 반응시켰다. 촉매를 여과로 제거하고, 이어서 농축하여 조 생성물을 얻은 다음, 이를 메탄올에서 재결정하여 표제 화합물 1e(담황색 순수한 생성물, 4 g, 60% 수율)를 얻었다.
1H NMR (400 MHz DMSO) δ 8.11 (s, 1H), 8.07 (s, 1H), 5.01 (s, 2H), 2.25 (s, 3H).
단계 4:
에틸 2-클로로-4-((3-하이드록시아다만탄-1-일)아미노)피리미딘-5-카복실레이트(1g)
화합물 1f(5 g, 22.6 mmol) 및 탄산칼륨(6.2 g, 44.8 mmol)을 아세토니트릴(20 mL)에 용해시키고, 3-아미노아다만탄-1-올(3.7 g, 22.1 mmol)을 0℃에서 첨가하였다. 반응 혼합물을 실온에서 20시간 동안 교반하였다. 30 mL의 물을 첨가하고, 침전된 고체를 여과로 단리하고, 여과 시 물로 3회 세척하였다. 여액을 농축하여 표제 화합물 1g(백색 고체, 6.2 g, 78% 수율)을 얻었다.
1H NMR (400 MHz DMSO) δ 8.62 (s, 1H), 8.37 (s, 1H), 4.66 (s, 1H), 4.30 (s, 2H), 2.20 (s, 2H), 1.98 (s, 6H), 1.58-1.29(m, 7H).
단계 6:
2-클로로-4-((3-하이드록시아다만탄-1-일)아미노)피리미딘-5-카복실산(1h)
화합물 1g(6.2 g, 17.6 mmol)을 10 mL의 테트라하이드로푸란 및 5 mL의 물에 용해시키고 수산화리튬(915mg, 38.1 mmol)을 첨가하였다. 반응 혼합물을 실온에서 1시간 동안 교반하였다. 회전식 증발에 의해 테트라하이드로푸란을 제거하였다. pH를 4-5로 조정하고 백색 고체가 침전되었다. 반응 혼합물을 여과하고, 필터 케이크를 석유 에테르/에틸 아세테이트(v/v = 10/1)로 2회 세척하고 여과 후 건조하여 표제 화합물 1h(백색 고체, 5 g, 81.9% 수율)를 얻었다.
단계 7:
2-클로로-9-(3-하이드록시아다만탄-1-일)-7,9-디하이드로-8H-퓨린-8-온(1i)
화합물 1h(2 g, 6.2 mmol)를 디메틸아세트아미드(20 mL)에 용해시키고, 트리에틸아민(750 mg, 7.4 mmol) 및 디페닐포스포릴 아지드(1.87 g, 6.8 mmol)를 첨가하였다. 그 다음, 반응 혼합물을 120℃로 점진적으로 가온하고 1.5시간 동안 교반하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피(석유 에테르/에틸 아세테이트(v/v) = 5:1 내지 1:10)로 정제하여 표제 화합물 1i(백색 고체, 780 mg, 35% 수율)을 얻었다.
1H NMR (400 MHz DMSO) δ 8.08 (s, 1H), 4.71 (s, 1H), 2.40 (s, 4H), 2.43 (d, 2H), 2.25 (s, 2H), 1.66-1.46 (m, 7H).
단계 8:
2-클로로-9-(3-하이드록시아다만탄-1-일)-7-메틸-7,9-디하이드로-8H-퓨린-8-온(1j)
화합물 1i(780 mg, 2.4 mmol)를 디메틸포름아미드(10 mL)에 용해시키고, 디메틸 설페이트(307 mg, 2.4 mmol) 및 탄산세슘(1.5 g, 4.8 mmol)를 0℃에서 첨가하였다. 반응 혼합물을 0℃에서 1시간 동안 교반하였다. 그 다음 20 mL의 물을 첨가하고, 에틸 아세테이트(50 mL × 3)로 추출하였다. 유기상을 무수 황산나트륨 상에서 건조시키고 농축하고 고체는 침전되었다. 고체를 여과로 수집하여 표제 화합물 1j(백색 고체, 397 mg, 49% 수율)를 수득하였다.
1H NMR (400 MHz DMSO) δ 8.30 (s, 1H), 3.29 (s, 3H), 2.40 (s, 4H), 2.43 (d, 2H), 2.25 (s, 2H), 1.65-1.46 (m, 7H).
단계 9:
9-(3-하이드록시아다만탄-1-일)-7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-7,9-디하이드로-8H-퓨린-8-온(화합물 1)
화합물 1j(372 mg, 0.14 mmol), 화합물 1e(132 mg, 0.1 mmol), 탄산세슘(130 mg, 0.4 mmol), 트리스(디벤질리덴아세톤)디팔라듐(40 mg, 0.04 mmol) 및 2,2'-비스(디페닐포스피노)-1,1'-바이나프틸 (50 mg, 0.08 mmol)을 디옥산에 용해시킨 후, 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 30/1)로 정제하여 화합물 1(백색 고체, 12.6 mg, 2.5% 수율)을 얻었다.
1H NMR (400 MHz DMSO) δ 9.09 (s, 1H), 8.56 (s, 1H), 8.36 (s, 1H), 8.08 (s, 1H), 7.70 (s, 1H), 4.56 (s, 1H), 3.24 (s, 3H), 2.39 (d, 9H), 2.17 (s, 2H), 1.58-1.23 (m, 6H).
실시예 2
9-(3-하이드록시아다만탄-1-일)-7-메틸-2-((7-메틸퀴놀린-6-일)아미노)-7,9-디하이드로-8H-퓨린-8-온(화합물 2)
Figure pct00162
화합물 1j(200 mg, 0.6 mmol), 7-메틸퀴놀린-6-아민 2a(94.6 mg, 0.6 mmol), 탄산세슘(384.4 mg, 1.2 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(55 mg, 0.06 mmol)을 2 mL의 디옥산에 용해시킨 다음, 질소 퍼징하였다. 반응 혼합물을 110℃에서 4시간 동안 교반하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 칼럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 35/1) 그 다음 분취 HPLC로 정제하여 화합물 2(황색 고체, 45 mg, 35% 수율)를 얻었다.
1H NMR (400 MHz DMSO) δ 9.04 (d, 1H), 9.03 (s, 1H), 8.92 (t, 1H), 8.60 (s, 1H), 8.04 (s, 1H), 7.88 (q, 1H), 3.29 (s, 3H), 2.63 (s, 3H), 2.37-2.51 (m, 6H), 2.18 (s, 2H), 1.56 (q, 4H), 1.44 (q, 2H).
LC-MS m/z (ESI) = 457.20 [M+1].
실시예 3
tert-부틸-3-(7-메틸-2-[(7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노]-8-옥소-8,9-디하이드로-7H-퓨린-9-일)아다만탄-1-카복실레이트(화합물 3)
Figure pct00163
단계 1:
tert-부틸 3-아미노아다만탄-1-카복실레이트(3b)
화합물 3a(10 g, 51.21 mmol)를 티오닐 클로라이드(70 mL)에 용해시켰다. 반응 혼합물을 90℃에서 1시간 동안 환류시켰다. 반응 혼합물을 직접 농축하고, 잔류물을 톨루엔(50 mL)에 재용해시켰다. 생성된 용액을 농축하여 과잉의 티오닐 클로라이드를 제거하고, tert-부탄올(60 mL)을 빙욕 하에 첨가하였다. 그 다음, 반응 혼합물을 실온에서 1시간 동안 반응시키고, 반응이 완료될 때까지 TLC로 반응을 모니터링하였다. 반응 혼합물을 직접 농축하고, 고체를 수집하여 목적 화합물 3b(백색 고체, 12 g, 수율 93.22%)를 얻었다.
LC-MS m/z (ESI) = 252.20 [M+1].
단계 2:
에틸 4-(((1s,3r,5R,7S)-3-(tert-부톡시카보닐)아다만탄-1-일)아미노)-2-클로로피리미딘-5-카복실레이트(3c)
화합물 1f(12 g, 54.29 mmol), 화합물 3b(13.65 g, 54.29 mmol) 및 탄산칼륨(15.01 g, 108.58 mmol)을 아세토니트릴(150 mL)에 용해시켰다. 반응 혼합물을 실온에서 16시간 동안 반응시켰다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 여과하고, 고체를 소량의 아세토니트릴로 세척하였다. 여액을 조합하고 농축하였다. 조 생성물을 컬럼 크로마토그래피(석유 에테르/에틸 아세테이트(v/v) = 1/1)로 정제하여 목적 화합물 3c(백색 고체, 15 g, 63.38% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 8.63 (s, 1H), 8.36 (s, 1H), 4.30 (q, 2H), 2.00-2.18 (m, 8H), 1.61-1.73 (m, 6H), 1.38 (s, 9H), 1.31 (t, 3H).
단계 3:
4-((3-(tert-부톡시카보닐)아다만탄-1-일)아미노)-2-클로로피리미딘-5-카복실산(3d)
화합물 3c(15 g, 34.41 mmol)를 200 mL의 테트라하이드로푸란 및 200 mL의 물에 용해시키고, 수산화리튬(1.65 g, 68.82 mmol)을 첨가하였다. 반응 혼합물을 실온에서 1시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 농축하여 테트라하이드로푸란을 제거하고 6 N 염산으로 pH 5로 조정하고 백색 고체가 침전되었다. 반응 혼합물을 여과하고, 필터 케이크를 석유 에테르로 2회 세척하고 수집하여 표제 화합물 3d(백색 고체, 14 g, 99.75% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 8.65 (s, 1H), 8.58 (s, 1H), 2.01-2.17 (m, 8H), 1.57-1.77(m, 6H), 1.38 (s, 9H).
LC-MS m/z (ESI) = 408.10 [M+1].
단계 4:
tert-부틸-3-(2-클로로-8-옥소-8,9-디하이드로-7H-퓨린-9-일)아다만탄-1-카복실레이트(3e)
화합물 3d(15 g, 36.77 mmol)를 N,N-디메틸아세트아미드(150 mL)에 용해시키고, 디페닐포스포릴 아지드(7.91 mL, 36.77 mmol) 및 트리에틸아민(5.11 mL, 36.77 mmol)을 빙욕 하에 첨가하였다. 반응 혼합물을 실온에서 1시간 동안 교반한 다음, 120℃로 가온하고, 추가로 3시간 동안 반응시켰다. 반응이 완료될 때까지 TLC(디클로로메탄/메탄올(v/v) = 4/1)로 반응을 모니터링하였다. 반응 혼합물을 실온으로 자연 냉각시키고, 600 mL의 빙수에 천천히 부었고, 다량의 고체가 나타났다. 고체를 여과로 수집하고, 에틸 아세테이트(150 mL)로 분쇄하고, 진공에서 건조하여 표적 화합물 3e(백색 고체, 7.0 g, 47.02% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 11.56 (s, 1H), 8.07 (s, 1H), 2.44-2.57 (m, 6H), 2.23 (s, 2H), 1.58-1.80 (m, 6H), 1.39 (s, 9H).
단계 5:
tert-부틸 3-(2-클로로-7-메틸-8-옥소-8,9-디하이드로-7H-퓨린-9-일)아다만탄-1-카복실레이트(3f)
화합물 3e(5 g, 12.35 mmol)를 디메틸포름아미드(40 mL)에 용해시키고, 탄산세슘(6.04 g, 18.52 mL) 및 디메틸 설페이트(1.4 mL, 14.82 mmol)를 0℃에서 첨가하였다. 반응 혼합물을 실온에서 2시간 동안 반응시켰다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 100 mL의 물을 첨가하고, 고체가 침전되었다. 고체를 여과로 수집하고 건조하여 목적 화합물 3f(백색 고체, 5.0 g, 96.64% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 8.31 (s, 1H), 3.29 (s, 3H), 2.43-2.56 (m, 6H), 2.24 (s, 2H), 1.54-1.80 (m, 6H), 1.38 (s, 9H).
단계 6:
tert-부틸-3-(7-메틸-2-[(7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노]-8-옥소-8,9-디하이드로-7H-퓨린-9-일)아다만탄-1-카복실레이트(화합물 3)
화합물 1e(500 mg, 3.37 mmol), 화합물 3f(1.41 g, 3.37 mmol), 탄산세슘(2.31 g, 7.08 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(310 mg, 0.34 mmol)을 디옥산(10 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 빙수에 부었고 고체를 수집하고 실리카겔 컬럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 100/1)로 정제하여 화합물 3(백색 고체, 1.4 g, 78.29% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 9.08 (s, 1H), 8.58 (s, 1H), 8.36 (s, 1H), 8.10 (s, 1H), 7.68 (s, 1H), 3.24 (s, 3H), 2.33-2.61 (m, 6H), 2.14 (s, 2H), 1.51-1.67 (m, 6H), 1.32 (s, 9H).
LC-MS m/z (ESI) = 531.3 [M+1].
실시예 4
3-(7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-1-카복실산(화합물 4)
Figure pct00164
화합물 3 (1.4 g, 2.64 mmol)을 4 N 디옥산 하이드로클로라이드 용액 (100 mL)에 용해시켰다. 혼합물을 실온에서 16시간 동안 반응시키고 농축시키고, 잔류물을 분취 중간 압력 액체 크로마토그래피로 정제하여 화합물 4(담황색 고체, 1.4 g, 99% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 12.15 (s, 1H), 9.07 (s, 1H), 8.57 (s, 1H), 8.36 (s, 1H), 8.09 (s, 1H), 7.68 (s, 1H), 3.24 (s, 3H), 2.41-2.58 (m, 6H), 2.38 (s, 3H), 2.14 (s, 2H), 1.56-1.71 (m, 6H).
LC-MS m/z (ESI) = 475.20 [M+1].
실시예 5
3-(7-메틸-2-[(7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노]-8-옥소-8,9-디하이드로-7H-퓨린-9-일)아다만탄-1-카복사미드(화합물 5)
Figure pct00165
화합물 4 (0.5 g, 1.05 mmol), 염화암모늄(0.56 g, 10.50 mmol) 및 트리에틸아민(0.73 mL, 5.25 mmol)을 N,N-디메틸포름아미드(15 mL)에 용해시키고, HATU (0.6 g, 1.58 mmol)을 빙욕 하에 첨가하였다. 혼합물을 실온에서 1시간 동안 반응시키고, 물(30 mL)로 켄칭하고, 에틸 아세테이트(30 mL × 3)로 추출하였다. 유기상을 건조하고 농축하여 화합물 5(백색 고체, 0.14 g, 28.16% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 9.08 (s, 1H), 8.56 (s, 1H), 8.36 (s, 1H), 8.08 (s, 1H), 7.68 (s, 1H), 6.97 (s, 1H), 6.74 (s, 1H), 3.24 (s, 3H), 2.33-2.62 (m, 9H), 2.15 (s, 2H), 1.51-1.73 (m, 4H).
LC-MS m/z (ESI) = 474.3 [M+1].
실시예 6
3-(7-메틸-2-[(7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노]-8-옥소-8,9-디하이드로-7H-퓨린-9-일)아다만탄-1-카보니트릴(화합물 6)
Figure pct00166
화합물 5 (130 mg, 0.27 mmol)을 디클로로메탄(20 mL)에 용해시키고, 피리딘(90 mg, 1.08 mmol) 및 트리플루오로아세트산 무수물(170 mg, 0.81 mmol)을 빙욕 하에 첨가하였다. 반응 혼합물을 온도를 유지하면서 추가로 1시간 동안 반응시켰다. 메탄올(20 mL)을 첨가하고, 조 생성물을 농축시켰다. 조 생성물을 에틸 아세테이트(50 mL)에 재용해하고, 생성된 용액을 15% NaHCO3(50 mL) 및 포화 염수(50 mL)로 연속적으로 세척하고, 건조하고, 농축하여 화합물 6(담황색 고체, 60 mg, 48.78% 수율).
1H NMR (400 MHz, DMSO-d 6) δ 9.07 (s, 1H), 8.65 (s, 1H), 8.37 (s, 1H), 8.11 (s, 1H), 7.70 (s, 1H), 3.25 (s, 3H), 2.75 (s, 2H), 2.44-2.51 (m, 4H), 2.38 (s, 3H), 2.15 (s, 2H), 1.91-1.94 (m, 4H), 1.53-1.62 (m, 2H).
LC-MS m/z (ESI) = 456.2 [M+1].
실시예 7
에틸-3-(7-메틸-2-[(7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노]-8-옥소-8,9-디하이드로-7H-퓨린-9-일)아다만탄-1-카복실레이트(화합물 7)
Figure pct00167
화합물 4(0.5 g, 1.05 mmol)를 에탄올(20 mL)에 용해시키고 농축 황산 2방울을 첨가하였다. 반응 혼합물을 90℃로 직접 가열하고 2시간 동안 환류시켰다. 반응이 완료될 때까지 LCMS에 의해 반응을 모니터링하였다. 반응 혼합물을 실온으로 되돌리고, 기포가 생성되지 않을 때까지 고체 탄산나트륨을 첨가하였다. 반응 혼합물을 여과하고, 여액을 농축하여 조 생성물을 얻었다. 조 생성물을 분취 중간 압력 액체 크로마토그래피(100% 아세토니트릴)로 정제하여 화합물 7(백색 고체, 0.3 g, 56.85% 수율)을 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 9.06 (s, 1H), 8.59 (s, 1H), 8.36 (s, 1H), 8.10 (s, 1H), 7.68 (s, 1H), 3.98 (q, 2H), 3.24 (s, 3H), 2.41-2.57 (m, 4H), 2.38 (s, 3H), 2.15 (s, 2H), 1.57-1.71 (m, 6H), 1.10 (t, 3H).
LC-MS m/z (ESI) = 503.3 [M+1].
실시예 8
7-메틸-2-[(7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노]-9-[3-(하이드록시메틸)아다만탄-1-일]-8,9-디하이드로-7H-퓨린-8-온(화합물 8)
Figure pct00168
화합물 7(200 mg, 0.4 mmol)을 테트라하이드로푸란(10 mL)에 용해시키고, 빙욕 하에서 리튬 알루미늄 하이드라이드(0.8 mL, 0.8 mmol, 1 M)를 첨가하였다. 반응 혼합물을 빙욕 하에서 30분 동안 반응시켰다. 30 μL의 탈이온수, 15% 수산화나트륨 용액, 90 μL의 탈이온수 및 1 g의 무수 황산마그네슘을 연속적으로 첨가하였다. 반응 혼합물을 실온에서 추가로 30분 동안 교반하고 여과하고, 여액을 농축하여 조 생성물을 얻은 다음, 이를 컬럼 크로마토그래피로 정제하여 화합물 8(백색 고체, 60 mg, 32.01% 수율)을 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 9.06 (s, 1H), 8.54 (s, 1H), 8.36 (s, 1H), 8.08 (s, 1H), 7.70 (s, 1H), 4.36 (t, 1H), 3.24 (s, 3H), 2.95 (d, 2H), 2.46 (s, 2H), 2.41(s, 2H), 2.38 (s, 3H), 2.15 (s, 2H), 2.10 (s, 2H) 1.36-1.58 (m, 6H).
LC-MS m/z (ESI) = 461.2 [M+1].
실시예 9
7-메틸-2-[(7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노]-9-[3-(모폴린-4-카보닐)아다만탄-1-일]-8,9-디하이드로-7H-퓨린-8-온(화합물 9)
Figure pct00169
화합물 4 (50 mg, 0.11 mmol), 모폴린 (28.75 mg, 0.33 mmol) 및 트리에틸아민(55.65 mg, 0.55 mmol)을 N,N-디메틸포름아미드(10 mL)에 용해시키고, 2-(7-아자벤조트리아졸)-N,N,N',N'-테트라메틸우로늄 헥사플루오로포스페이트(209.13 mg, 0.55 mmol)을 빙욕 하에 첨가하였다. 반응 혼합물을 실온에서 추가로 1시간 동안 반응시켰다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 물(30 mL)로 희석한 다음, 에틸 아세테이트(50 mL × 3)로 추출하였다. 유기상을 조합하고, 건조하고, 농축하여 조 생성물을 얻었다. 조 생성물을 분취 중간 압력 액체 크로마토그래피로 정제하여 화합물 9(백색 고체, 22 mg, 35.73% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 9.09 (s, 1H), 8.56 (s, 1H), 8.36 (s, 1H), 8.09 (s, 1H), 7.68 (s, 1H), 3.51 (d, 7H), 3.24 (s, 3H), 2.67 (d, 2H), 2.60 (s, 2H), 2.38 (s, 3H), 2.34 (d, 2H), 2.17 (s, 2H), 1.79-1.85 (m, 4H), 1.56-1.63 (m, 2H).
LC-MS m/z (ESI) = 544.30 [M+1].
실시예 10
7-메틸-2-[(7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노]-9-[3-아미노아다만탄-1-일]-8,9-디하이드로-7H-퓨린-8-온(화합물 10)
Figure pct00170
화합물 4 (50 mg, 0.11 mmol)을 tert-부탄올(10 mL)에 용해시키고, 디페닐포스포릴 아지드(42.39 mg, 0.11 mmol) 및 트리에틸아민(11.13 mg, 0.11 mmol)을 빙욕 하에 첨가하였다. 반응 혼합물을 실온에서 1시간 동안 반응시킨 다음, 90℃에서 1시간 동안 환류시켰다. 반응 혼합물을 실온으로 자연 냉각시키고 2 mL의 농축 황산을 천천히 첨가하였다. 생성된 액체를 50 mL의 빙수에 적가하고 생성된 액체를 농축 건조시켰다. 잔류물을 분취 중간 압력 액체 크로마토그래피로 정제하여 화합물 10(백색 고체, 4 mg, 7.92% 수율)을 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 9.12 (s, 1H), 8.57 (s, 1H), 8.36 (s, 1H), 8.11 (s, 1H), 7.71 (s, 1H), 3.25 (s, 3H), 2.32-2.44 (m, 9H), 2.15 (s, 2H), 1.86 (s, 2H), 1.41-1.53 (m, 6H).
LC-MS m/z (ESI) = 446.20 [M+1].
실시예 11
9-(3-메톡시아다만탄-1-일)-7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-7,9-디하이드로-8H-퓨린-8-온(화합물 11)
Figure pct00171
단계 1:
2-클로로-9-(3-메톡시아다만탄-1-일)-7-메틸-7,9-디하이드로-8H-퓨린-8-온(11a)
화합물 1j(160 mg, 0.48 mmol) 및 수소화나트륨(38.23 mg, 0.96 mmol)을 N,N-디메틸포름아미드(10 mL)에 용해시키고, 이어서 질소 퍼징하고, 요오도메탄(101.75 mg, 0.72 mmol)을 빙욕 하에 적가하였다. 반응 혼합물을 실온에서 1시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 빙수에 부었고, 고체를 수집하고 실리카겔 컬럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 30/1)로 정제하여 화합물 11a(백색 고체, 100 mg, 59.72% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 8.32 (s, 1H), 3.30 (s, 3H), 3.15 (s, 3H), 2.38-2.46 (m, 6H), 2.33 (s, 2H), 1.50-1.72 (m, 6H).
LC-MS m/z (ESI) = 349.10 [M+1].
단계 2:
9-(3-메톡시아다만탄-1-일)-7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-7,9-디하이드로-8H-퓨린-8-온(화합물 11)
화합물 11a(120 mg, 0.34 mmol), 탄산세슘(220 mg, 0.68 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(30 mg, 0.03 mmol)을 디옥산(5 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 빙수에 부었고 고체를 수집하고 실리카겔 컬럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 100/1)로 정제하여 화합물 11(백색 고체, 12 mg, 7.66% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 9.04 (s, 1H), 8.60 (s, 1H), 8.37 (s, 1H), 8.10 (s, 1H), 7.70 (s, 1H), 3.24 (s, 3H), 2.92 (s, 3H), 2.36-2.38 (m, 9H), 2.22 (s, 2H), 1.60-1.42 (m, 6H).
LC-MS m/z (ESI) = 461.2 [M+1].
실시예 12
4-((9-3-하이드록시아다만탄-1-일)-7-메틸-8-옥소-8,9-디하이드로-7H-퓨린-2-일)아미노)-3-메틸벤조니트릴(화합물 12)
Figure pct00172
화합물 12a(100 mg, 0.76 mmol), 화합물 1j(250 mg, 0.76 mmol), 탄산세슘(500 mg, 1.52 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(70 mg, 0.08 mmol)을 디옥산(10 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 빙수에 부었고 고체를 수집하고 실리카겔 컬럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 100/1)로 정제하여 화합물 12(백색 고체, 60 mg, 17.61% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 8.54 (s, 1H), 8.16 (s, 1H), 8.07 (d, 1H), 7.62 (s, 1H), 7.58 (d, 1H), 4.66 (s, 1H), 3.26 (s, 3H), 2.37 (m, 9H), 2.24 (s, 2H), 1.46-1.66 (m, 6H).
LC-MS m/z (ESI) = 431.20 [M+1].
실시예 13
4-((9-(5-하이드록시아다만탄-2-일)-7-메틸-8-옥소-8,9-디하이드로-7H-퓨린-2-일)아미노)-3-메틸벤조니트릴(화합물 13)
Figure pct00173
단계 1:
4-아미노아다만탄-1-올(13b)
화합물 13a(9 g, 54.2 mmol)을 메탄올(50 mL)에 용해시키고, 910 mg의 4Å 분자체를 첨가하고, 이어서 10 mL의 아미노메탄올 용액을 첨가하였다. 반응 혼합물을 실온에서 20시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 여과하고, 여액을 농축하여 화합물 13b(백색 고체, 7.8 g, 85% 수율)를 얻었다.
1H NMR (400 MHz DMSO) δ 4.256(m, 1H), 2.735 (d, 1H), 1.936 (m, 4H), 1.792 (m, 1H), 1.698 (s, 1H), 1.578 (m, 8H), 1.216 (m, 2H).
LC-MS m/z (ESI) = 168.2 [M+1].
단계 2:
에틸 2-클로로-4-((5-하이드록시아다만탄-2-일)아미노)피리미딘-5-카복실레이트(13c)
화합물 1f(7.8 g, 46.7 mmol) 및 탄산칼륨(6.2 g, 44.8 mmol)을 아세토니트릴(20 mL)에 용해시키고, 화합물 13b(10.3 g, 46.7 mmol)을 0℃에서 첨가하였다. 반응 혼합물을 실온에서 20시간 동안 교반하였다. 30 mL의 물을 첨가하고 백색 고체가 침전되었다. 고체를 여과로 수집하여 화합물 13c(백색 고체, 10 g, 92% 수율)를 얻었다.
1H NMR (400 MHz DMSO) δ 8.79 (t, 1H), 8.640 (d, 1H), 4.345(m, 2H), 4.123 (m, 1H), 2.086(s, 2H), 1.767(m, 1H), 1.607 (m, 2H), 1.353 (m, 9H), 1.212(m, 3H).
LC-MS m/z (ESI) = 353.2 [M+1].
단계 3:
2-클로로-4-((5-하이드록시아다만탄-2-일)아미노)피리미딘-5-카복실산(13d)
화합물 13c(10 g, 28.4 mmol)을 50 mL의 테트라하이드로푸란 및 30 mL의 물에 용해시키고, 수산화리튬(2.4 g, 56.8 mmol)을 첨가하였다. 반응 혼합물을 실온에서 1시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 회전식 증발에 의해 테트라하이드로푸란을 제거하였다. pH를 4-5로 조정하고 백색 고체가 침전되었다. 반응 혼합물을 여과하고, 필터 케이크를 석유 에테르/에틸 아세테이트(v/v = 10/1)로 2회 세척하였다. 여액을 농축하여 화합물 13d(백색 고체, 8.6g, 83% 수율)를 얻었고, 이를 다음 단계에서 직접 사용하였다.
1H NMR (400 MHz DMSO) δ 13.903 (S, 1H), 9.034 (d, 1H), 8.583(d, 1H), 4.038(m, 1H), 2.089(m, 3H), 1.686(m, 9H), 1.521 (m, 2H).
LC-MS m/z (ESI) = 325.2 [M+1].
단계 4:
2-클로로-9-(5-하이드록시아다만탄-2-일)-7,9-디하이드로-8H-퓨린-8-온(13e)
화합물 13d(4 g, 12.3 mmol)을 디메틸아세트아미드(10 mL)에 용해시키고, 트리에틸아민(1.2 g, 12.3 mmol) 및 디페닐포스포릴 아지드(3.4 g, 12.3 mmol)을 첨가하였다. 그 다음, 반응 혼합물을 120℃로 점진적으로 가온하고 1.5시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 30 mL의 물을 첨가하고 백색 고체가 침전되었다. 고체를 여과로 수집하여 화합물 13e(백색 고체, 1.36 g, 36% 수율)를 얻었다.
1H NMR (400 MHz DMSO) δ 11.606 (s, 1H), 8.098(d, 1H), 4.446(m, 1H), 4.223 (d, 1H), 2.999 (m, 2H), 2.128 (m, 3H), 1.780 (m, 6H), 1.460(m, 2H).
LC-MS m/z (ESI) = 321.2 [M+1].
단계 5:
2-클로로-9-(5-하이드록시아다만탄-2-일)-7-메틸-7,9-디하이드로-8H-퓨린-8-온(13f)
화합물 13e(1.36 g, 4.25 mmol)을 디메틸포름아미드(10 mL)에 용해시키고, 디메틸 설페이트(535.5 mg, 4.25 mmol) 및 탄산세슘(923 mg, 7.8 mmol)을 0℃에서 첨가하였다. 반응 혼합물을 0℃에서 1시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 그 다음, 10 mL의 물을 첨가하고, 이어서 에틸 아세테이트로 3회 추출하였다. 유기상을 무수 황산나트륨으로 건조하고 농축하고 고체가 침전되었다. 고체를 여과로 수집하여 화합물 13f(백색 고체, 423 mg, 63% 수율)를 얻었다.
1H NMR (400 MHz DMSO) δ 8.327 (s, 1H), 4.489 (d, 1H), 4.203(d, 1H), 3.330(s, 3H), 2.989 (s, 2H), 20.79(m, 3H), 1.730 (m, 6H), 1.455 (m, 2H).
LC-MS m/z (ESI) = 335.2 [M+1].
단계 6:
4-((9-(5-하이드록시아다만탄-2-일)-7-메틸-8-옥소-8,9-디하이드로-7H-퓨린-2-일)아미노)-3-메틸벤조니트릴(화합물 13)
화합물 13f(314 mg, 1.0 mmol), 화합물 12a(132 mg, 1.0 mmol), 탄산세슘(977 mg, 3 mmol), 트리스(디벤질리덴아세톤)디팔라듐(146 mg, 0.16 mmol) 및 2,2'-비스(디페닐포스피노)-1,1'-바이나프틸 (90.6 mg, 0.1 mmol)을 디옥산에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 칼럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 30/1) 그 다음 분취 HPLC로 정제하여 화합물 13 (즉, 화합물 13-1화합물 13- 2)를 2개의 백색 고체로서 얻었다: 화합물 13-1 (45 mg, 13% 수율, RT = 5.55, dr%: 99.56%), 및 화합물 13-2 (30 mg, 9.8%, RT = 5.70, dr%: 99.18%). 이동상: 아세토니트릴/0.01 mol/L NH4HCO3-H2 = 46/54; 칼럼 온도: 35℃; 칼럼 압력: 80 bar; 유량: 20 mL/분; 200-300 nm의 파장에서 다이오드 어레이 검출기.
화합물 13-1:
1H NMR (400 MHz DMSO) δ 8.57 (s, 1H), 8.15 (s, 1H), 7.97 (d, 1H), 7.62 (d, 1H), 7.56 (dd, 1H), 4.49 (s, 1H), 4.24 (s, 1H), 3.29 (s, 3H), 3.01 (d, 2H), 2.29 (s, 3H), 2.07 (d, 2H), 1.99 (s, 1H), 1.68-1.79 (d, 4H), 1.64 (S, 2H), 1.38 (d, 2H).
LC-MS m/z (ESI) = 431.2 [M+1].
화합물 13-2:
1H NMR (400 MHz DMSO) δ 8.54 (s, 1H), 8.16 (s, 1H), 8.02 (d, 1H), 7.61 (s, 1H), 7.57 (dd, 1H), 4.34 (s, 1H), 4.14 (s, 1H), 3.29 (s, 3H), 3.16 (s, 3H), 2.30 (s, 3H), 2.01-2.07 (m, 3H), 1.67-1.76 (m, 4H), 1.60 (s, 2H), 1.44 (d, 2H).
LC-MS m/z (ESI) = 431.2 [M+1].
실시예 14
4-((9-(3-하이드록시아다만탄-1-일)-7-메틸-8-옥소-8,9-디하이드로-7H-퓨린-2-일)아미노)-3-메틸벤즈아미드(화합물 14)
Figure pct00174
화합물 14a(100 mg, 0.76 mmol), 화합물 1j(270 mg, 0.8 mmol), 탄산세슘(440 mg, 1.34 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(61 mg, 0.08 mmol)을 디옥산(10 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 빙수에 부었고 고체를 수집하고 실리카겔 컬럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 100/1)로 정제하여 화합물 14(백색 고체, 60 mg, 17.61% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 8.31 (s, 1H), 8.10 (s, 1H), 7.87 (d, 1H), 7.78 (s, 1H), 7.71 (s, 1H), 7.67 (d, 1H), 7.15 (s, 1H), 4.63 (s, 1H), 3.25 (s, 3H), 2.40 (m, 6H), 2.30 (s, 3H), 2.23 (s, 2H), 1.45-1.65 (m, 6H).
LC-MS m/z (ESI) = 449.20 [M+1].
실시예 15
5-((9-(3-하이드록시아다만탄-1-일)-7-메틸-8-옥소-8,9-디하이드로-7H-퓨린-2-일)아미노)-N,4-디메틸피콜린아미드(화합물 15)
Figure pct00175
화합물 1j(190 mg, 0.6 mmol), 화합물 15a(100 mg, 0.6 mmol), 탄산세슘(391 mg, 1.2 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(55 mg, 0.06 mmol)을 2 mL의 디옥산에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 110℃에서 4시간 동안 교반하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 35/1), 그 다음 Pre-HPLC로 정제하여 화합물 15(황색 고체, 86 mg, 89% 수율)를 얻었다.
1H NMR (400 MHz DMSO) δ 8.77 (s, 1H), 8.71 (s, 1H), 8.55 (m, 1H), 8.071 (s, 1H), 7.86 (s, 1H), 4.60 (S, 1H), 3.24 (S, 1H), 2.80 (d, 3H), 2.32-2.40 (s, 8H), 2.20 (m, 2H), 1.34-1.62 (m, 6H).
LC-MS m/z (ESI) = 464.20 [M+1].
실시예 16
9-((1R,2r,3S,5s,7s)-5-하이드록시아다만탄-2-일)-7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-7,9-디하이드로-8H-퓨린-8-온(화합물 16)
Figure pct00176
화합물 13f(200 mg, 0.59 mmol), 화합물 1e(88 mg, 0.59 mmol), 탄산세슘(576 mg, 1.77 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(54 mg, 0.059 mmol)을 디옥산(4 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 110℃에서 4시간 동안 교반하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 칼럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 35/1) 그 다음 Pre-HPLC로 정제하여 화합물 16 (즉, 화합물 16-1화합물 16- 2)를 2개의 백색 고체로서 얻었다: 화합물 16-1 (39 mg, 15.1% 수율, RT = 3.53, dr%: 99.01%), 및 화합물 16-2 (5 mg, 6.2% 수율, RT = 3.70, dr%: 99.21%). Pre-HPLC (OZ), 이동상: 아세토니트릴/0.01 mol/L NH4HCO3-H2 = 45/55; 칼럼 온도: 35℃; 칼럼 압력: 80 bar; 유량: 20 mL/분; 200-300 nm의 파장에서 다이오드 어레이 검출기.
화합물 16-1:
1H NMR (400 MHz DMSO) δ 8.999 (s, 1H), 8.558 (s, 1H), 8.373 (s, 1H), 8.097 (s, 2H), 7.690 (s, 1H), 4.456 (s, 1H), 4.201 (s, 1H), 3.293 (s, 3H), 2.908 (s, 2H), 2.355 (s, 3H), 2.031(d, 2H), 1.821(s, 1H), 1.365(dd, 3H), 1.551(s, 1H), 1.225(d, 2H).
LC-MS m/z (ESI) = 447.2 [M+1].
화합물 16-2:
1H NMR (400 MHz DMSO) δ 9.077 (s, 1H), 8.533 (s, 1H), 8.366 (s, 1H), 8.102 (s, 2H), 7.682 (s, 1H), 4.299 (s, 1H), 4.119 (s, 1H), 3.280 (s, 3H), 3.148 (s, 2H), 2.385 (s, 3H), 1.950(m, 3H), 1.634(m, 5H), 1.352(d, 2H).
LC-MS m/z (ESI) = 447.2 [M+1].
실시예 17
2-플루오로-4-(4-하이드록시아다만탄-1-일)-7-메틸-8-옥소-8,9-디하이드로-7H-퓨린-2-일)아미노)-5-메틸벤즈아미드(화합물 17)
Figure pct00177
단계 1:
에틸 2-클로로-4-(4-옥소아다만탄-1-일)아미노)피리미딘-5-카복실레이트(17b)
화합물 1f(3.7 g, 16.7 mmol) 및 탄산칼륨(6.9 g, 50.1 mmol)을 아세토니트릴(20 mL)에 용해시키고, 화합물 17a(2.7 g, 16.7 mmol)을 0℃에서 첨가하였다. 반응 혼합물을 실온에서 20시간 동안 교반하였다. 물(30 mL)을 첨가하고, 에틸 아세테이트(60 mL × 3)로 추출하였다. 유기상을 포화 식염수로 1회 세척하고, 무수 황산나트륨 상에서 건조시키고, 실리카겔과 혼합하고 샘플을 제조한 다음, 이를 실리카겔 칼럼 크로마토그래피(n-헥산 : 에틸 아세테이트 = 10:1)로 정제하고, 이어서 농축하여 화합물 17b(백색 고체, 4 g, 69% 수율)을 얻었다.
1H NMR (400 MHz DMSO) δ 8.65 (s, 1H), 8.38 (s, 1H), 4.28-4.34 (m, 1H), 2.49-2.52 (m, 2H), 2.24-2.36 (m, 5H), 2.01-2.05 (m, 2H), 1.87-1.90 (m, 2H), 1.31(t, 3H).
LC-MS m/z (ESI) = 350.10 [M+1].
단계 2:
2-클로로-4-(4-옥소아다만탄-1-일)아미노)피리미딘-5-카복실산(17c)
화합물 17b(4 g, 11.5 mmol)을 5 mL의 테트라하이드로푸란 및 5 mL의 물에 용해시키고, 수산화리튬(966 mg, 23 mmol)을 첨가하였다. 반응 혼합물을 실온에서 1시간 동안 교반하였다. 회전식 증발에 의해 테트라하이드로푸란을 제거하였다. pH를 4-5로 조정하고 백색 고체가 침전되었다. 반응 혼합물을 여과하고, 필터 케이크를 석유 에테르/에틸 아세테이트(v/v = 10/1)로 2회 세척하였다. 여액을 농축하여 화합물 17c(백색 고체, 3.2 g, 99% 수율)를 얻었다.
1H NMR (400 MHz DMSO) δ 11.64 (s, 1H), 8.10 (s, 1H), 2.85-2.86 (m, 2H), 2.71-2.77 (m, 4H), 2.57-2.61 (m, 2H), 2.28-2.33 (m, 1H), 2.04-2.13 (m, 2H), 1.87-1.95(m, 2H).
LC-MS m/z (ESI) = 322.10 [M+1].
단계 3:
2-클로로-9-(4-옥소아다만탄-1-일)-7,9-디하이드로-8H-퓨린-8-온(17d)
화합물 17c(3.7 g, 11.5 mmol)을 디메틸아세트아미드(10 mL)에 용해시키고, 트리에틸아민(1.1 g, 11.5 mmol) 및 디페닐포스포릴 아지드(3.2 g, 11.5 mmol)을 첨가하였다. 그 다음, 반응 혼합물을 110℃로 점진적으로 가온하고 1.5시간 동안 교반하였다. 반응 혼합물을 농축시킨 후, 30 mL의 물을 첨가하고, 백색 고체가 침전되었다. 고체를 여과로 수집하여 화합물 17d(백색 고체, 3.3g, 83% 수율)를 얻었다.
LC-MS m/z (ESI) = 319.10 [M+1]
단계 4:
2-클로로-7-메틸-9-(4-옥소아다만탄-1-일)-7,9-디하이드로-8H-퓨린-8-온(17e)
화합물 17d(3.3 g, 10.3 mmol)을 디메틸포름아미드(10 mL)에 용해시키고, 디메틸 설페이트(1.3 g, 10.3 mmol) 및 탄산세슘(6.7 g, 20.6 mmol)을 0℃에서 첨가하였다. 반응 혼합물을 0℃에서 30분 동안 교반하였다. 그 다음 20 mL의 물을 첨가하고, 고체가 침전되었다. 고체를 여과로 수집하여 화합물 17e(백색 고체, 2.9g, 86% 수율)를 얻었다.
1H NMR (400 MHz DMSO) δ 8.34 (s, 1H), 3.31 (s, 3H), 2.96-2.99(m, 2H), 2.72-2.88 (m, 4H), 2.62-2.67 (m, 2H), 2.30 (S, 2H), 2.06-2.14 (m, 2H), 1.88-1.93(m, 2H).
LC-MS m/z (ESI) = 333.10 [M+1]
단계 5:
2-클로로-9-(4-하이드록시아다만탄-1-일)-7-메틸-7,9-디하이드로-8H-퓨린-8-온일레 (17f)
화합물 17e(600 mg, 0.3 mmol)을 5 mL의 메탄올에 용해시키고, 나트륨 붕소수화물(23 mg, 0.6 mmol)을 배치로 실온에서 첨가하였다. 반응 혼합물을 실온에서 1시간 동안 교반하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 칼럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 40/1)로 정제하여 화합물 17f(백색 고체, 566 mg, 92% 수율)을 얻었다.
1H NMR (400 MHz DMSO) δ 8.31 (d, 1H), 3.68 (d, 1H), 3.03 (s, 3H), 2.76 (d, 1H), 2.61(d, 1H), 2.38-2.49 (m, 4H), 1.97-2.07 (m, 4H), 1.76(d, 1H), 1.40-1.62(m, 2H).
LC-MS m/z (ESI) = 335.10 [M+1].
단계 6:
2-플루오로-4-(4-하이드록시아다만탄-1-일)-7-메틸-8-옥소-8,9-디하이드로-7H-퓨린-2-일)아미노)-5-메틸벤즈아미드(화합물 17)
화합물 17f(200 mg, 0.6 mmol), 4-아미노-2-플루오로-5-메틸벤즈아미드(201 mg, 1.2 mmol), 탄산세슘(586 mg, 1.8 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(54.4 mg, 0.06 mmol)을 디옥산(4 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하고, 반응이 완료될 때까지 TLC로 반응을 모니터링하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 칼럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 60/1) 그 다음 Pre-HPLC로 정제하여 화합물 17 (즉, 화합물 17-1화합물 17- 2)를 2개의 백색 고체로서 얻었다: 화합물 17-1 (27 mg, 31% 수율, RT = 6.26, dr%: 99.44%), 및 화합물 17-2 (12 mg, 16% 수율, RT = 6.53, dr%: 99.50%). Pre-HPLC (OZ), 이동상: 아세토니트릴/0.01 mol/L NH4HCO3-H2 = 46/54; 칼럼 온도: 34℃; 칼럼 압력: 80 bar; 유량: 20 mL/분; 200-300 nm의 파장에서 다이오드 어레이 검출기.
화합물 17-1:
1H NMR (400 MHz DMSO) δ 8.41 (s, 1H), 8.17(s, 1H), 7.86(d, 1H), 7.53(d, 1H), 7.43(d, 2H), 4.71(s, 1H), 3.77 (m, 1H), 3.26 (s, 3H), 2.65 (m, 2H), 2.50-2.51 (m, 3H), 2.89(s, 3H), 1.96-2.06(m, 5H), 1.42(m, 2H).
LC-MS m/z (ESI) = 467.20 [M+1]
화합물 17-2:
1H NMR (400 MHz DMSO) δ 8.37 (s, 1H), 8.16(s, 1H), 7.87(d, 1H), 7.53(d, 1H), 7.43(d, 2H), 4.71(d, 1H), 3.59 (m, 1H), 3.26 (s, 3H), 2.71 (m, 2H), 2.44-2.52 (m, 4H), 2.29(s, 3H), 2.02(s, 3H), 1.75-1.19(m, 2H), 1.58-1.61(m, 2H).
LC-MS m/z (ESI) = 467.20 [M+1]
실시예 18
9-(4-하이드록시아다만탄-1-일)-7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-7,9-디하이드로-8H-퓨린-8-온(화합물 18)
Figure pct00178
화합물 17f(200 mg, 0.6 mmol), 화합물 1e(88.8 mg, 0.6 mmol), 탄산세슘(586 mg, 1.8 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(54.4 mg, 0.06 mmol)을 디옥산(4 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 칼럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 60/1) 그 다음 Pre-HPLC로 정제하여 화합물 18 (즉, 화합물 18-1화합물 18- 2)를 2개의 백색 고체로서 얻었다: 화합물 18-2 (44 mg, 36% 수율, RT = 6.03, dr%: 98.56%), 및 화합물 17-1 (58 mg, 43% 수율, RT = 6.51, dr%: 98.98%). Pre-HPLC (OZ), 이동상: 아세토니트릴/0.01 mol/L NH4HCO3-H2 = 43/57; 칼럼 온도: 34℃; 칼럼 압력: 80 bar; 유량: 20 mL/분; 200-300 nm의 파장에서 다이오드 어레이 검출기.
화합물 18-1:
1H NMR (400 MHz DMSO) δ 9.10 (s, 1H), 8.55(s, 1H), 8.36 (s, 1H), 8.08 (s, 1H), 7.69 (s, 1H), 4.64 (d, 1H), 3.70 (d, 1H), 3.24 (s, 3H), 2.62 (d, 2H), 2.42 (s, 3H), 2.39 (s, 4H), 1.97 (d, 2H), 1.90 (d, 3H), 1.29 (d, 2H).
LC-MS m/z (ESI) = 447.20 [M+1]
화합물 18-2:
1H NMR (400 MHz DMSO) δ 9.09 (s, 1H), 8.52(s, 1H), 8.36 (s, 1H), 8.07 (s, 1H), 7.69 (s, 1H), 4.66 (d, 1H), 3.55 (d, 1H), 3.23 (s, 3H), 2.64 (d, 2H), 2.45 (s, 2H), 2.39 (s, 3H), 2.37 (s, 2H), 1.93 (d, 3H), 1.63 (d, 2H), 1.52 (d, 2H).
LC-MS m/z (ESI) = 447.20 [M+1]
실시예 19
7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-9-(4-옥소아다만탄-1-일)-7,9-디하이드로-8H-퓨린-8-온(화합물 19)
Figure pct00179
화합물 17e(200 mg, 0.68 mmol), 화합물 1e(89 mg, 0.68 mmol), 탄산세슘(391 mg, 1.2 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(62 mg, 0.068 mmol)을 디옥산(3 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 110℃에서 4시간 동안 교반하고, 반응이 완료될 때까지 TLC로 반응을 모니터링하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 칼럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 60/1) 그 다음 Pre-HPLC로 정제하여 화합물 19(백색 고체, 68 mg, 22.4% 수율)을 얻었다.
1H NMR (400 MHz DMSO) δ 9.11 (s, 1H), 8.61 (s, 1H), 8.37 (s, 1H), 8.11 (s, 1H), 7.70(s, 1H), 3.25 (s, 3H), 2.93-2.96 (m, 2H), 2.66-2.69 (m, 4H), 2.39 (s, 3H), 2.16-2.20 (m, 1H), 1.94-1.99 (m, 2H), 1.81-1.84 (m, 2H), 1.34-1.49(m, 2H).
LC-MS m/z (ESI) = 445.20 [M+1].
실시예 20
9-(7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-7,9-디하이드로-8H-퓨린-8-온(화합물 20)
Figure pct00180
단계 1:
2-클로로-9-(4-하이드록시아다만탄-1-일-4-d)-7-메틸-7,9-디하이드로-8H-퓨린-8-온(20a)
화합물 17e(600 mg, 1.8 mmol)을 10 mL의 테트라하이드로푸란에 용해시키고, 리튬 알루미늄 하이드라이드(76 mg, 1.8 mmol)을 첨가하였다. 반응 혼합물을 실온에서 2시간 동안 교반하고, 반응이 완료될 때까지 TLC로 반응을 모니터링하였다. 물 : 10% 수성 수산화나트륨 용액 : 물 = 1:2:3을 빙욕 하에서 첨가하여 반응을 켄칭하고 고체가 침전되었다. 반응 혼합물을 여과하고, 여액을 농축하여 화합물 20a(백색 고체, 511 mg, 83% 수율)를 얻었다.
1H NMR (400 MHz DMSO) δ 8.30 (d, 1H), 4.70 (d, 1H), 3.30(s, 3H), 3.18 (d, 1H), 2.76 (d, 1H), 2.59-2.63(m, 1H), 2.36-2.51 (m, 3H), 1.97-2.07 (m, 4H), 1.59-1.77 (m, 2H), 1.40-1.43 (m, 1H).
LC-MS m/z (ESI) = 336.20 [M+1].
단계 2:
9-(하이드록시아다만탄-1-일-4-d)-7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-7,9-디하이드로-8H-퓨린-8-온(화합물 20)
화합물 20a(200 mg, 0.59 mmol), 화합물 1e(88 mg, 0.59 mmol), 탄산세슘(586 mg, 1.8 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(55 mg, 0.059 mmol)을 디옥산(4 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 칼럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 20/1) 그 다음 Pre-HPLC로 정제하여 화합물 20 (즉, 화합물 20-1화합물 20- 2)를 2개의 백색 고체로서 얻었다: 화합물 20-1 (30 mg, 22% 수율, RT = 3.25, dr%: 98.74%), 및 화합물 20-2 (64 mg, 44.1% 수율, RT = 4.66, dr%: 98.92%). Pre-HPLC (OZ), 이동상: CO2/(0.3% 에틸렌디아민/에탄올) = 75/25; 칼럼 온도: 35℃; 칼럼 압력: 80 bar; 유량: 1 mL/분; 검출기 신호 채널: 215 [email protected] nm; 200-400 nm의 파장에서 다이오드 어레이 검출기.
화합물 20-1:
1H NMR (400 MHz DMSO) δ 9.10 (s, 1H), 8.51 (s, 1H), 8.36 (s, 1H), 8.07 (s, 1H), 7.69(s, 1H), 4.63 (s, 1H), 3.24 (s, 3H), 2.64-2.67 (m, 2H), 2.36-2.45 (m, 7H), 1.91-1.95 (m, 3H), 1.62-1.65 (m, 2H), 1.51-1.54 (m, 2H).
LC-MS m/z (ESI) = 448.20 [M+1].
화합물 20-2:
1H NMR (400 MHz DMSO) δ 9.10 (s, 1H), 8.54 (s, 1H), 8.36 (s, 1H), 8.08 (s, 1H), 7.70(s, 1H), 4.61 (s, 1H), 3.24 (s, 3H), 2.59-2.67 (m, 2H), 2.32-2.42 (m, 7H), 1.88-1.99 (m, 5H), 1.23-1.40 (m, 2H).
LC-MS m/z (ESI) = 448.20 [M+1].
실시예 21
5-(7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-2-카보니트릴(화합물 21)
Figure pct00181
단계 1:
5-(2-클로로-7-메틸-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-2-카보니트릴(21a)
화합물 17e(800 mg, 2.4 mmol), p-톨루엔설포닐메틸 이소시아나이드(610 mg, 3.12 mmol) 및 칼륨 tert-부톡사이드(672 mg, 6 mmol)을 16 mL의 디옥산에 용해시키고, 3 mL의 에탄올을 첨가하였다. 반응 혼합물을 실온에서 6시간 동안 교반하고, 반응이 완료될 때까지 TLC로 반응을 모니터링하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피(석유 에테르/디클로로메탄(v/v) = 10/1)로 정제하여 화합물 21a(백색 고체, 533 mg, 47% 수율)를 얻었다.
LC-MS m/z (ESI) = 344.20 [M+1].
단계 2:
5-(7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-2-카보니트릴(화합물 21)
화합물 21a(200 mg, 0.58 mmol), 화합물 1e(86.3 mg, 0.58 mmol), 탄산세슘(567 mg, 1.74 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(53 mg, 0.058 mmol)을 디옥산(4 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 칼럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 20/1) 그 다음 Pre-HPLC로 정제하여 화합물 21 (즉, 화합물 21-1화합물 21- 2)를 2개의 백색 고체로서 얻었다: 화합물 21-1 (23 mg, 16% 수율, RT = 3.92, dr%: 99.32%), 및 화합물 21-2 (28 mg, 17.2% 수율, RT = 5.16, dr%: 98.96%). Pre-HPLC (OZ), 이동상: CO2/(0.3% 에틸렌디아민 첨가된 50% 이소프로판올/아세토니트릴 용액) = 60/40; 칼럼 온도: 35℃; 칼럼 압력: 80 bar; 유량: 1 mL/분; 검출기 신호 채널: 215 [email protected] nm; 200-400 nm의 파장에서 다이오드 어레이 검출기.
화합물 21-1:
1H NMR (400 MHz DMSO) δ 9.11 (s, 1H), 8.54 (s, 1H), 8.35 (d, 1H), 8.10 (d, 1H), 7.69(s, 1H), 3.25 (d, 3H), 2.68-2.72 (m, 2H), 2.60-2.64 (m, 2H), 2.45-2.46 (m, 2H), 2.38 (s, 3H), 2.31 (s, 2H), 2.05 (s, 1H), 1.62-1.69 (m, 4H).
LC-MS m/z (ESI) = 456.20 [M+1].
화합물 21-2:
1H NMR (400 MHz DMSO) δ 9.13 (s, 1H), 8.60 (s, 1H), 8.38 (s, 1H), 8.11 (s, 1H), 7.72(s, 1H), 3.25 (s, 3H), 3.15-3.18 (m, 1H), 2.68-2.71 (m, 2H), 2.48-2.52 (m, 5H), 2.40 (s, 3H), 2.30 (s, 2H), 2.10 (s, 1H), 1.83-1.86 (m, 2H), 1.62-1.65 (m, 2H).
LC-MS m/z (ESI) = 456.20 [M+1].
실시예 22
2-플루오로-4-((9-(3-하이드록시아다만탄-1-일)-7-메틸-8-옥소-8,9-디하이드로-7H-퓨린-2-일)아미노)-5-메틸벤즈아미드(화합물 22)
Figure pct00182
화합물 1j(200 mg, 0.59 mmol), 화합물 22a(201 mg, 1.19 mmol), 탄산세슘(577 mg, 1.77 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(54 mg, 0.059 mmol)을 디옥산(4 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 20/1)에 이어서 Pre-HPLC로 정제하여 화합물 22(백색 고체, 31.4mg, 23% 수율)를 얻었다.
1H NMR (400 MHz DMSO) δ 8.37 (s, 1H), 8.16 (s, 1H), 7.86 (d, 1H), 7.55 (d, 1H), 7.42(d, 2H), 4.62(s, 1H), 3.27 (s, 3H), 2.45 (s, 3H), 2.40 (m, 3H), 2.25-2.29 (m, 5H), 1.56-1.68 (m, 5H), 1.47-1.50 (m, 1H).
LC-MS m/z (ESI) = 467.20 [M+1].
실시예 23
4-((9-(아다만탄-1-일-4-d)-7-메틸-8-옥소-8,9-디하이드로-7H-퓨린-2-일)아미노)-2-플루오로-5-메틸벤즈아미드(화합물 23)
Figure pct00183
화합물 20a(200 mg, 0.58 mmol), 화합물 22a(200 mg, 1.19 mmol), 탄산세슘(567 mg, 1.74 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(53 mg, 0.058 mmol)을 디옥산(4 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 칼럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 20/1) 그 다음 Pre-HPLC로 정제하여 화합물 23 (즉, 화합물 23-1화합물 23- 2)를 2개의 백색 고체로서 얻었다: 화합물 23-1 (25.4 mg, 18.3% 수율, RT = 3.71, dr%: 98.37%), 및 화합물 23-2 (10.2 mg, 8.6% 수율, RT = 4.73, dr%: 98.66%). Pre-HPLC (OZ), 이동상: CO2/(0.3% 에틸렌디아민/에탄올) = 70/30; 칼럼 온도: 35℃; 칼럼 압력: 80 bar; 유량: 1 mL/분; 검출기 신호 채널: 215 [email protected] nm; 200-400 nm의 파장에서 다이오드 어레이 검출기.
화합물 23-1:
1H NMR (400 MHz DMSO) δ 8.36 (s, 1H), 8.16 (s, 1H), 7.88 (d, 1H), 7.54 (d, 1H), 7.40(d, 2H), 4.68 (s, 1H), 3.27 (s, 3H), 2.66-2.73 (m, 2H), 2.52-2.53 (m, 2H), 2.44-2.49 (m, 2H), 2.29 (s, 3H), 2.02 (m, 3H), 1.76-1.79 (m, 2H), 1.59-1.62 (m, 2H).
LC-MS m/z (ESI) = 468.20 [M+1].
화합물 23-2:
1H NMR (400 MHz DMSO) δ 8.40 (s, 1H), 8.17 (s, 1H), 7.88 (d, 1H), 7.54 (d, 1H), 7.40(d, 2H), 4.67 (s, 1H), 3.27 (s, 3H), 2.65-2.68 (s, 2H), 2.01-2.07 (m, 3H), 1.96 (m, 2H), 1.59-1.62 (m, 2H).
LC-MS m/z (ESI) = 468.20 [M+1].
실시예 24
4-((9-(4-시아노아다만탄-1-일)-7-메틸-8-옥소-8,9-디하이드로-7H-퓨린-2-일)아미노)-2-플루오로-5-메틸벤즈아미드(화합물 24)
Figure pct00184
화합물 21a(200 mg, 0.58 mmol), 화합물 22a(194 mg, 1.16 mmol), 탄산세슘(567 mg, 1.74 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(53 mg, 0.058 mmol)을 디옥산(4 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 칼럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 20/1) 그 다음 Pre-HPLC로 정제하여 화합물 24 (즉, 화합물 24-1화합물 24- 2)를 2개의 백색 고체로서 얻었다: 화합물 24-1 (5.5 mg, 5.6% 수율, RT = 4.97, dr%: 98.94%), 및 화합물 24-2 (16.8 mg, 11.3% 수율, RT = 5.96, dr%: 99.04%).. Pre-HPLC (OZ), 이동상: CO2/에탄올 = 65/35; 칼럼 온도: 35℃; 칼럼 압력: 80 bar; 유량: 1 mL/분; 검출기 신호 채널: 215 [email protected] nm; 200-400 nm의 파장에서 다이오드 어레이 검출기.
화합물 24-1:
1H NMR (400 MHz DMSO) δ 8.47 (s, 1H), 8.19 (s, 1H), 7.82 (d, 1H), 7.54 (d, 1H), 7.38(d, 2H), 3.29 (s, 3H), 3.15-3.27 (m, 2H), 2.67-2.77 (m, 4H), 2.38 (s, 2H), 2.28(s, 3H), 2.11-2.13 (m, 2H), 1.77-1.83 (m, 2H), 1.70-1.76 (m, 2H).
LC-MS m/z (ESI) = 476.20 [M+1].
화합물 24-2:
1H NMR (400 MHz DMSO) δ 8.36 (s, 1H), 8.18 (s, 1H), 7.88 (d, 1H), 7.54 (d, 1H), 7.40(d, 2H), 3.28 (s, 3H), 2.99-3.02 (m, 2H), 2.71-2.75 (m, 4H), 3.57 (s, 3H), 2.28-2.33 (m, 4H), 2.06-2.10 (m, 2H), 1.88-1.91 (m, 2H).
LC-MS m/z (ESI) = 476.20 [M+1].
실시예 25
2-플루오로-5-메틸-4-((7-메틸-8-옥소-9-(4-옥소아다만탄-1-일)-8,9-디하이드로-7H-퓨린-2-일)아미노)벤즈아미드(화합물 25)
Figure pct00185
화합물 17e(200 mg, 0.68 mmol), 화합물 22a(101 mg, 0.68 mmol), 탄산세슘(391 mg, 1.2 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(62 mg, 0.068 mmol)을 디옥산(3 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 110℃에서 4시간 동안 교반하고, 반응이 완료될 때까지 TLC로 반응을 모니터링하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 칼럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 60/1) 그 다음 Pre-HPLC로 정제하여 화합물 25(백색 고체, 30 mg, 13.4% 수율)을 얻었다.
1H NMR (400 MHz DMSO) δ 8.47 (s, 1H), 8.19 (s, 1H), 7.82 (d, 1H), 7.54 (d, 1H), 7.41(d, 2H), 3.28 (s, 3H), 2.99-3.02 (m, 2H), 2.71-2.75 (m, 4H), 2.27-2.34 (m, 5H), 2.06-2.10 (m, 2H), 1.88-1.91 (m, 2H).
LC-MS m/z (ESI) = 465.20 [M+1].
실시예 26
4-((9-(4,4-디메톡시아다만탄-1-일)-7-메틸-8-옥소-8,9-디하이드로-7H-퓨린-2-일)아미노)-2-플루오로-5-메틸벤즈아미드(화합물 26)
Figure pct00186
화합물 25(80 mg, 0.17 mmol)를 3 mL의 메탄올 및 5 mL의 아세토니트릴에 용해시키고 0.5 mL의 2 M 염산을 첨가하였다. 반응 혼합물을 실온에서 30분 동안 방치하고, 반응이 완료될 때까지 TLC로 반응을 모니터링하였다. 반응 혼합물을 농축하고, 잔류물을 Pre-HPLC로 정제하여 화합물 26(백색 고체, 19.5 mg, 9.6% 수율)을 얻었다.
1H NMR (400 MHz DMSO) δ 8.38 (s, 1H), 8.17 (s, 1H), 7.87 (d, 1H), 7.55 (d, 1H), 7.40(d, 2H), 3.27 (s, 3H), 3.08 (s, 3H), 3.07 (s, 3H), 2.65-2.69 (m, 2H), 2.43-2.44 (m, 2H), 2.29-2.34 (m, 3H), 2.24 (s, 2H), 2.04-2.07 (m, 1H), 1.77-1.80 (m, 2H), 1.59-1.62 (m, 2H).
LC-MS m/z (ESI) = 465.20 [M+1].
실시예 27
2-플루오로-4-((9-(5-하이드록시아다만탄-2-일)-7-메틸-8-옥소-8,9-디하이드로-7H-퓨린-2-일)아미노)-5-메틸벤즈아미드(화합물 27)
Figure pct00187
화합물 13f(200 mg, 0.59 mmol), 화합물 22a(201 mg, 1.19 mmol), 탄산세슘(577 mg, 1.77 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(55 mg, 0.059 mmol)을 디옥산(4 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하고, 반응이 완료될 때까지 TLC로 반응을 모니터링하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 칼럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 60/1) 그 다음 Pre-HPLC로 정제하여 화합물 27 (즉, 화합물 27-1화합물 27- 2)를 2개의 백색 고체로서 얻었다: 화합물 27-1 (10 mg, 10.2% 수율, RT = 4.18, dr%: 99.22%), 및 화합물 27-2 (13 mg, 11.3% 수율, RT = 5.25, dr%: 99.34%). Pre-HPLC (OZ), 이동상: CO2/(0.3% 에틸렌디아민 첨가된 50% 이소프로판올/아세토니트릴 용액) = 60/40; 칼럼 온도: 35℃; 칼럼 압력: 80 bar; 유량: 1 mL/분; 검출기 신호 채널: 215 [email protected] nm; 200-400 nm의 파장에서 다이오드 어레이 검출기.
화합물 27-1:
1H NMR (400 MHz DMSO) δ 8.39 (s, 1H), 8.19 (s, 1H), 7.87 (d, 2H), 7.54 (d, 2H), 7.40(d, 2H), 4.35 (s, 1H), 4.17-4.19 (m, 1H), 3.31 (s, 3H), 3.22-3.23 (m, 2H), 2.28 (s, 3H), 2.04-2.10 (m, 3H), 1.69-1.80 (m, 4H), 1.61-1.62 (m, 2H), 1.15-1.52(m, 2H).
LC-MS m/z (ESI) = 467.20 [M+1].
화합물 27-2:
1H NMR (400 MHz DMSO) δ 8.40 (s, 1H), 8.18 (s, 1H), 7.80 (d, 2H), 7.53 (d, 2H), 7.41(d, 2H), 4.49 (s, 1H), 4.26-4.28 (m, 1H), 3.30 (s, 3H), 3.09-3.10 (m, 2H), 2.28 (s, 3H), 2.01-2.11 (m, 3H), 1.80-1.83 (m, 2H), 1.65-1.73 (m, 4H), 1.39-1.49(m, 2H).
LC-MS m/z (ESI) = 467.20 [M+1].
실시예 28
4-(7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-1-카보니트릴(화합물 28)
Figure pct00188
단계 1:
tert-부틸-4-옥소아다만탄-1-카복실레이트(28b)
화합물 28a(10 g, 51.49 mmol)을 디클로로메탄(100 mL)에 용해시키고, 옥살릴 클로라이드(7.84 g, 61.79 mmol) 및 N,N-디메틸포름아미드(0.38 g, 5.15 mmol)을 빙욕 하에 첨가하였다. 반응 혼합물을 실온에서 1시간 동안 반응시키고, 농축하고 고체를 수집하였다. tert-부탄올(100 mL)을 빙욕 하에 첨가하고, 반응 혼합물을 추가로 12시간 동안 반응시켰다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 농축 건조하고, 잔류물을 컬럼 크로마토그래피(석유 에테르:에틸 아세테이트 = 1:1)로 정제하여 목적 화합물 28b(백색 고체, 8.4 g, 65.17% 수율)를 얻었다.
1H NMR (400 MHz, CDCl3) δ 2.57 (s, 2H), 1.96-2.19 (m, 11H), 1.43 (s, 9H).단계 2:
tert-부틸-4-아미노아다만탄-1-카복실레이트(28c)
화합물 28b(8 g, 31.96 mmol)를 메탄올(100 mL, 7M) 중 암모니아 용액에 용해시켰다. 반응 혼합물을 실온에서 12시간 동안 반응시켰다. 그 다음, 나트륨 붕소수화물(3.63g, 95.88 mmol)를 빙욕 하에 첨가하고, 반응 혼합물을 온도를 유지하면서 1시간 동안 반응시켰다. 반응 혼합물에 50 mL의 중탄산나트륨(1 M)을 첨가한 다음, 1시간 더 반응시키고 농축하였다. 생성된 고체를 100 mL의 에틸 아세테이트에 용해시키고, 용액을 50 mL의 물 및 50 mL의 포화 염수로 연속적으로 세척하고 건조시키고, 농축하여 28c(백색 고체, 8 g, 99.58% 수율)를 얻었다.
1H NMR (400 MHz, CDCl3) δ 2.90-2.94 (m, 1H), 1.54-2.03 (m, 12H), 1.38 (s, 9H).
LC-MS m/z (ESI) = m/z = 252.10 [M+1].
단계 3:
에틸 4-((5-(tert-부톡시카보닐)아다만탄-2-일)아미노)-2-클로로피리미딘-5-카복실레이트(28d)
화합물 1f(8.0 g, 31.83 mmol) 및 화합물 28c(8.44 g, 38.20 mmol)을 아세토니트릴(80 mL)에 용해시키고, 탄산칼륨(20.74 g, 63.66 mmol)을 빙욕 하에 첨가하였다. 반응 혼합물을 실온에서 12시간 동안 반응시켰다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물에 물(50 mL)을 첨가하고, 에틸 아세테이트(60 mL × 3)로 추출하였다. 유기상을 조합하고, 건조하고, 농축하여 조 생성물을 얻었다. 조 생성물을 컬럼 크로마토그래피(석유 에테르:에틸 아세테이트 = 4:1)로 정제하여 목적 화합물 28d(백색 고체, 9.3 g, 33.92% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d6) δ 8.83 (d, 0.5H), 8.78 (d, 0.5H), 8.65 (s, 0.5H), 8.64 (s, 0.5H), 4.30-4.36 (m, 2H), 4.15-4.17 (m, 1H), 2.06-2.07 (m, 2H), 1.97 (s, 1H), 1.85-1.90 (m, 3H), 1.69-1.78 (m, 7H), 1.54-1.60 (m, 1H), 1.39 (s, 9H), 1.29-1.39 (m, 3H).
LC-MS m/z (ESI) = m/z = 436.20 [M+1].
단계 4:
4-((5-(tert-부톡시카보닐)아다만탄-2-일)아미노)-2-클로로피리미딘-5-카복실산(28e)
화합물 28d(9.3 g, 21.33 mmol)을 40 mL의 테트라하이드로푸란 및 40 mL의 물에 용해시키고, 수산화리튬(1.02 g, 42.66 mmol)을 첨가하였다. 반응 혼합물을 실온에서 1시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 농축하여 테트라하이드로푸란을 제거하고 6 N 염산으로 pH 5로 조정하고 고체가 침전되었다. 반응 혼합물을 여과하고, 필터 케이크를 석유 에테르로 2회 세척하고 수집하여 표제 화합물 28e(백색 고체, 7.8 g, 89.65% 수율)를 얻었고, 이를 다음 단계에 직접 사용하였다.
1H NMR (400 MHz, DMSO-d6) δ 9.18-9.23 (m, 1H), 8.58 (s, 1H), 2.05 (s, 2H), 1.67-1.97 (m, 9H), 1.56-1.59 (m, 1H), 1.38-1.39 (d, 9H).
LC-MS m/z (ESI) = m/z = 408.2 [M+1].
단계 5:
tert-부틸 4-(2-클로로-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-1-카복실레이트(28f)
화합물 28e(7.8 g, 119.12 mmol)을 N,N-디메틸아세트아미드(100 mL)에 용해시키고, 디페닐포스포릴 아지드(1.93 g, 19.12 mmol) 및 트리에틸아민(7.37 g, 19.12 mmol)을 빙욕 하에 첨가하였다. 반응 혼합물을 실온에서 2시간 동안 교반한 다음, 90℃로 가온하고, 추가로 3시간 동안 반응시켰다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 실온으로 자연 냉각시키고 40 mL의 물로 희석한 다음, 에틸 아세테이트(50 mL × 3)로 추출하였다. 유기상을 조합하고, 건조하고, 농축하여 화합물 28f(회색 고체, 7.8 g, 60.45% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d6) δ 11.61-11.62 (d, 1H), 8.11(s, 1H), 4.3 (s, 1H), 2.95(s, 2H), 1.54-2.33 (m, 11H), 1.36-1.40 (m, 9H).
LC-MS m/z (ESI) = 405.20 [M+1]
단계 6:
tert-부틸 4-(2-클로로-7-메틸-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-1-카복실레이트(28g)
화합물 28f(4.8 g, 11.86 mmol)를 디메틸포름아미드(40 mL)에 용해시키고, 탄산세슘(7.73 g, 23.72 mmol) 및 디메틸 설페이트(1.12 mL, 11.86 mmol)를 0℃에서 첨가하였다. 반응 혼합물을 실온에서 2시간 동안 반응시켰다. 그 다음 20 mL의 물을 첨가하고, 고체가 침전되었다. 고체를 여과로 수집하고 건조하여 목적 화합물 28 g(담황색 고체, 2.0 g, 수율 40.25%)을 얻었다.
LC-MS m/z (ESI) = m/z = 419.20 [M+1].
1H NMR (400 MHz, DMSO-d6) δ 8.34 (s, 1H), 4.32 (s, 1H), 3.33 (d, 3H), 2.94-2.96 (m, 2H), 2.28 (d, 1H), 2.17 (d, 1H), 1.91 (s, 3H), 1.79-1.84 (m, 4H), 1.69 (d, 1H), 1.54(d, 1H), 1.35-1.40 (m, 9H).
단계 7:
tert-부틸-4-(7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-1-카복실레이트(28h)
화합물 1e(300 mg, 2.02 mmol), 화합물 28g(850 mg, 2.02 mmol), 탄산세슘(1.3 g, 4.04 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(183.12 mg, 0.2 mmol)을 디옥산(10 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 빙수에 부었고 고체를 수집하고 실리카겔 컬럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 100/1)로 정제하여 화합물 28h(백색 고체, 500 mg, 13.96% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d6) δ 9.03 (s, 0.5H), 9.02 (s, 0.5H), 8.57 (d, 1H), 8.36 (d, 1H), 8.11 (d, 1H), 7.69 (s, 0.5H), 7.68 (s, 0.5H), 4.26 (s, 0.5H), 4.21 (s, 0.5H), 3.28-3.34 (m, 3H), 2.99 (s, 1H), 2.86 (s, 1H), 2.36 (d, 3H), 2.13 (d, 2H), 1.71-1.94 (m, 8H), 1.52 (s, 0.5H), 1.49 (s, 0.5H), 1.38 (s, 4.5H), 1.28 (s, 4.5H).
LC-MS m/z (ESI) = 531.3 [M+1].
단계 8:
4-(7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-1-카복실산(28i)
화합물 28h(0.5 g, 0.94 mmol)를 4 N 디옥산 하이드로클로라이드 용액(50 mL)에 용해시켰다. 혼합물을 실온에서 16시간 동안 반응시키고 농축시켜 조 화합물 28i(담황색 고체, 0.45 g, 99% 수율)를 얻었다.
LC-MS m/z (ESI) = 475.20 [M+1].
단계 9:
4-(7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-1-카복사미드(28j)
화합물 28i(400 mg, 0.84 mmol), 트리에틸아민(212.50 mg, 2.1 mmol) 및 염화암모늄(224.66 mg, 4.2 mmol)을 N,N-디메틸포름아미드(10 mL)에 용해시키고, 2-(7-아자벤조트리아졸)-N,N,N',N'-테트라메틸우로늄 헥사플루오로포스페이트(239.54 mg, 0.63 mmol)을 0℃에서 첨가하였다. 반응 혼합물을 1시간 동안 반응시켰다. 물(20 mL)을 첨가하고, 혼합물을 에틸 아세테이트(40 mL × 3)로 추출하였다. 유기상을 조합하고, 건조하고, 농축하여 조 생성물을 얻었다. 조 생성물을 분취 중간 압력 액체 크로마토그래피로 정제하여 화합물 28j(백색 고체, 100 mg, 25.14% 수율)를 얻었다.
 1H NMR (400 MHz, 클로로포름-d) δ 9.64 (s, 1H), 8.24 (s, 1H), 7.89 (s, 1H), 7.58 (s, 2H), 4.53 (s, 1H), 3.41 (s, 3H), 3.02 (s, 2H), 2.51 (s, 3H), 2.35 (d, J = 13.7 Hz, 2H), 2.22 (s, 2H), 2.10 (d, J = 12.8 Hz, 2H), 1.97 (s, 3H), 1.64 (s, 2H).
LC-MS m/z (ESI) = 474.20 [M+1].
단계 10:
4-(7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-1-카보니트릴(화합물 28-1 및 화합물 28-2)
화합물 28j(150 mg, 0.32 mmol)를 디클로로메탄(20 mL)에 용해시키고, 피리딘(100.23 mg, 1.27 mmol) 및 트리플루오로아세트산 무수물(199.59 mg, 0.95 mmol)을 빙욕 하에 첨가하였다. 반응 혼합물을 온도를 유지하면서 추가로 1시간 동안 반응시켰다. 메탄올(20 mL)을 첨가하고, 조 생성물을 농축시켰다. 조 생성물을 에틸 아세테이트(50 mL)에 재용해하고, 생성된 용액을 15% NaHCO3(50 mL) 및 포화 염수(50 mL)로 연속적으로 세척하고, 건조 및 농축하여 화합물 28을 얻었고, Pre-HPLC 분리를 거쳐 2개의 백색 고체 (즉 화합물 28-1화합물 28- 2)를 얻었다: 화합물 28-1(50 mg, 34.30%, RT = 2.637분, dr%: 99.32%) 및 화합물 28-2(70 mg, 48.02%, RT = 3.129분, dr%: 99.43%). Pre-HPLC (OZ), 이동상: 아세토니트릴/메탄올 = 1/1; 칼럼 온도: 35℃; 칼럼 압력: 100 bar; 유량: 13.5 mL/분; 검출기 신호 채널: 215 [email protected] nm; 200-400 nm의 파장에서 다이오드 어레이 검출기.
LC-MS m/z (ESI) = 456.2 [M+1].
화합물 28-1:
1H NMR (401 MHz, DMSO-d6) δ 9.06 (s, 1H), 8.59 (s, 1H), 8.37 (s, 1H), 8.12 (s, 1H), 7.69 (s, 1H), 4.27 (s, 1H), 3.29 (s, 3H), 2.92 (s, 2H), 2.37 (s, 3H), 1.71-2.08 (m, 8H).
화합물 28-2:
1H NMR (400 MHz, 클로로포름-d) δ 9.48 (s, 1H), 8.28 (s, 1H), 7.90 (s, 1H), 7.58 (s, 1H), 6.76 (s, 1H), 4.42 (s, 1H), 3.40 (s, 3H), 3.14 (s, 2H), 2.24-2.33 (m, 6H), 2.1 (s, 2H), 2.01-2.03 (m, 1H), 1.67 (d, 2H).
실시예 29
9-(3-하이드록시아다만탄-1-일)-2-((6-메톡시-4-메틸피리딘-3-일)아미노)-7-메틸-7,9-디하이드로-8H-퓨린-8-온(화합물 29)
Figure pct00189
화합물 1j(170 mg, 0.78 mmol), 화합물 29a(130 mg, 0.94 mmol), 탄산세슘(510 mg, 1.57 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(70 mg, 0.078 mmol)을 1,4-디옥산(5 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 110℃에서 4시간 동안 교반하고, 반응이 완료될 때까지 TLC로 반응을 모니터링하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 20/1)로 정제하여 화합물 29(백색 고체, 158 mg, 46.16% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d6) δ 8.35 (s, 1H), 8.05 (s, 1H), 7.95 (s, 1H), 6.69 (s, 1H), 4.56 (s, 1H), 3.80 (s, 3H), 3.20 (s, 3H), 2.37-2.27 (m, 6H), 2.15 (s, 3H), 1.60-1.41 (m, 6H).
LC-MS m/z (ESI) = 437.2 [M+1].
실시예 30
7-메틸-2-((6-메틸-2,3-디하이드로벤조푸란-5-일)아미노)-9-(4-옥소아다만탄-1-일)-7,9-디하이드로-8H-퓨린-8-온(화합물 30)
Figure pct00190
단계 1:
1-브로모-2-(2-브로모에톡시)-4-메틸벤젠 (30b)
1,2-디브로모에탄을 아세토니트릴(100 mL)과 잘 혼합한 다음, 2-브로모-5-메틸페놀 30a(25 g, 133.67 mmol)를 첨가하고, 이어서 탄산칼륨(55.42 g, 401.01 mmol)을 첨가하였다. 반응 혼합물을 80℃에서 5시간 동안 반응시켰다. 반응이 완료된 후, 반응 혼합물을 여과하고, 여액을 농축하였다. 잔류물을 실리카겔 칼럼 크로마토그래피(순수 석유 에테르)로 정제하여 화합물 30b(무색 액체, 34 g, 86.51% 수율)를 얻었다.
단계 2:
6-메틸-2,3-디하이드로벤조푸란(30c)
건조 반응 플라스크에 화합물 30b(34 g, 115.65 mmol)를 첨가하고 건조 테트라하이드로푸란(160 mL)에 용해시키고, -78℃에서 n-부틸리튬(55 mL, 138.78 mmol)을 적가하였다. 적가가 완료된 후, 반응 혼합물을 추가로 1.5시간 동안 반응시켰다. 반응이 완료된 후, 물(20 mL)을 첨가하여 반응 혼합물을 켄칭하고, 감압 농축하여 유기 용매를 제거하고, 에틸 아세테이트로 2회 추출하였다. 유기상을 조합하고, 건조하고, 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피(순수 석유 에테르)로 정제하여 화합물 30c(무색 액체, 10 g, 64.43% 수율)를 얻었다.
단계 3:
6-메틸-5-니트로-2,3-디하이드로벤조푸란(30d)
화합물 30c(10 g, 74.53 mmol)를 아세트산(50 mL)에 용해시키고, 실온에서 질산(11.8 mL, 178.87 mmol, 68% 순도)을 적가하였다. 첨가가 완료된 후, 반응 혼합물을 추가로 10분 동안 반응시켰다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 빙수에 부었고 에틸 아세테이트로 3회 추출하였다. 유기상을 건조 및 농축하고 잔류물을 실리카겔 컬럼 크로마토그래피(석유 에테르/에틸 아세테이트 = 15/1)로 정제하여 화합물 30d(황색 고체, 7.0 g, 52.43% 수율)를 얻었다.
단계 4:
6-메틸-2,3-디하이드로벤조푸란-5-아민(30e)
화합물 30d(7.0 g, 39.07 mmol)를 110 mL의 에탄올/물(10/1)과 잘 혼합하고, 철 분말(10.9 g, 195.33 mmol)을 첨가한 후, 희석 염산(9.8 mL, 2 mol/L)을 첨가하였다. 반응 혼합물을 85℃에서 2시간 동안 반응시켰다. 반응 혼합물을 여과하여 철 분말을 제거하였다. 여액을 농축한 다음, 포화 중탄산나트륨 용액으로 약간 염기성이 될 때까지 pH를 조정한 후, 에틸 아세테이트로 3회 추출하였다. 유기상을 조합하고, 건조하고, 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피(석유 에테르/에틸 아세테이트 = 5/1)로 정제하여 화합물 30e(갈색 고체, 4.5 g, 77.05% 수율)를 얻었다.
1H NMR (400 MHz DMSO) δ 6.52 (s, 1H), 6.38 (s, 1H), 4.36-4.31 (t, 2H), 4.25 (s, 2H), 3.02-2.98 (t, 2H), 1.98 (s, 3H).
LC-MS m/z (ESI) = 150.10 [M+1].
단계 5:
7-메틸-2-((6-메틸-2,3-디하이드로벤조푸란-5-일)아미노)-9-(4-옥소아다만탄-1-일)-7,9-디하이드로-8H-퓨린-8-온(화합물 30)
건조 반응 플라스크에 화합물 1j(200 mg, 0.60 mmol), 화합물 30e(178 mg, 1.2 mmol), 탄산세슘(579 mg, 1.8 mmol) 및 Brettphos G3 Pd(54 mg, 0.06 mmol)를 첨가한 후, 1,4-디옥산(20 mL)을 첨가하였다. 시스템을 질소로 3회 퍼징하고, 반응 혼합물을 110℃에서 2.5시간 동안 반응시켰다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피(DCM: MeOH = 20:1)로 정제하여 화합물 30(백색 고체, 40 mg, 14.97% 수율)을 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 8.07 (s, 1H), 7.96 (s, 1H), 7.26 (s, 1H), 6.60 (s, 1H), 4.59 (s, 1H), 4.47 (t, 2H), 3.21 (s, 3H), 3.12 (t, 2H), 2.38-2.32 (m, 4H), 2.17 (s, 2H), 2.13 (s, 3H), 1.62-1.51 (m, 4H), 1.50-1.40 (m, 2H).
LC-MS m/z (ESI) = 446.20 [M+1].
실시예 31
9-(4,4-디메톡시아다만탄-1-일)-7-메틸-2-((6-메틸-2,3-디하이드로벤조푸란-5-일)아미노)-7,9-디하이드로-8H-퓨린-8-온(화합물 31)
Figure pct00191
화합물 30(100 mg, 0.22 mmol)을 3 mL의 메탄올 및 5 mL의 아세토니트릴에 용해시키고 0.5 mL의 2 M 염산을 첨가하였다. 반응 혼합물을 실온에서 30분 동안 방치하고, 반응이 완료될 때까지 TLC로 반응을 모니터링하였다. 반응 혼합물을 농축하고, 잔류물을 Pre-HPLC로 정제하여 화합물 31(백색 고체, 22.0 mg, 20.4% 수율)을 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 8.07 (s, 1H), 7.96 (s, 1H), 7.26 (s, 1H), 6.60 (s, 1H), 4.59 (s, 1H), 4.47 (t, 2H), 3.21 (s, 3H), 3.08 (s, 3H), 3.07 (s, 3H), 3.12 (t, 2H), 2.38-2.32 (m, 4H), 2.17 (s, 2H), 2.13 (s, 3H), 1.62-1.51 (m, 4H), 1.50-1.40 (m, 2H).
LC-MS m/z (ESI) = 492.24 [M+1].
실시예 32
9-(3-하이드록시아다만탄-1-일)-7-메틸-2-((6-메틸-2,3-디하이드로벤조푸란-5-일)아미노)-7,9-디하이드로-8H-퓨린-8-온(화합물 32)
Figure pct00192
건조 반응 플라스크에 화합물 1j(200 mg, 0.60 mmol), 화합물 30e(178 mg, 1.2 mmol), 탄산세슘(579 mg, 1.8 mmol) 및 Brettphos G3 Pd(54 mg, 0.06 mmol)를 첨가한 후, 1,4-디옥산(20 mL)을 첨가하였다. 시스템을 질소로 3회 퍼징하고, 반응 혼합물을 110℃에서 2.5시간 동안 반응시켰다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피(DCM: MeOH = 20:1)로 정제하여 화합물 32(백색 고체, 40 mg, 14.97% 수율)을 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 8.07 (s, 1H), 7.96 (s, 1H), 7.26 (s, 1H), 6.60 (s, 1H), 4.59 (s, 1H), 4.47 (t, 2H), 3.21 (s, 3H), 3.12 (t, 2H), 2.38-2.32 (m, 6H), 2.17 (s, 2H), 2.13 (s, 3H), 1.62-1.51 (m, 4H), 1.50-1.40 (m, 2H).
LC-MS m/z (ESI) = 448.20 [M+1].
실시예 33
2-((6-클로로-2,3-디하이드로벤조푸란-5-일)아미노)-9-(3-하이드록시아다만탄-1-일)-7-메틸-7,9-디하이드로-8H-퓨린-8-온(화합물 33)
Figure pct00193
단계 1:
1-브로모-2-(2-브로모에톡시)-4-클로로벤젠(3b)
1,2-디브로모에탄(109.2 g, 581.28 mmol)을 아세토니트릴(120 mL)과 잘 혼합한 다음, 화합물 33a(30 g, 144.61 mmol)를 첨가하고 탄산칼륨(60 g, 434.12 mmol)을 첨가하였다. 반응 혼합물을 80℃에서 5시간 동안 반응시켰다. 반응이 완료된 후, 반응 혼합물을 여과하고, 여액을 농축하였다. 잔류물을 실리카겔 컬럼 크로마토그래피(석유 에테르/에틸 아세테이트 = 200/1)로 정제하여 화합물 33b(백색 고체, 31g, 68.19% 수율)를 얻었다.
단계 2:
6-클로로-2,3-디하이드로벤조푸란(33c)
화합물 33b(31g, 98.60 mmol)를 건조 반응 플라스크에 첨가하고 건조 테트라하이드로푸란(160 mL)에 용해시키고, -78℃에서 n-부틸리튬(45.5 mL, 118.32 mmol)을 적가하였다. 적가가 완료된 후, 반응 혼합물을 추가로 1.5시간 동안 반응시켰다. 반응이 완료된 후, 물(20 mL)을 첨가하여 반응 혼합물을 켄칭하고, 감압 농축하여 유기 용매를 제거하고, 에틸 아세테이트로 2회 추출하였다. 유기상을 조합하고, 건조하고, 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피(순수 석유 에테르)로 정제하여 화합물 33c(무색 액체, 15 g, 98.42% 수율)를 얻었다.
1H NMR (400 MHz CDCl3) δ 6.98-6.96 (dt, 1H), 6.72-6.69 (dd, 1H), 6.67 (d, 1H), 4.50-4.46 (t, 2H), 3.08-3.03 (t, 2H).
단계 3:
6-클로로-5-니트로-2,3-디하이드로벤조푸란(33d)
화합물 33c(15 g, 97.03 mmol)를 아세트산(110 mL)에 용해시키고, 질산(15.5 mL, 232.87 mmol, 68% 순도)을 70℃에서 적가하였다. 첨가가 완료된 후, 반응 혼합물을 추가로 30분 동안 반응시켰다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 빙수에 부었고 에틸 아세테이트로 3회 추출하였다. 유기상을 건조 및 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피(석유 에테르/에틸 아세테이트 = 20/1)로 정제하여 화합물 33d(황색 고체, 12.5 g, 64.55% 수율)를 얻었다.
LC-MS m/z (ESI) = 200.00 [M+1].
단계 4:
6-클로로-2,3-디하이드로벤조푸란-5-아민(33e)
화합물 33d(12.5 g, 62.63 mmol)를 110 mL의 에탄올/물(10/1)과 잘 혼합하고, 철 분말(17.8 g, 318.77 mmol)을 첨가한 후, 희석된 염산(16.5 mL, 2 mol/L)을 첨가하였다. 반응 혼합물을 85℃에서 2시간 동안 반응시켰다. 반응 혼합물을 여과하여 철 분말을 제거하였다. 여액을 농축한 다음, 포화 중탄산나트륨 용액으로 약간 염기성이 될 때까지 pH를 조정한 후, 에틸 아세테이트로 3회 추출하였다. 유기상을 조합하고, 건조하고, 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피(석유 에테르/에틸 아세테이트 = 15/1)로 정제하여 화합물 33e(황색 고체, 7.0 g, 65.91% 수율)를 얻었다.
1H NMR (400 MHz DMSO) δ 6.72 (s, 1H), 6.64 (s, 1H), 4.73 (s, 2H), 4.43-4.39 (t, 2H), 3.07-3.02 (t, 2H).
LC-MS m/z (ESI) = 170.00 [M+1].
단계 5:
화합물 1j(0.2 g, 1.18 mmol), 화합물 33e(0.197 g, 0.589 mmol), 탄산세슘(0.80 g, 0.088 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(0.384 g, 1.18 mmol)을 1,4-디옥산(5 mL)에 용해시키고, 이어서 질소 퍼징하였다. 반응 혼합물을 110℃에서 4시간 동안 교반하고, 반응이 실질적으로 완료될 때까지 TLC로 반응을 모니터링하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 20/1)로 정제하여 화합물 33(백색 고체, 83 mg, 30.08% 수율)을 얻었다.
1H NMR (400 MHz, DMSO-d6) δ 8.12 (s, 1H), 8.00 (s, 1H), 7.54 (s, 1H), 6.89 (s, 1H), 4.59 (s, 1H), 4.55 (t, 2H), 3.22 (s, 3H), 3.18 (t, 2H), 2.40-2.30 (m, 7H), 1.60-1.43 (m, 7H).
LC-MS m/z (ESI) = 468.17 [M+1].
실시예 34
4-((9-(3-시아노아다만탄-1-일)-7-메틸-8-옥소-8,9-디하이드로-7H-퓨린-2-일)아미노)-2-플루오로-5-메틸벤즈아미드(화합물 34)
Figure pct00194
단계 1:
3-(2-클로로-7-메틸-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-1-카복실산(34a)
화합물 3f(5.0 g, 11.9 mmol)를 4 N 디옥산 하이드로클로라이드 용액 (100 mL)에 용해시켰다. 혼합물을 60℃에서 6시간 동안 반응시키고 농축시키고, 잔류물을 분취 중간 압력 액체 크로마토그래피로 정제하여 화합물 34a(담황색 고체, 4.3g, 99% 수율)를 얻었다.
LCMS m/z (ESI) = 363.2 [M+1].
단계 2:
3-(2-클로로-7-메틸-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-1-카복사미드(34b)
화합물 34a(4.3 g, 11.9 mmol), 염화암모늄(6.37 g, 119.0 mmol) 및 트리에틸아민(6.0 g, 59.5 mmol)을 테트라하이드로푸란(50 mL)에 용해시키고, HATU(9.05 g, 23.8 mmol)을 빙욕 하에 첨가하였다. 혼합물을 실온에서 2시간 동안 반응시키고, 물(100 mL)을 첨가하여 켄칭하고, 감압 하에 회전식 증발에 의해 농축하여 테트라하이드로푸란을 제거하고, 다량의 고체가 침전되었다. 혼합물을 여과하고, 여액을 회전식 증발에 의해 농축 건조하여 화합물 34b(황백색 고체, 4.0 g, 93.0% 수율)를 얻었다.
LCMS m/z (ESI) = 362.2 [M+1].
단계 3:
3-(2-클로로-7-메틸-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-1-카보니트릴(34c)
화합물 34b(4.0 g, 11.0 mmol)를 디클로로메탄(40 mL)에 용해시키고, 피리딘(3.48 g, 44.0 mmol) 및 트리플루오로아세트산 무수물(6.93g, 33.0 mmol)을 빙욕 하에 첨가하였다. 반응 혼합물을 온도를 유지하면서 추가로 1시간 동안 반응시켰다. 메탄올(20 mL)을 첨가하고, 조 생성물을 농축시켰다. 조 생성물을 포화 NaHCO3 용액(100 mL)에 부었고, 다량의 고체가 침전되었다. 혼합물을 여과하고, 여액을 회전식 증발에 의해 농축 건조하여 화합물 34c(담황색 고체, 3.3g, 87.3% 수율)를 얻었다.
LCMS m/z (ESI) = 344.2 [M+1].
단계 4:
4-((9-(3-시아노아다만탄-1-일)-7-메틸-8-옥소-8,9-디하이드로-7H-퓨린-2-일)아미노)-2-플루오로-5-메틸벤즈아미드(화합물 34)
화합물 34c(2.0 g, 5.82 mmol), 화합물 21a(1.96 g, 11.64 mmol), 탄산세슘(3.80 g, 11.64 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(528 mg, 0.582 mmol)을 디옥산(30 mL)에 용해시키고, 그다음 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 빙수에 부었고 고체를 수집하고 실리카겔 컬럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 100/1)로 정제하여 화합물 34(백색 고체, 1.0 g, 36.1% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 8.50 (s, 1H), 8.18 (s, 1H), 7.80 (d, 1H), 7.54 (d, 1H), 7.48 (s, 1H), 7.32 (d, 1H), 3.27 (s, 3H), 2.82 (s, 2H), 2.61-2.52 (m, 4H), 2.28 (s, 3H), 2.23 (q, 2H), 2.06-1.94 (m, 4H), 1.68 (s, 2H).
LCMS m/z (ESI) = 476.2 [M+1].
19F NMR (377 MHz, DMSO-d 6) δ -115.48.
실시예 35
3-(2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-1-카보니트릴(화합물 35)
Figure pct00195
단계 1:
3-(2-클로로-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-1-카복실산(35a)
화합물 1e(3.2 g, 7.90 mmol)를 4 N 디옥산 하이드로클로라이드 용액 (100 mL)에 용해시켰다. 혼합물을 60℃에서 6시간 동안 반응시키고 농축시키고, 잔류물을 분취 중간 압력 액체 크로마토그래피로 정제하여 화합물 35a(담황색 고체, 2.75 g, 100% 수율)를 얻었다.
LCMS m/z (ESI) = 349.2 [M+1].
단계 2:
3-(2-클로로-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-1-카복사미드(35b)
화합물 35a(2.75 g, 7.90 mmol), 염화암모늄(4.23 g, 79.0 mmol) 및 트리에틸아민(3.99 g, 39.5 mmol)을 테트라하이드로푸란(40 mL)에 용해시키고, HATU(6.01g, 15.80 mmol)을 빙욕 하에 첨가하였다. 혼합물을 실온에서 2시간 동안 반응시키고, 물(100 mL)을 첨가하여 켄칭하고, 감압 하에 회전식 증발에 의해 농축하여 테트라하이드로푸란을 제거하고, 다량의 고체가 침전되었다. 혼합물을 여과하고, 여액을 회전식 증발에 의해 농축 건조하여 화합물 35b(황백색 고체, 2.4 g, 87.5% 수율)를 얻었다.
LCMS m/z (ESI) = 348.2 [M+1].
단계 3:
3-(2-클로로-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-1-카보니트릴(35c)
화합물 35b(2.4 g, 6.91 mmol)를 디클로로메탄(40 mL)에 용해시키고, 피리딘(2.19 g, 27.63 mmol) 및 트리플루오로아세트산 무수물(4.35 g, 20.73 mmol)을 빙욕 하에 첨가하였다. 반응 혼합물을 온도를 유지하면서 추가로 1시간 동안 반응시켰다. 메탄올(20 mL)을 첨가하고, 조 생성물을 농축시켰다. 조 생성물을 포화 NaHCO3 용액(100 mL)에 부었고, 다량의 고체가 침전되었다. 혼합물을 여과하고, 여액을 회전식 증발에 의해 농축 건조하여 화합물 35c(담황색 고체, 1.4 g, 61.4% 수율)를 얻었다.
LCMS m/z (ESI) = 330.2 [M+1].
단계 4:
3-(2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-8-옥소-7,8-디하이드로-9H-퓨린-9-일)아다만탄-1-카보니트릴(화합물 35)
화합물 35c(1.4 g, 4.24 mmol), 7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-아민 1e(624 mg, 4.24 mmol), 탄산세슘(2.70 g, 8.28 mmol) 및 메탄설포네이토(2-디사이클로헥실포스피노-3,6-디메톡시-2',4',6'-트리-i-프로필-1,1'-바이페닐)(2'-아미노-1,1'-바이페닐-2-일)팔라듐(II)(385 mg, 0.424 mmol)을 디옥산(30 mL)에 용해시킨 다음, 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응이 완료될 때까지 TLC에 의해 반응을 모니터링하였다. 반응 혼합물을 빙수에 부었고 고체를 수집하고 실리카겔 컬럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 100/1)로 정제하여 화합물 35(백색 고체, 286 mg, 15.3% 수율)를 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 10.95 (s, 1H), 9.06 (s, 1H), 8.56 (s, 1H), 8.36 (s, 1H), 7.89 (s, 1H), 7.69 (s, 1H), 2.75 (s, 2H), 2.49-2.44(m, 4H), 2.37 (s, 3H), 2.14 (s, 2H), 1.90 (d, 4H), 1.61-1.53(m, 2H).
LCMS m/z (ESI) = 442.2 [M+1].
실시예 36
9-(3-하이드록시아다만탄-1-일)-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-7,9-디하이드로-8H-퓨린-8-온(화합물 36)
Figure pct00196
화합물 1i(128 mg, 0.4 mmol), 화합물 1e(132 mg, 0.3 mmol), 탄산세슘(1 g, 1.2 mmol), 트리스(디벤질리덴아세톤)디팔라듐(915 mg, 0.04 mmol) 및 2,2'-비스(디페닐포스피노)-1,1'-바이나프틸 (622 mg, 0.08 mmol)을 디옥산에 용해시킨 후, 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 20/1)로 정제하여 화합물 36(백색 고체, 30.0 mg, 17.5% 수율)을 얻었다.
1H NMR (400 MHz DMSO) δ 10.86 (s, 1H), 9.09 (s, 1H), 8.47 (s, 1H), 8.36 (s, 1H), 7.87 (s, 1H), 7.69(s, 1H), 4.55 (s, 1H), 2.50-2.52 (m, 9H), 1.50-1.58 (M, 4H), 1.41-1.44 (m, 2H).
LC-MS m/z (ESI) = 433.20 [M+1].
실시예 37
9-(3-하이드록시아다만탄-1-일)-7-(메틸-d3)-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-7,9-디하이드로-8H-퓨린-8-온(화합물 37)
Figure pct00197
단계 1:
2-클로로-9-((3-하이드록시아다만탄-1-일)-7-(메틸-d3)-7,9-디하이드로-8H-퓨린-8-온(37a)
화합물 1i(1.0 g, 3.12 mmol)를 디메틸설폭사이드(20 mL)에 용해시키고, 실온에서 탄산세슘(1.6g, 6.24 mmol)을 첨가한 후, 중수소화 요오도메탄(0.4 g, 3.36 mmol)을 0℃에서 첨가하였다. 반응 혼합물을 실온에서 2시간 동안 반응시켰다. 반응이 완료된 후, 5 mL의 물을 첨가하고 에틸아세테이트로 3회 추출하였다. 유기상을 무수 황산나트륨 상에서 건조시키고 농축하고 고체가 침전되었다. 혼합물을 여과하고, 여액을 농축 건조시켰다. 잔류물을 실리카겔 컬럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 15:1)로 정제하여 화합물 37a(백색 고체, 0.36g, 34.66% 수율)를 얻었다.
LC-MS m/z (ESI) = 457.20 [M+1].
단계 2:
9-(3-하이드록시아다만탄-1-일)-7-(메틸-d3)-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-7,9-디하이드로-8H-퓨린-8-온(화합물 37)
화합물 37a(135.1 mg, 0.4 mmol), 화합물 1e(40 mg, 0.3 mmol), 탄산세슘(391 mg, 1.2 mmol), 트리스(디벤질리덴아세톤)디팔라듐(40 mg, 0.04 mmol) 및 2,2'-비스(디페닐포스피노)-1,1'-바이나프틸 (622 mg, 0.08 mmol)을 디옥산에 용해시킨 후, 질소 퍼징하였다. 반응 혼합물을 100℃에서 4시간 동안 교반하였다. 반응 혼합물을 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피(디클로로메탄/메탄올(v/v) = 20/1)로 정제하여 화합물 37(백색 고체, 12.6 mg, 2.5% 수율)을 얻었다.
1H NMR (400 MHz DMSO) δ 9.09 (s, 1H), 8.56 (s, 1H), 8.36 (s, 1H), 8.08 (s, 1H), 7.70 (s, 1H), 4.56 (s, 1H), 2.35-2.42 (m, 9H), 2.17 (s, 2H), 1.58-1.23 (m, 6H).
LC-MS m/z (ESI) = 450.28 [M+1].
실시예 38
9-(-4,4-디메톡시아다만탄-1-일)-7-메틸-2-((7-메틸-[1,2,4]트리아졸로[1,5-a]피리딘-6-일)아미노)-7,9-디하이드로-8H-퓨린-8-온(화합물 38)
Figure pct00198
화합물 18(100 mg, 0.22 mmol)을 3 mL의 메탄올 및 5 mL의 아세토니트릴에 용해시키고 0.5 mL의 2 M 염산을 첨가하였다. 반응 혼합물을 실온에서 30분 동안 방치하고, 반응이 완료될 때까지 TLC로 반응을 모니터링하였다. 반응 혼합물을 농축하고, 잔류물을 Pre-HPLC로 정제하여 화합물 30(백색 고체, 22.0 mg, 20.4% 수율)을 얻었다.
1H NMR (400 MHz DMSO) δ 9.11 (s, 1H), 8.61 (s, 1H), 8.37 (s, 1H), 8.11 (s, 1H), 7.70(s, 1H), 3.25 (s, 3H), 3.08 (s, 3H), 3.07 (s, 3H), 2.93-2.96 (m, 2H), 2.66-2.69 (m, 4H), 2.39 (s, 3H), 1.94-1.99 (m, 2H), 1.81-1.84 (m, 2H), 1.34-1.49(m, 2H).
LC-MS m/z (ESI) = 491.24 [M+1].
생물학적 검정
1. DNA-PK 키나제의 억제
DNA-PK 키나제 검정 키트(Promega로부터 구입, 카탈로그 번호 V4107, 배치 번호 0000366495)를 사용하여 DNA-PK 키나제에 대한 화합물의 억제 활성을 결정하였다. 결과는 구체적으로 다음과 같이 화학발광을 사용하여 정량화되었다.
i. 키트의 지침에 따라 상이한 농도에서 ADP-형광 표준 곡선을 구축하였고;
ii. 반응 시스템(5 μL)을 384-웰 백색 플레이트에서 준비하였고; 1 μL의 화합물(농도 구배 1 μM, 200 nM, 40 nM, 8 nM, 1.6 nM, 0.32 nM, 0.064 nM 및 0.013 nM은 화합물에 대해 설정되었음), 20 단위의 DNA-PK 키나제, 0.2 μg/μL의 기질, 10 μg/μL DNA, 50 μM ATP 및 1% DMSO을 연속적으로 각 웰에 첨가하였고;
iii. 혼합물을 잘 혼합하고 원심분리(1000 rpm, 30초)하고, 37℃에서 60분 동안 인큐베이션하였고;
iv. 5 μL의 ADP-GloTM 시약을 추가하여 반응을 종료하였고; 혼합물을 잘 혼합하고 원심분리(1000 rpm, 30초)하고 실온에서 40분 동안 인큐베이션하였고;
v. 10 μL의 키나제 검출 시약을 첨가하였고; 혼합물을 흔들어 잘 혼합하고 원심분리(1000 rpm, 30초)하고 실온에서 30분 동안 인큐베이션하였고;
vi. 형광 값은 마이크로플레이트 리더(Thermo fisher, Varioskan LUX)를 사용하여 측정하였다. IC50은 GraphPad Prism 8을 사용하여 계산되었다. 결과는 표 1에 나타나 있다.
Figure pct00199
Figure pct00200
주석: 문헌[J. Med . Chem (2020), 63(7), 3461-3471]의 화합물 3을 비교예로 사용하였고; 제조 방법에 따라 제조하였다.
그 결과, 본 발명의 화합물이 비교예보다 DNA-PK 키나제에 대한 억제 효과가 더 현저함을 알 수 있다.
2. 이식 종양의 억제
2.1. 실험 물질: A549 세포(ATCC에서 구입); 독소루비신 리포솜(Dox)(리포 독소루비신, 상품명 "Libod(Ribordeau)", Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd.에서 구입); 화합물 1, 6, 19, 22 및 34; 6주령의 암컷 누드 마우스(체중 18-20 g)(Beijing Vital River Laboratory Animal Technology Co., Ltd.), 그룹당 10마리.
2.2. A549 이식편 종양에 대해 스크리닝할 화합물과 조합된 독소루비신의 억제 효과의 결정:
2.2.1. 대수기에서 성장하는 A549 세포를 수집하고 나중에 사용하기 위해 미리 냉각된 PBS로 2회 세척하였다;
2.2.2. Balb/c 누드 마우스를 3일 동안 실험실 환경에 순응시키고 마우스당 5 × 106개의 세포의 양으로 오른쪽 옆구리에 A549 세포를 피하 접종하였고; 종양이 약 200 mm3의 크기로 성장했을 때 약력학적 연구를 수행하였다;
2.2.3. 종양이 있는 마우스를 다음과 같이 무작위로 그룹으로 나누었다: 독소루비신(Dox) 그룹, 테스트 화합물 + Dox 그룹 및 대조군(비히클); 마우스에 21일 동안 5 mL/kg의 부피로 1일 2회 (BID) 위내 투여하였고 (용매는 5% DMSO + 30% 2-하이드록시프로필-β-시클로덱스트린였음); 아침에 위내 투여 1시간 후, 리포 독소루비신(2.5 mg/kg)을 꼬리 정맥을 통해 주 1회(QW) 5 mL/kg의 부피로 주사하고; 구체적인 투여 레지멘은 다음과 같다:
Figure pct00201
2.2.4. 마우스를 매주 2회 칭량하고, 한편 종양 부피를 결정하고: 종양 부피(V)는 다음과 같이 계산되었다: V = 1/2 × L × L짧은 2; 종양 억제율은 다음과 같이 계산되었다: 종양 억제율(%) = (D21 종양 부피(비히클) - D21 종양 부피(투여군))/D21 종양 부피(비히클) × 100;
2.2.5. 투여 21일 후, 종양을 단리하고 칭량하고, 체중 변화율을 다음과 같이 계산되었다: 체중 변화율(%) = (D21 체중 - D0 체중)/D0 체중 × 100.
Figure pct00202
결론: 실험 결과는 본 발명의 모든 화합물이 독소루비신과 조합하여 사용될 때 종양에 대한 독소루비신의 억제 효과를 개선할 수 있고 상당한 체중 손실을 일으키지 않을 것임을 보여준다.
본 발명의 구체적 구현예를 본 명세서에 상세히 기재하였지만, 상기 기재된 구현예는 예시적이며 본 발명을 제한하는 것으로 해석되지 않아야 하고, 다양한 변화 및 변형이 본 발명의 원리로부터 벗어나지 않으면서 본 발명에 대해 이루어질 수 있고, 이들 변화 및 변형으로부터 생성된 기술적 반응식이 또한 첨부된 청구범위의 보호 범주 내에 속함을 당업자는 이해할 것이다.

Claims (10)

  1. 일반 화학식(I)로 나타낸 화합물 또는 이의 모든 입체이성질체, 용매화물, 전구약물, 대사물, 중수소화물, 약제학적으로 허용가능한 염 또는 공결정:
    Figure pct00203
    (I)
    식 중,
    A는 존재하지 않거나 N, O 및 S로부터 선택된 1 내지 4개의 헤테로원자를 함유하는 4 내지 12원 헤테로사이클로부터 선택되고;
    X1 및 X2는 각각 독립적으로 C, O, N 및 S로부터 선택되고, A가 4 내지 12원 헤테로사이클로부터 선택되는 경우, X1 및 X2는 고리 A의 일부이고;
    B는 아다만틸로부터 선택되고;
    R0 및 R1은 각각 독립적으로 H, 할로겐, 카복실, =O, -OH, 시아노, -NRa1Ra2, C1-6 알킬, -C1-6 알킬렌-OH, -C1-6 알킬렌-NRa1Ra2, C1-6 알콕시, -C(=O)OC1 -6 알킬, -C(=O)NRa1Ra2, C2-6 알케닐 및 C2-6 알키닐로부터 선택되고, 여기서 C1-6 알킬, C1-6 알킬렌 및 C1-6 알콕시는 D 및 할로겐으로부터 선택된 1 내지 3개의 치환기로 선택적으로 추가로 치환되고;
    또는 n이 2, 3 및 4로부터 선택되는 경우, 2개의 R0는 이들이 부착된 원자와 함께 3 내지 8원 고리를 형성하고, 여기서 3 내지 8원 고리는 선택적으로 N, O 및 S로부터 선택된 1 내지 3개의 헤테로원자를 함유하고, 그리고 -OH, 카복실, 할로겐, 시아노, =O, C1-6 알킬 및 아미노로부터 선택된 하나 이상의 치환기로 선택적으로 추가로 치환되고;
    R2는 H 및 C1-6 알킬로부터 선택되고;
    R3은 H, 할로겐, C1-6 알킬 및 C1-6 알콕시로부터 선택되고;
    R4는 H, C1-6 알킬, C3-12 사이클로알킬, C3 헤테로사이클로알킬 및 C4-12 헤테로사이클로알킬로부터 선택되고, 여기서 C3 헤테로사이클로알킬 또는 C4-12 헤테로사이클로알킬은 N, O 및 S로부터 선택된 1 내지 3개의 헤테로원자를 함유하고, 그리고 C1-6 알킬, C3-12 사이클로알킬, C3 헤테로사이클로알킬 또는 C4-12 헤테로사이클로알킬은 -OH, D, 할로겐, 시아노, 카복실, -NH2, =O, -C(=O)NH2, C1-6 알킬, -C1-6 알킬렌-OH, C1-6 알콕시, C2-6 알케닐, C2-6 알키닐, C3-12 사이클로알킬, C3 헤테로사이클로알킬, C4-12 헤테로사이클로알킬, C6-12 아릴 및 C5 내지 12 헤테로아릴로부터 선택된 하나 이상의 치환기로 선택적으로 치환되고;
    또는, R3 및 R4는, 이들이 부착된 원자와 함께, 4 내지 12원 헤테로사이클을 형성하고, 여기서 헤테로사이클은 N, O 및 S로부터 선택된 1 내지 3개의 헤테로원자를 함유하고, 그리고 4-12 원 헤테로사이클은 -OH, 카복실, 할로겐, 시아노, =O, C1-6 알킬, C1-6 헤테로알킬, C2-6 알케닐, C2-6 알키닐, -NRa1Ra2, -C(=O)OC1 -6 알킬, -C(=O)NRa1Ra2, C3-12 사이클로알킬, C3 헤테로사이클로알킬, C4-12 헤테로사이클로알킬, C6-12 아릴 및 C5-12 헤테로아릴로부터 선택된 하나 이상의 치환기로 선택적으로 치환되고, 여기서 C1-6 알킬, C1-6 헤테로알킬, C2-6 알케닐 또는 C2-6 알키닐은 -OH, 카복실, 시아노, 할로겐, -O-Ra1, -NRa1Ra2, C3-12 사이클로알킬, C3 헤테로사이클로알킬, C4-12 헤테로사이클로알킬, C6-12 아릴 및 C5-12 헤테로아릴로부터 선택된 하나 이상의 치환기로 선택적으로 추가로 치환되고;
    R5는 -OH, 할로겐, D, 시아노, 카복실, =O, C1-6 알킬, C1-6 알콕시, C2-6 알케닐, C2-6 알키닐, -NRa1Ra2, -C(=O)OC1 -6 알킬, -OC(=O)C1 -6 알킬, -C(=O)NRa1Ra2, C3-12 사이클로알킬, C3 헤테로사이클로알킬, C4-12 헤테로사이클로알킬, C6-12 아릴 및 C5-12 헤테로아릴로부터 선택되고, 여기서 C1-6 알킬, C1-6 알콕시, C3-12 사이클로알킬, C4-12 헤테로사이클로알킬, C6-12 아릴 및 C5-12 헤테로아릴은 OH, 카복실, 할로겐, C1-6 알킬, C1-6 알콕시, -NRa1Ra2 및 =O로부터 선택된 1 내지 3개의 치환기로 선택적으로 추가로 치환되고;
    Ra1 및 Ra2는 각각 독립적으로 H, C1-6 알킬, -C(=O)Ra3 및 -C(=O)NRa4Ra5로부터 선택되고, 여기서 C1-6 알킬은 OH, 할로겐, C1-6 알킬, C1-6 알콕시, C6-12 아릴, C5-12 헤테로아릴, C3-12 사이클로알킬, C3 헤테로사이클로알킬 및 C4-12 헤테로사이클로알킬로부터 선택된 하나 이상의 치환기로 선택적으로 추가로 치환되거나; 또는 Ra1 및 Ra2는, N 원자와 함께 3 내지 12원 헤테로사이클을 형성하고, 이는 N, O 및 S로부터 선택된 1 내지 4개의 헤테로원자를 함유하고;
    Ra3은 C1-6 알킬, C1-6 알콕시 및 C6-12 아릴로부터 선택되고;
    Ra4 및 Ra5는 각각 독립적으로 H 및 C1-6 알킬로부터 선택되거나; 또는 Ra4 및 Ra5는, N 원자와 함께 3 내지 12원 헤테로사이클을 형성하고, 이는 N, O 및 S로부터 선택된 1 내지 4개의 헤테로원자를 함유하고;
    W는 O 및 S로부터 선택되고;
    n, p 및 q는 각각 독립적으로 0, 1, 2, 3 또는 4로부터 선택되고;
    Figure pct00204
    은 단일 결합 또는 이중 결합이다.
  2. 제1항에 있어서, 상기 화합물은 일반 화학식(II)로 표시되는 화합물인, 화합물 또는 이의 입체이성질체, 용매화물, 대사산물, 전구약물, 중수소화물, 약제학적으로 허용 가능한 염 또는 공결정:
    Figure pct00205
    (II)
    식 중,
    A는 존재하지 않거나 N, O 및 S로부터 선택된 1 내지 4개의 헤테로원자를 함유하는 4 내지 12원 헤테로사이클로부터 선택되고;
    X1 및 X2는 각각 독립적으로 C 및 N으로부터 선택되고, A가 4 내지 12원 헤테로사이클로부터 선택되는 경우, X1 및 X2는 고리 A의 일부이고;
    B는 아다만틸로부터 선택되고;
    R0 및 R1은 각각 독립적으로 H, 할로겐, 카복실, =O, -OH, 시아노, -NRa1Ra2, C1-6 알킬, -C1-6 알킬렌-OH, -C1-6 알킬렌-NRa1Ra2, C1-6 알콕시, -C(=O)OC1 -6 알킬, -C(=O)NRa1Ra2, C2-6 알케닐 및 C2-6 알키닐로부터 선택되고, 여기서 C1-6 알킬, C1-6 알킬렌 및 C1-6 알콕시는 D 및 할로겐으로부터 선택된 1 내지 3개의 치환기로 선택적으로 추가로 치환되고;
    또는 n이 2, 3 및 4로부터 선택되는 경우, 2개의 R0는 이들이 부착된 원자와 함께 3 내지 8원 고리를 형성할 수 있고, 여기서 3 내지 8원 고리는 선택적으로 N, O 및 S로부터 선택된 1 내지 3개의 헤테로원자를 함유하고, 그리고 -OH, 카복실, 할로겐, 시아노, =O, C1-6 알킬 및 아미노로부터 선택된 하나 이상의 치환기로 선택적으로 추가로 치환되고;
    R3은 H, 할로겐, C1-6 알킬 및 C1-6 알콕시로부터 선택되고;
    R4는 H, C1-6 알킬, C3-12 사이클로알킬, C3 헤테로사이클로알킬 및 C4-12 헤테로사이클로알킬로부터 선택되고, 여기서 C3 헤테로사이클로알킬 또는 C4-12 헤테로사이클로알킬은 N, O 및 S로부터 선택된 1 내지 3개의 헤테로원자를 함유하고, 그리고 C1-6 알킬, C3-12 사이클로알킬, C3 헤테로사이클로알킬 또는 C4-12 헤테로사이클로알킬은 -OH, D, 할로겐, 시아노, 카복실, -NH2, =O, -C(=O)NH2, C1-6 알킬, -C1-6 알킬렌-OH, C1-6 알콕시, C2-6 알케닐, C2-6 알키닐, C3-12 사이클로알킬, C3 헤테로사이클로알킬, C4-12 헤테로사이클로알킬, C6-12 아릴 및 C5-12 헤테로아릴로부터 선택된 하나 이상의 치환기로 선택적으로 치환되고;
    R5는 -OH, D, 할로겐, 시아노, 카복실, =O, C1-6 알킬, C1-6 알콕시, C2-6 알케닐, C2-6 알키닐, -NRa1Ra2, -C(=O)OC1 -6 알킬, -OC(=O)C1 -6 알킬, -C(=O)NRa1Ra2, C3-12 사이클로알킬, C3 헤테로사이클로알킬, C4-12 헤테로사이클로알킬, C6-12 아릴 및 C5 내지 12 헤테로아릴로부터 선택되고, 여기서 C1-6 알킬, C1-6 알콕시, C3-12 사이클로알킬, C4-12 헤테로사이클로알킬, C6-12 아릴 및 C5 내지 12 헤테로아릴은 OH, 카복실, 할로겐, C1-6 알킬, C1-6 알콕시, -NRa1Ra2 및 =O로부터 선택된 1 내지 3개의 치환기로 선택적으로 추가로 치환되고;
    Ra1 및 Ra2는 각각 독립적으로 H, C1-6 알킬, -C(=O)Ra3 및 -C(=O)NRa4Ra5로부터 선택되고, 여기서 C1-6 알킬은 OH, 할로겐, C1-6 알킬, C1-6 알콕시, C6-12 아릴, C5 내지 12 헤테로아릴, C3-12 사이클로알킬, C3 헤테로사이클로알킬 및 C4-12 헤테로사이클로알킬로부터 선택된 하나 이상의 치환기로 선택적으로 추가로 치환되거나; 또는 Ra1 및 Ra2는, N 원자와 함께 3 내지 12원 헤테로사이클을 형성하고, 이는 N, O 및 S로부터 선택된 1 내지 4개의 헤테로원자를 함유하고;
    Ra3은 C1-6 알킬, C1-6 알콕시 및 C6-12 아릴로부터 선택되고;
    Ra4 및 Ra5는 각각 독립적으로 H 및 C1-6 알킬로부터 선택되거나; 또는 Ra4 및 Ra5는, N 원자와 함께 3 내지 12원 헤테로사이클을 형성하고, 이는 N, O 및 S로부터 선택된 1 내지 4개의 헤테로원자를 함유하고;
    n, p 및 q는 각각 독립적으로 0, 1, 2, 3 또는 4로부터 선택되고;
    Figure pct00206
    은 단일 결합 또는 이중 결합이다.
  3. 제2항에 있어서, 상기 화합물은 일반 화학식(III), (IV), (V), (VI), (VII) 또는 (VIII)로 표시되는 화합물인, 화합물 또는 이의 입체이성질체, 용매화물, 대사산물, 전구약물, 중수소화물, 약제학적으로 허용 가능한 염 또는 공결정:
    Figure pct00207

    R0, R1, R3, R4, R5, B, n, p 및 q는 일반 화학식(II)에서와 동일한 방식으로 정의된다.
  4. 제3항에 있어서,
    A는 존재하지 않거나 N 및 O로부터 선택된 1 내지 3개의 헤테로원자를 함유하는 5원 헤테로사이클로부터 선택되고;
    X1 및 X2는 각각 독립적으로 C 및 N으로부터 선택되고, A가 5원 헤테로사이클로부터 선택되는 경우, X1 및 X2는 고리 A의 일부이고;
    B는 아다만틸로부터 선택되고;
    R0는 H로부터 선택되고;
    R1은 H, 할로겐, C1-4 알킬, 시아노 및 -C(=O)NRa1Ra2로부터 선택되고, 여기서 C1-4 알킬은 D 및 할로겐으로부터 선택된 1 내지 3개의 치환기로 선택적으로 추가로 치환되고;
    R3은 H로부터 선택되고;
    R2는 H 및 C1-6 알킬로부터 선택되고;
    R5는 -OH, D, 시아노, -NRa1Ra2, C1-4 알킬, C1-4 알콕시, -C(=O)OC1 -4 알킬, 카복실, 할로겐, =O 및 -C(=O)NRa1Ra2로부터 선택되고, 여기서 C1-4 알킬 및 C1-4 알콕시는 OH 및 할로겐으로부터 선택된 1 내지 3개의 치환기로 선택적으로 추가로 치환되고;
    Ra1 및 Ra2는 각각 독립적으로 H 및 C1-4 알킬로부터 선택되거나; 또는 Ra1 및 Ra2는, N 원자와 함께 6원 헤테로사이클을 형성하고, 이는 N 및 O로부터 선택된 1 내지 2개의 헤테로원자를 함유하고;
    n은 0 및 1로부터 선택되고;
    p는 1, 2 및 3으로부터 선택되고;
    q는 1 및 2로부터 선택되고;
    Figure pct00208
    은 단일 결합 또는 이중 결합인, 화합물 또는 이의 입체이성질체, 용매화물, 대사산물, 전구약물, 중수소화물, 약제학적으로 허용 가능한 염 또는 공결정.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 화합물은 하기 구조 중 하나로부터 선택되는 것인, 화합물 또는 이의 입체이성질체, 용매화물, 대사산물, 전구약물, 중수소화물, 약제학적으로 허용 가능한 염 또는 공결정:
    Figure pct00209

    Figure pct00210

    Figure pct00211

    Figure pct00212
  6. 일반 화학식(I), (II), (III), (IV), (V), (VI), (VII), (VIII), (VIX) 또는 (VX)의 화합물을 제조하기 위한 중간체 화합물로서, 상기 중간체 화합물은 하기 화학식(I-A) 또는 (I-B)로 표시되는 화합물로부터 선택되는, 중간체 화합물:
    Figure pct00213

    식 중,
    X는 할로겐으로부터 선택되고;
    B는 아다만틸로부터 선택되고;
    Rx는 H 및 C1-6 알킬로부터 선택되고;
    R4, R5 및 q는 제1항 내지 제4항 중 어느 한 항에서와 동일한 방식으로 정의된다.
  7. 제6항에 있어서, 하기 구조 중 하나로부터 선택되는, 중간체 화합물:
    Figure pct00214
  8. (1) 제1항 내지 제4항 중 어느 한 항에 따른 화합물 또는 이의 입체이성질체, 용매화물, 대사산물, 중수소화물, 약제학적으로 허용 가능한 염, 공결정 또는 전구약물;
    (2) 선택적으로 하나 이상의 다른 활성 성분; 및
    (3) 약제학적으로 허용 가능한 담체 및/또는 부형제를 포함하는 약제학적 조성물.
  9. DNA-PK 억제제의 제조에서의 제1항 내지 제5항 중 어느 한 항에 따른 화합물 또는 이의 입체이성질체, 용매화물, 대사산물, 중수소화물, 약제학적으로 허용 가능한 염, 공결정 또는 전구약물 또는 제8항에 따른 약제학적 조성물의 용도.
  10. 암을 치료하고 예방하기 위한 약제의 제조에서의 제1항 내지 제5항 중 어느 한 항에 따른 화합물 또는 이의 입체이성질체, 용매화물, 대사산물, 중수소화물, 약제학적으로 허용 가능한 염, 공결정 또는 전구약물, 또는 제8항에 따른 약제학적 조성물의 용도.
KR1020227021886A 2019-12-31 2020-12-30 퓨린 유도체 및 의학에서의 그의 용도 KR20220107026A (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
CN201911408681 2019-12-31
CN201911408681.4 2019-12-31
CN202010155797.8 2020-03-11
CN202010155797 2020-03-11
CN202010667388.6 2020-07-15
CN202010667388 2020-07-15
PCT/CN2020/141862 WO2021136463A1 (zh) 2019-12-31 2020-12-30 嘌呤衍生物及其在医药上的用途

Publications (1)

Publication Number Publication Date
KR20220107026A true KR20220107026A (ko) 2022-08-01

Family

ID=76685864

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227021886A KR20220107026A (ko) 2019-12-31 2020-12-30 퓨린 유도체 및 의학에서의 그의 용도

Country Status (6)

Country Link
US (1) US20220402920A1 (ko)
EP (1) EP4086258A4 (ko)
JP (1) JP7428806B2 (ko)
KR (1) KR20220107026A (ko)
CN (1) CN113121574B (ko)
WO (1) WO2021136463A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116406272A (zh) * 2020-07-20 2023-07-07 首药控股(北京)股份有限公司 Dna-pk选择性抑制剂及其制备方法和用途
WO2022135360A1 (zh) * 2020-12-21 2022-06-30 江苏恒瑞医药股份有限公司 嘌呤酮衍生物、其制备方法及其在医药上的应用
CN116917288A (zh) * 2021-03-22 2023-10-20 成都赜灵生物医药科技有限公司 一种7,9-二氢嘌呤衍生物及其制药用途
WO2023274310A1 (zh) * 2021-06-29 2023-01-05 成都百裕制药股份有限公司 嘌呤衍生物的晶型及其药物组合物
WO2023025160A1 (zh) * 2021-08-23 2023-03-02 成都百裕制药股份有限公司 一种咪唑啉酮衍生物的制备工艺及其中间体
AU2022350562A1 (en) * 2021-09-23 2024-04-11 Chengdu Baiyu Pharmaceutical Co., Ltd. Crystal form of imidazolinone derivative
CN114773333A (zh) * 2021-12-25 2022-07-22 上海泰坦科技股份有限公司 一种卤代***并吡啶的合成方法
CN116239610B (zh) * 2023-02-23 2024-01-16 遵义医科大学珠海校区 一种嘧啶衍生物及其制备方法与在制备抗肿瘤药物中的应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006091737A1 (en) * 2005-02-24 2006-08-31 Kemia, Inc. Modulators of gsk-3 activity
CN106977495B (zh) * 2012-04-24 2020-08-04 沃泰克斯药物股份有限公司 Dna-pk抑制剂
TR201807411T4 (tr) * 2013-10-17 2018-06-21 Vertex Pharma DNA-PK inhibitörleri.
US20210205291A1 (en) * 2016-01-22 2021-07-08 Sichuan Haisco Pharmaceutical Co., Ltd. Nitrogenous heterocyclic amide derivative, preparation method thereof, and pharmaceutical application
JOP20190151B1 (ar) 2016-12-20 2023-09-17 Astrazeneca Ab مركبات أمينو - ترايازولو بيريدين واستخدامها في علاج سرطان
WO2019015593A1 (zh) 2017-07-19 2019-01-24 江苏奥赛康药业股份有限公司 嘧啶并吡啶酮或者吡啶并吡啶酮类化合物及其应用
TWI820146B (zh) * 2018-06-15 2023-11-01 瑞典商阿斯特捷利康公司 嘌呤酮化合物及其在治療癌症中之用途

Also Published As

Publication number Publication date
EP4086258A4 (en) 2023-11-29
EP4086258A1 (en) 2022-11-09
CN113121574A (zh) 2021-07-16
WO2021136463A1 (zh) 2021-07-08
JP7428806B2 (ja) 2024-02-06
CN113121574B (zh) 2023-02-17
US20220402920A1 (en) 2022-12-22
JP2023509011A (ja) 2023-03-06

Similar Documents

Publication Publication Date Title
JP7428806B2 (ja) プリン誘導体および医薬におけるその使用
JP2022524759A (ja) Shp2アンタゴニストとしてのカルボキサミド-ピリミジン誘導体
CA3139526A1 (en) Triaryl compounds for treatment of pd-l1 diseases
CA2878852A1 (en) Imidazotriazinecarbonitriles useful as kinase inhibitors
JP2018537482A (ja) 抗癌薬として使用される複素環式化合物
EP3781563B1 (en) Hpk1 inhibitors, preparation method and application thereof
EA033613B1 (ru) Гетероарильные производные в качестве ингибиторов parp
JP2018515492A (ja) ヒストンデアセチラーゼ阻害薬及び組成物並びにそれらの使用の方法
FR2928645A1 (fr) Nouveaux derives de carbazole inhibiteurs d'hsp90, compositions les contenant et utilisation
BR112013000275B1 (pt) derivados de tetraidro-pirido-pirimidina, seus usos, combinação e composição farmacêuticas
EP3774755B1 (en) Spirocyclic compounds as modulators of indoleamine 2,3-dioxygenase
TW201139449A (en) Sulfonamide derivatives as MEK inhibitors
EP2969000B1 (en) New compounds
WO2020014489A2 (en) Dimeric immuno-modulatory compounds against cereblon-based mechanisms
BR112020019399A2 (pt) Compostos macrocíclicos como inibidores de trk quinases
CA3172478A1 (en) Bcl-2 inhibitor
EP2015748B1 (en) A C-Kit kinase inhibitor for use in the treatment of gastrointestinal stromal tumor or mastocytosis
TW202144341A (zh) Zeste同源基因增強子2抑制劑及其用途
CA3093877A1 (en) Antimalarial hexahydropyrimidine analogues
AU2020401999A1 (en) Compound as cyclin-dependent kinase 9 inhibitor and use thereof
EP3805212A1 (en) 3-oxazolinone compound, preparation method therefor and pharmaceutical application thereof
Abadi et al. Synthesis, molecular modeling, and biological evaluation of novel tetrahydro-β-carboline hydantoin and tetrahydro-β-carboline thiohydantoin derivatives as phosphodiesterase 5 inhibitors
EP3448857A1 (en) Analogs of yohimbine and uses thereof
TW202330546A (zh) 具有irak4抑制活性的化合物,包含其的藥物組合物,及其應用
WO2022257047A1 (en) Diazaspirobicylic compounds as protein-protein interaction inhibitors and applications thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal